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Abstract

We show that any associativity isomorphism in a category with multiplication is coherent in the
sense of MacLane if the operations for building new isomorphisms from it are restricted so that
tensoring with the identity is only allowed on the right instead of on both the right and the left. With
this restriction, coherence is obtained without the assumption that the pentagon diagram commutes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

To say thatC is a category with (functoral) multiplication means that there is a functor
⊗ : C2 → C called the multiplication whereC2 is the category of pairs of objects and pairs
of morphisms fromC. [More technically,C2 is the category of functors and natural transfor-
mations from 2 toCwhere 2 is the category with objects 0 and 1, and the only morphisms are
the identity morphisms.] Examples of functoral multiplications are cross products, tensor
products, free products and so forth on those categories where those products exist.

For most examples it is rarely the case that

A⊗ (B ⊗ C)= (A⊗ B)⊗ C (1)
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is literally true, and what is usually the case is that there is a natural isomorphism� from
the functorF : C3 → C defined byF(A,B,C)=A⊗ (B⊗C) to the functorG : C3 → C
defined byG(A,B,C) = (A ⊗ B) ⊗ C. In the most common cases, there is an obvious
candidate for natural isomorphism� and it is a triviality to define.

The usual statement that “all associativity laws follow from the associativity law given
in (1)” translates into a claim that ifH andK are two functors fromCn to C that are built
by combiningn variables in the same order withn − 1 applications of⊗ and that differ
only in the pattern of parentheses, then there is a natural isomorphism fromH to K that is
derivable in some sensible way from�. The problem might be that there is more than one
way to build such an isomorphism from�, raising the possibility that different ways will
result in different isomorphisms.

This problem was first considered by MacLane in[6], where he defined the condition
coherenceof such an� to mean that any two expressions built from⊗ using the same
variables in the same order and differing only in the distribution of parentheses are connected
by a unique natural isomorphism derivable from� using a prescribed set of constructions.
In [6] it is proven that coherence is achieved from the naturality of� and one hypothesis
that a certain (now famous) pentagonal diagram commutes.

The purpose of this paper is to show that the hypothesis that the pentagonal diagram
commute can be dispensed with if the prescribed set of constructions for building natural
isomorphisms from� is restricted. Thus, we do not prove a strengthening or generalization
of MacLane’s theorem. It is simply a different theorem.

Beyond the statement and proof of this theorem, the paper has a second purpose which
is to point out the connection between MacLane’s theorem on coherence and combinatorial
group theory. This is discussed in the last section, where we point out that MacLane’s
theorem can be viewed as giving a presentation of a certain group in terms of generators
and relations.

2. Statement

The constructions in[6] for building isomorphisms from�are extremely natural. (Overuse
of the wordnaturalhere is unavoidable.) The restrictions on the constructions in this paper
lack a certain symmetry. Thus, our result suffers from a certain aesthetic inferiority. We now
give some details and start with some preliminary technicalities.

If � is a natural transformation from a functorF : A → B to a functorG : A → B,

then we can view� as a functor fromA to B2, the category of functors from2 to B
in which 2 is the category with objects 0 and 1 and only one non-identity morphism that
goes from 0 to 1. The category2 is just the category whose objects are 0 and 1 and whose

morphisms correspond to the partial order� ; whileB2 is just the category whose objects
are the morphisms ofB and whose morphisms are the commutative squares inB. If Sis the

“source” functor fromB2 to B in whichS(f : X → Y )=X andT is the “target” functor
in whichT (f : X → Y )= Y , thenS� = F andT � =G.

Any functorF : A → B induces a functorF 2 : A2 → B2.
In [6] isomorphisms are built from� : A⊗ (B ⊗C) → (A⊗B)⊗C by four processes.

The one that we will restrict is as follows.
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If � is a natural transformation from functorF to functorG that each go fromCm to C
and� is a natural transformation fromH to K that each go fromCn toC, then we can form
� ⊗ � going fromF ⊗H toG⊗K by composing

� × � : Cm × Cn → C2 × C2

with

⊗2 : C2 × C2 → C2.

The operation⊗ on transformations can be used for the following. Let1 denote the
identity transformation from the identity functor onC to itself. We can then form� ⊗ 1,
(� ⊗ 1)⊗ 1 and so forth where, inductively,�0 = � and�i = �i−1 ⊗ 1. Thus

�1 = � ⊗ 1 : (A⊗ (B ⊗ C))⊗D → ((A⊗ B)⊗ C)⊗D

with similar descriptions of other�i . We can refer to� ⊗ 1 as theright stabilizationof �.
We refer to the�i as the iterated right stabilizations of�.

The assumptions in[6] are that the transformations form a category closed (among other
things) under the operation⊗ on transformations. In this paper, we will only make use of
the operation⊗ on transformations to create right stabilizations. All other constructions
from [6] will be used here. We now go on to the others.

From

� : A⊗ (B ⊗ C) → (A⊗ B)⊗ C (2)

we can create

�′ : (A⊗ B)⊗ (C ⊗D) → ((A⊗ B)⊗ C)⊗D

from (2) by replacingA in (2) by the product of two variables. Similarly, we get

�′′ : A⊗ ((B ⊗ C)⊗D) → (A⊗ (B ⊗ C))⊗D

by replacingB in (2) by the product of two variables. These are both examples ofinstancesof
�. More generally, we can replace any variable in (2) on both sides by identical expressions
involving ⊗.

Technically, aninstanceof a transformation is created by precomposing the transforma-

tion with a functor. Now if� : A → B2 is a natural transformation fromF=S� toG=T �,
and ifH : D → A is any functor, then�D is a natural transformation fromFD = S�D
toGD = T �D and can be viewed as an instance of�.

In our setting, we will take instances of the iterated right stabilizations�i of �. The iterated
stabilization of�i connects functors fromCn toC wheren= i+3. Instances can be created
by precomposing the stabilizations with compositions of functors such as

(X1, X2, . . . , Xj ,Xj+1, . . . , Xm+1) 	→ (X1, X2, . . . , Xj ⊗Xj+1, . . . , Xm+1)

fromCm+1 toCm for various values ofm andj.
We will also postcompose a transformation with a functor. If� : A → B2̄ is a natural

transformation andJ : B → E is a functor, thenJ� represents the composition of�
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with J 2̄. This construction can yield an instance (of another transformation) by accident,
and we will exploit this.

Another operation for constructing isomorphisms from� is that of composition. IfF, G
andH are all functors fromA to B, if � is a natural transformation fromF to G and�
is a natural transformation fromG to H, then there is an obvious composition�� that is a
natural transformation fromF to H. Composition commutes with right stabilization.

The final operation for constructing isomorphisms from� is that of inversion. Since�,
its stabilizations and its instances are all isomorphisms, they are all invertible. Note that
inversion commutes with instance and stabilization and behaves in the usual way with
respect to composition:(��)−1 = �−1�−1.

We can now state our result.

Theorem 1. LetC be a category with functoral multiplication⊗ : C2 → C. Let � be a
natural isomorphism fromA⊗ (B ⊗C) to (A⊗B)⊗C. If E and F are two expressions in
n − 1 appearances of⊗ and n different variables in the same order that differ only in the
arrangement of parentheses, then there exists a unique natural isomorphism constructable
from� as a composition of instances of iterations of right stabilizations of� and�−1.

3. Proof

The proof of Theorem 1 is essentially the proof of Theorem 3.1 of[6] with more attention
paid to some details. We will include the entire proof since a set of instructions on modifying
the proof in[6] would be unreadable.

We will discuss expressions endlessly. For us anexpressionin n variables is a fully
parenthesized alternation of the variablesX1, . . . , Xn in that order withn− 1 appearances
of the operation⊗. Inductively, the variableX1 is the only expression in 1 variable, and if
F andG are expressions inm andn variables, respectively, then(F ⊗G) is an expression
inm+n variables whereG is the expressionG with all the subscripts of its variables raised
uniformly by m. We will omit the bar from the second expression from now on since the
meaning will always be clear.

An expression istrivial if it has only one variable. We reserve the symbolI to symbolize
the trivial expressionX1.

A non-trivial expressionE breaks uniquely as(F ⊗G). We say thatE is semi-normalized
if E=(F⊗I ).We can refer to(F⊗I )as the right stabilization ofF. Right stabilization can be
iterated and we define(F

⊗
i I ) inductively by(F

⊗
0I )=F and(F

⊗
i I )=((F

⊗
i−1I )⊗I ).

An expression inn variables isfully normalizedif it is of the form (I
⊗

n−1 I ). There is
only one fully normalized expression onn variables for eachn and we will denote it byIn.
We have

In = (· · · (((I ⊗ I )⊗ I )⊗ I )⊗ · · · ⊗ I ), (n appearances ofI ).

If an expressionE is not fully normalized, then it is uniquely expressible as(N
⊗

i I )
whereN is not semi-normalized. IfE is not semi-normalized, theni = 0. The value ofi is
thenormalization levelof E. Note further thatN = (F ⊗G) for someF andG withG �= I .
Theweightof E is the number of variables used inG.
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If an expressionE on n variables is not fully normalized, then its normalization level
is strictly less thann and its weight is strictly greater than 1. We extend the definitions
to say that the normalization level ofIn is n and that its weight is 1. (There is only one
expression on two variables and it is fully normalized, so the normalization level of ann
variable expression withn�2 is nevern− 1.)

The point of all this book keeping is the list of observations below. They are verified by
inspecting the form of the various�i . We say that a natural transformation from a functorF
to a functorGhasF as its source andGas its target. We are treating expressions formally, but
they represent functors. Thus, we can talk about instances of the�i as having expressions
for source and target. The number of variables of the source and target of a given instance of
an�i will be the same. In reading the following, note that we carefully distinguish between
�i and�−1

i and the fact that�−1
i is never mentioned is significant.

(A1) If E is ann variable expression, then for eachi there is at most one instance of�i that
can haveE as source.

(A2) If E is ann variable expression, then an instance of�i can haveE as source only if
i�n− 3.

(A3) If E is ann variable expression with normalization levelk, then an instance of�i can
haveE as source only ifi�k.

(A4) If E is ann variable expression with normalization levelk and weightw>1, then an
instance of�i havingE as source withi > k has a target with normalization levelk and
weightw.

(A5) If E is annvariable expression with normalization levelkand weightw>1, then there
is an instance of�k havingE as source. Further the target of this instance of�k either
has normalization level that is greater thank or has normalization level equal tok and
weight less thanw.

If E is an expression and a string�i1�i2 · · · �is has the property that an instance of�is has
E as a source and targetFs , and for eachj < s an instance of�ij hasFj+1 as a source and
targetFj , then we say that the string is a word in the�i that defines a path fromE to F1.
Note that the information in the string does not specify which instances are used, but this
is not necessary because of (A1).

If an instance of�i has sourceE and targetF, then the instance is a natural isomorphism
from the functor represented byE to the functor represented byF. Thus in the previous
paragraph, the word in the�i defines an isomorphism fromE to F1.

It is now an easy inductive exercise to prove the following from (A1)–(A5).

Lemma 1. Given an expression E in n variables that is not fully normalized, then there is
a unique word

w = �i1�i2 · · · �is
satisfyingij � ik if j < k so that w is an isomorphism from E toIn.

This proves the existence part of Theorem 1 since any two expressions inn variables can
be connected toIn by an isomorphism.
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We now continue with our reading of the proof from[6]. If F andG are two expressions
in n variables, then we must show that any two “paths” fromF to G where each step in
each path is an instance of some�i or �−1

i , then the two paths compose to the same natural
isomorphism fromF to G.

Our argument begins as it does in[6]. We direct each step in the path by declaring that
each step in the path goes from the source expression of the instance of�i to its target
expression. Take an arbitrary path fromF to G, and join each vertexFi in the path toIn by
the path obtained from Lemma 1. Note that this path is directed fromFi to In. This creates
a diagram of which the following sample is typical.

F F1

In In In In In

F2 F3 G

p q

If it is shown that the above diagram commutes, then the path along the top fromF to G
gives the same isomorphism asq−1p and the proof of Theorem 1 will be complete. Thus it
suffices to prove the commutativity of a single rectangle of the form

F G

In In

�j

p q (3)

in which the top arrow is an instance of some�j and the pathsp andq are obtained from
Lemma 1.

The expressionF has a normalization leveli so we know that the first step inp (the last
letter expressingp as a word) is�i and we knowj� i. If j = i, then the uniqueness gotten
from Lemma 1 says thatp andq�j are identical as words and the rectangle (3) commutes.
Thus we are left with the casej > i.

If j > i, then the normalization level ofG is alsoi by (A4) andq also has�i as its first
step. Thus, we will be done by induction on the length ofpwhen we show that the following
rectangle commutes wheneverj > i.

F G

F1 G1

�j

�i�i

�j + 1

(4)

The expressionF equals(N
⊗

i I ) with N = (H ⊗ (K ⊗ L)), andF1 = (N ′⊗
i I ) with

N ′ =((H⊗K)⊗L). Sincej > i, we know thatG=(N ′′⊗
i I ), whereN ′′ =(H ′ ⊗(K⊗L))

is the result of applying�j−i toNand soH ′ is the result of applying�j−i−1 toH. Expanding
what we know aboutF1 and applying�i to G gives

F1 = (((H ⊗K)⊗ L)
⊗

i
I )
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and

G1 = (((H ′ ⊗K)⊗ L)
⊗

i
I ).

This says thatG1 is the result of applying�j+1 to F1.
This does not make (4) commute. It only says that source and targets make sense. That

commutativity follows from the naturality of�i can be seen by filling in the details of (4)
to give the following.

((H ⊗ (K ⊗ L))
⊗

i I )
�j−−−−−−−−−→ ((H ′ ⊗ (K ⊗ L))

⊗
i I )

�i

� �i

�
(((H ⊗K)⊗ L)

⊗
i I )

�j+1−−−−−−−−−→ (((H ′ ⊗K)⊗ L)
⊗

i I )

(5)

If we define functorsRandL by

R(−)= ((− ⊗ (K ⊗ L))
⊗

i
I )

and

L(−)= (((− ⊗K)⊗ L)
⊗

i
I ),

then the specific instances of�j and�j+1 in (5) are seen to beR�j−i−1 andL�i−j−1,
respectively. Further, both appearances of�i are instances of a single natural isomorphism
�i with sourceRand targetL, and�i is an instance of�i . Diagram (5) commutes since the
following diagram commutes by the naturality of�i .

RH RH′

LH′LH

�i

L �i−j−1

R �i−j−1

�i

This completes the proof of Theorem 1.�

4. The origins of Theorem 1 and its Proof

Theorem 1 is a thinly disguised translation of the well-known fact that a certain group
has a certain presentation. The proof that we give of Theorem 1 contains much of the work
from the standard (and well-known) proofs of this well-known fact.

There is a group commonly known as Thompson’s groupF (see[2]) that is possessed
of many descriptions. One description in[2] uses pairs of finite binary trees. Parenthesized
expressions are captured by trees. ThusE1 = X1 ⊗ (X2 ⊗ X3) is captured by the tree

andE2 = (X1 ⊗X2)⊗X3 is captured by . We can summarize the fact that�0 has
E1 as source andE2 as target by writing

�0 =
(

,
)
.
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Our isomorphisms connect paired expressions having the same number of variables, and
these paired expressions correspond to pairs of trees that have the same number of leaves.
The elements of the groupF are the equivalence classes of all pairs of finite binary trees in
which the two trees in the pair have the same number of leaves. It is easiest to explain the
equivalence relation put on such pairs of trees by saying that two pairs are equivalent if they
correspond to instances of the same isomorphism. The multiplication of pairs is defined by
writing (T1, T2)(T2, T3) = (T1, T3). This multiplies elements in the reverse order that we
have composed isomorphisms, so the discussion that follows will have some flips in it. The
arguments that all equivalence classes can be multiplied in a well-defined manner and that
the resulting multiplication gives a group can be found in[2].

Those familiar with Thompson’s groupF will recognize the proof of Theorem 1 as the
bulk of yet another proof thatF has a certain presentation. With our right-to-left convention
for composing isomorphisms, we end up with the non-standard version of the presentation
that reads

F = 〈�0, �1, . . . | �i�j = �j+1�i , wheneveri < j〉.
The usual presentation would have the relations read�j�i = �i�j+1 wheni < j .

That Thompson’s groupF is closely associated to associativity is well known. See[3] and
the end comments of[7]. Further, given a categoryCwith multiplication⊗ and associativity
isomorphism�, it is possible to define a groupG(C,⊗, �) that will be isomorphic toF
if and only if (C,⊗, �) is coherent in the sense of[6] (and not in our more restrictive
sense). This statement is nothing more than checking of definitions. There is a similar
statement connecting the symmetric, monoidal categories (which combine associativity
and commutativity) with another of Thompson’s groups known asV. Again, this is just a
check of definitions and repeats a well-known connection betweenV and the pair consisting
of associativity and commutativity (see[4]). There is a less trivial connection between
the braided tensor categories of[5] and a braided version ofV constructed in[1,4]. This
connection will be explored elsewhere.

The usual theorem on coherence of associativity, Theorem 3.1 of[6], involves the full
power of the operation⊗ on natural isomorphisms. Although not apparent in[6], the main
effect of this is to introduce the left stabilizations of�. A glance at the pentagon diagram
(3.5) of [6] shows that the diagram can be used to express the left stabilization1 ⊗ � in
terms of the right stabilization� ⊗ 1 and instances of�.

As a final remark, we point out thatF has a presentation with only the generators�0 and
�1 and only two relations. That�0 and�1 suffice to generate follows from the relations given
and also from the commutativity of the diagram (4). If desired, Theorem 1 can be restated
to end with the words:. . . unique natural isomorphism constructed as a composition of
instances of�0, �1 and their inverses. There is nothing to be learned from the small number
of relations since naturality gives all the relations that are needed and more.
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