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Abstract

We show that any associativity isomorphism in a category with multiplication is coherent in the
sense of MacLane if the operations for building new isomorphisms from it are restricted so that
tensoring with the identity is only allowed on the right instead of on both the right and the left. With
this restriction, coherence is obtained without the assumption that the pentagon diagram commutes.
© 2004 Elsevier B.V. All rights reserved.

MSC:Primary: 18D10; secondary: 20F05

1. Introduction

To say that? is a category with (functoral) multiplication means that there is a functor
® : 4% — % called the multiplication wher&? is the category of pairs of objects and pairs
of morphisms fron%. [More technically,(g2 is the category of functors and natural transfor-
mations from 2 t& where 2 is the category with objects 0 and 1, and the only morphisms are
the identity morphisms.] Examples of functoral multiplications are cross products, tensor
products, free products and so forth on those categories where those products exist.

For most examples it is rarely the case that

AR(B®C)=(A®B)®C 1)
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is literally true, and what is usually the case is that there is a natural isomorpHigm

the functorF : 4° — & defined byF (A, B, C)=A® (B® C) to the functorG : 4° — %
defined byG(A, B, C) = (A ® B) ® C. In the most common cases, there is an obvious
candidate for natural isomorphismand it is a triviality to define.

The usual statement that “all associativity laws follow from the associativity law given
in (1)” translates into a claim that Hl andK are two functors fron%” to  that are built
by combiningn variables in the same order with— 1 applications of® and that differ
only in the pattern of parentheses, then there is a natural isomorphisniftor that is
derivable in some sensible way framThe problem might be that there is more than one
way to build such an isomorphism from raising the possibility that different ways will
result in different isomorphisms.

This problem was first considered by MacLand6h, where he defined the condition
coherenceof such ano to mean that any two expressions built fragnusing the same
variablesin the same order and differing only in the distribution of parentheses are connected
by a unique natural isomorphism derivable frarasing a prescribed set of constructions.

In [6] it is proven that coherence is achieved from the naturality ahd one hypothesis
that a certain (now famous) pentagonal diagram commutes.

The purpose of this paper is to show that the hypothesis that the pentagonal diagram
commute can be dispensed with if the prescribed set of constructions for building natural
isomorphisms from is restricted. Thus, we do not prove a strengthening or generalization
of MacLane’s theorem. It is simply a different theorem.

Beyond the statement and proof of this theorem, the paper has a second purpose which
is to point out the connection between MacLane’s theorem on coherence and combinatorial
group theory. This is discussed in the last section, where we point out that MacLane’s
theorem can be viewed as giving a presentation of a certain group in terms of generators
and relations.

2. Statement

The constructions if6] for building isomorphisms fromare extremely natural. (Overuse
of the wordnatural here is unavoidable.) The restrictions on the constructions in this paper
lack a certain symmetry. Thus, our result suffers from a certain aesthetic inferiority. We now
give some details and start with some preliminary technicalities.

If B is a natural transformation from a functbr: .o/ — % to a functorG : &/ — 4,
then we can views as a functor fromeZ to %2, the category of functors fror@ to %
in which 2 is the category with objects 0 and 1 and only one non-identity morphism that
goes from 0 to 1. The catego®yis just the category whose objects are 0 and 1 and whose
morphisms correspond to the partial order while %7 is just the category whose objects
are the morphisms of and whose morphisms are the commutative squar#s ihSis the
“source” functor fromz? to % in which S(f : X — Y)= X andT is the “target” functor
inwhichT(f : X - Y)=Y,thenSf=F andTf =G.

Any functor F : .o/ — % induces a functoF? : .«7> — %°.

In [6] isomorphisms are built from: A ® (B® C) — (A ® B) ® C by four processes.
The one that we will restrict is as follows.



M.G. Brin / Journal of Pure and Applied Algebra 198 (2005) 57 -65 59

If fis a natural transformation from functbrto functorG that each go fron¥™ to ¢
andy is a natural transformation frof to K that each go fron®” to €, then we can form
B ® ygoing fromF ® H to G ® K by composing

Bxy:%mx%"a(gzx‘gi
with

®§:(€§x %2 _ 42,
The operation® on transformations can be used for the following. lLledenote the
identity transformation from the identity functor éfito itself. We can then form ® 1,
(2 ® 1) ® 1 and so forth where, inductivelyy = « ando; = o;;_1 ® 1. Thus

11=0®1:(AQBRC)XD - (ARB)RC)R D

with similar descriptions of othey;. We can refer t¢f ® 1 as theright stabilizationof f.
We refer to they; as the iterated right stabilizations of

The assumptions if] are that the transformations form a category closed (among other
things) under the operatiag on transformations. In this paper, we will only make use of
the operation® on transformations to create right stabilizations. All other constructions
from [6] will be used here. We now go on to the others.

From

©:ARB®C)—> (A®B)®C )
we can create
7 (A®B)®(C®D)— (A®B)®C)®D
from (2) by replacindA in (2) by the product of two variables. Similarly, we get
AR (BR®C)®D)—> (A®(B®C)®D

by replacingin (2) by the product of two variables. These are both examplest#nce of
«. More generally, we can replace any variable in (2) on both sides by identical expressions
involving ®.

Technically, arinstanceof a transformation is created by precomposing the transforma-
tion with a functor. Now iff : .«# — %?is a natural transformation frofi=Sfto G=Tf3,
and if H : ¥ — o/ is any functor, ther D is a natural transformation frodiD = S D
to GD = T D and can be viewed as an instancefof

In our setting, we will take instances of the iterated right stabilizatipo$«. The iterated
stabilization ofx; connects functors froif” to ¥ wheren =i 4 3. Instances can be created
by precomposing the stabilizations with compositions of functors such as

(Xl’XZa--~’Xjan+1"'°7Xm+l)'_) (X15X29’XJ®X]+1’7XI71+1)

from "+ to ™ for various values ofn and;.

We will also postcompose a transformation with a functofi If.«7 — %2 is a natural
transformation and’ : 4 — & is a functor, then/f represents the composition gf
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with J2. This construction can yield an instance (of another transformation) by accident,
and we will exploit this.

Another operation for constructing isomorphisms frens that of composition. If, G
andH are all functors frome/ to 4, if  is a natural transformation froa to G andy
is a natural transformation froi® to H, then there is an obvious compositipfi that is a
natural transformation frorR to H. Composition commutes with right stabilization.

The final operation for constructing isomorphisms fraris that of inversion. Since,
its stabilizations and its instances are all isomorphisms, they are all invertible. Note that
inversion commutes with instance and stabilization and behaves in the usual way with
respect to compositiorify) ~* = y~1p7 1.

We can now state our result.

Theorem 1. Let % be a category with functoral multiplicatio® : ¥°> — %. Leto be a
natural isomorphism from ® (B ® C) to (A ® B) ® C. If E and F are two expressions in

n — 1 appearances of and n different variables in the same order that differ only in the
arrangement of parenthesdken there exists a unique natural isomorphism constructable
from a as a composition of instances of iterations of right stabilizations afid oL

3. Proof

The proof of Theorem 1 is essentially the proof of Theorem 3[&]ofiith more attention
paid to some details. We will include the entire proof since a set of instructions on modifying
the proof in[6] would be unreadable.

We will discuss expressions endlessly. For useapressionn n variables is a fully
parenthesized alternation of the variahlgs . . ., X,, in that order withh — 1 appearances
of the operatior®. Inductively, the variable( is the only expression in 1 variable, and if
F andG are expressions im andn variables, respectively, th&F ® G) is an expression
in m 4+ n variables wherg is the expressiof with all the subscripts of its variables raised
uniformly by m. We will omit the bar from the second expression from now on since the
meaning will always be clear.

An expression igrivial if it has only one variable. We reserve the symbtd symbolize
the trivial expressiork ;.

A non-trivial expressiofi breaks uniquely a&F' ® G). We say thaE is semi-normalized
if E=(F®I).We canrefert¢F ®I) as the right stabilization ¢f. Right stabilization can be
iterated and we defing"); 1) inductively by(F Qo) =F and(F&),;H)=((FQ,;_1) ®I).

An expression im variables idully normalizedf it is of the form (I Q),,_; |). There is
only one fully normalized expression orvariables for each and we will denote it by,,.

We have

L,=C-(1ehehelh®- --®l), (nappearances df).

If an expressiorE is not fully normalized, then it is uniquely expressible@5X);!)
whereN is not semi-normalized. IE is not semi-normalized, then= 0. The value of is
thenormalization levebf E. Note further thatv = (F ® G) for someF andG with G # 1.
Theweightof E is the number of variables used®
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If an expressiorE on n variables is not fully normalized, then its normalization level
is strictly less tham and its weight is strictly greater than 1. We extend the definitions
to say that the normalization level 6f is n and that its weight is 1. (There is only one
expression on two variables and it is fully normalized, so the normalization level of an
variable expression with>2 is nevem — 1.)

The point of all this book keeping is the list of observations below. They are verified by
inspecting the form of the various. We say that a natural transformation from a funétor
to a functoiG hasF as its source an@ as its target. We are treating expressions formally, but
they represent functors. Thus, we can talk about instances af #ehaving expressions
for source and target. The number of variables of the source and target of a given instance of
ano; will be the same. In reading the following, note that we carefully distinguish between
%; ando;; ! and the fact that; * is never mentioned is significant.

(A1) If Eis annvariable expression, then for eaictimere is at most one instancecfthat
can haveE as source.

(A2) If Eis ann variable expression, then an instancexptan havetE as source only if
i<n-—3.

(A3) If Eis ann variable expression with normalization levelthen an instance of; can
haveE as source only if > k.

(A4) If Eis ann variable expression with normalization lewehnd weightw > 1, then an
instance ofy; havingE as source with > k has a target with normalization leveand
weightw.

(A5) If Eis annvariable expression with normalization leke&lnd weightw > 1, then there
is an instance of; havingE as source. Further the target of this instancedither
has normalization level that is greater thaor has normalization level equal kaand
weight less thamv.

If Eis an expression and a string «;, - - - ;. has the property that an instancexpfhas
E as a source and targgt, and for eacly < s an instance of;, hasF;1 as a source and
targetF;, then we say that the string is a word in thiethat defines a path frofé to F;.

Note that the information in the string does not specify which instances are used, but this
is not necessary because of (Al).

If an instance of; has sourc& and targef, then the instance is a natural isomorphism
from the functor represented ty/to the functor represented 5y Thus in the previous
paragraph, the word in the defines an isomorphism froEato Fj.

It is now an easy inductive exercise to prove the following from (A1)—(A5).

Lemma 1. Given an expression E in n variables that is not fully normaljzken there is
a unique word
W = Ojq Ky =+ + O

s

satisfyingi; > i if j <k so that w is an isomorphism from E tp.

This proves the existence part of Theorem 1 since any two expressiorailiables can
be connected tb, by an isomorphism.
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We now continue with our reading of the proof frd6. If F andG are two expressions
in n variables, then we must show that any two “paths” frBrto G where each step in
each path is an instance of someor oclfl, then the two paths compose to the same natural
isomorphism front to G.

Our argument begins as it does[6}. We direct each step in the path by declaring that
each step in the path goes from the source expression of the instancéoois target
expression. Take an arbitrary path fréhto G, and join each verte¥; in the path td,, by
the path obtained from Lemma 1. Note that this path is directed frota|,,. This creates
a diagram of which the following sample is typical.

F Fi Fa Fa G
N N
In In In In In

If it is shown that the above diagram commutes, then the path along the toj-fro@
gives the same isomorphismas! p and the proof of Theorem 1 will be complete. Thus it
suffices to prove the commutativity of a single rectangle of the form

p q ©)

in which the top arrow is an instance of somgeand the pathg andq are obtained from
Lemma 1.

The expressioifr has a normalization levélso we know that the first step p(the last
letter expressing as a word) is;; and we knowj >i. If j =i, then the uniqueness gotten
from Lemma 1 says thatandgo; are identical as words and the rectangle (3) commutes.
Thus we are left with the cage> i.

If j > i, then the normalization level @ is alsoi by (A4) andq also hasy; as its first
step. Thus, we will be done by induction on the lengtp wfhen we show that the following
rectangle commutes whenever i.

F—.G

F1Y—— G

The expressioff equals(N);!1) with N = (H ® (K ® L)), andF1 = (N'®);1) with
N'=((H®K)Q®L).Sincej > i, we know thaG = (N");1), whereN"=(H' ® (K ® L))
is the result of applying;_; to N and soH" is the result of applying ;1 to H. Expanding
what we know aboufy and applyingy; to G gives

Fi=((H®K) e LQD
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and
Gi=((H'® K)® )R ).

This says thaG is the result of applying ;1 to Fy.

This does not make (4) commute. It only says that source and targets make sense. That
commutativity follows from the naturality af; can be seen by filling in the details of (4)
to give the following.

(H® (K ® L)) Y (H' ® (K ® L)X,
OCI'J( xiJv (5)
(HOK)®L)R®;H — 2 . (H®K LR,

If we define functordk andL by
R =(~® K& L))
and
L) =((-®K)® LD,

then the specific instances of anda ;.1 in (5) are seen to b&a«;_;_1 and Lo;_;_1,
respectively. Further, both appearances;adre instances of a single natural isomorphism
o; with sourceR and target, andz; is an instance of;. Diagram (5) commutes since the
following diagram commutes by the naturality®f

Rojj1

RH—— RH

Tli J 17i
L“i—j—l
_—

LH LH'

This completes the proof of Theorem 1]

4. The origins of Theorem 1 and its Proof

Theorem 1 is a thinly disguised translation of the well-known fact that a certain group
has a certain presentation. The proof that we give of Theorem 1 contains much of the work
from the standard (and well-known) proofs of this well-known fact.

There is a group commonly known as Thompson’s grbujgee[2]) that is possessed
of many descriptions. One description#] uses pairs of finite binary trees. Parenthesized
expressions are captured by trees. Tlhiys= X1 ® (X2 ® X3) is captured by the tree

/>\ andE> = (X1 ® X2) ® X3is captured byf<\. We can summarize the fact thathas
E1 as source and’; as target by writing

0= (NAY).
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Our isomorphisms connect paired expressions having the same number of variables, and
these paired expressions correspond to pairs of trees that have the same number of leaves.
The elements of the groupare the equivalence classes of all pairs of finite binary trees in
which the two trees in the pair have the same number of leaves. It is easiest to explain the
equivalence relation put on such pairs of trees by saying that two pairs are equivalent if they
correspond to instances of the same isomorphism. The multiplication of pairs is defined by
writing (T1, T2) (T, T3) = (T1, T3). This multiplies elements in the reverse order that we
have composed isomorphisms, so the discussion that follows will have some flips in it. The
arguments that all equivalence classes can be multiplied in a well-defined manner and that
the resulting multiplication gives a group can be founfip

Those familiar with Thompson’s group will recognize the proof of Theorem 1 as the
bulk of yet another proof thdt has a certain presentation. With our right-to-left convention
for composing isomorphisms, we end up with the non-standard version of the presentation
that reads

F = (0o, 01,...| oo; =0oj1106, Wheneveri < j).

The usual presentation would have the relations vgagd= o; ;1 wheni < j.

That Thompson'’s group is closely associated to associativity is well known. B¢and
the end comments §7]. Further, given a categof§with multiplication® and associativity
isomorphism, it is possible to define a grou@ (%, ®, o) that will be isomorphic td~
if and only if (¢, ®, «) is coherent in the sense @] (and not in our more restrictive
sense). This statement is nothing more than checking of definitions. There is a similar
statement connecting the symmetric, monoidal categories (which combine associativity
and commutativity) with another of Thompson'’s groups knowiW.a&gain, this is just a
check of definitions and repeats a well-known connection betWeerl the pair consisting
of associativity and commutativity (sd¢é]). There is a less trivial connection between
the braided tensor categories[6f and a braided version &f constructed if1,4]. This
connection will be explored elsewhere.

The usual theorem on coherence of associativity, Theorem Jd],afivolves the full
power of the operatio® on natural isomorphisms. Although not appareribi the main
effect of this is to introduce the left stabilizationsofA glance at the pentagon diagram
(3.5) of [6] shows that the diagram can be used to express the left stabiliZagon in
terms of the right stabilization ® 1 and instances aof.

As a final remark, we point out th&thas a presentation with only the generatqrsnd
o1 and only two relations. Thag anda; suffice to generate follows from the relations given
and also from the commutativity of the diagram (4). If desired, Theorem 1 can be restated
to end with the words:. . unique natural isomorphism constructed as a composition of
instances o, a1 and their inversesThere is nothing to be learned from the small number
of relations since naturality gives all the relations that are needed and more.
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