
Journal of Algebra 319 (2008) 1343–1354

www.elsevier.com/locate/jalgebra

Automatic subsemigroups of free products ✩

L. Descalço

Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Received 21 July 2004

Communicated by Michel Broué

Abstract

We consider the automaticity of subsemigroups of free products of semigroups, proving that subsemi-
groups of free products, with all generators having length greater than one in the free product, are automatic.
As a corollary, we show that if S is a free product of semigroups that are either finite or free, then any fi-
nitely generated subsemigroup of S is automatic. In particular, any finitely generated subsemigroup of a
free product of finite or monogenic semigroups is automatic.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of automatic group has recently been extended to semigroups and the basic prop-
erties of this new class of semigroups have been established in [3]. The notion of automatic
semigroup does not correspond to a nice geometric property as in the case of groups where be-
ing automatic is the same as having the fellow traveler property (see [1,2]). Nevertheless it is a
natural class of semigroups where we have some interesting computational properties, for ex-
ample, the word problem is solvable in quadratic time (see [3]), and several results concerning
automaticity of semigroups have been established (see, for example, [4,7–10]).
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We are interested in the following general question:

When is a subsemigroup of an automatic semigroup automatic as well?

A general result concerning this problem was established in [9], where the authors have proved
the following:

Proposition 1.1. Let S be a semigroup and let T be a subsemigroup of S such that S\T is finite.
Then S is automatic if and only if T is automatic.

A description of the subsemigroups of the bicyclic monoid, the well-known semigroup defined
by the presentation 〈b, c | bc = 1〉, was obtained in [5] and, using this description, the question
above was answered (in [6]) for the bicyclic monoid and its subsemigroups:

Proposition 1.2. All finitely generated subsemigroups of the bicyclic monoid are automatic.

The question was also solved (in [3]) for free semigroups and their subsemigroups where the
following was shown:

Proposition 1.3. If F is a free semigroup and S is a finitely generated subsemigroup of F , then
S is automatic.

In this paper we extend this last result by considering subsemigroups of free products of semi-
groups. We show that some subsemigroups of free products of arbitrary semigroups, including
in particular finitely generated subsemigroups of free semigroups, are automatic.

We start by introducing the definitions we require. Given a finite set A, which we call an
alphabet, we denote by A+ the free semigroup generated by A consisting of finite sequences
of elements of A, which we call words, under the concatenation, and by A∗ the free monoid
generated by A consisting of A+ together with the empty word ε. Let S be a semigroup and
ψ :A → S a mapping. We say that A is a finite generating set for S with respect to ψ if the
unique extension of ψ to a semigroup homomorphism ψ :A+ → S is surjective. For u,v ∈ A+
we write u ≡ v to mean that u and v are equal as words and u = v to mean that u and v represent
the same element in the semigroup, i.e. that uψ = vψ . We say that a subset L of A+, usually
called a language, is regular if there is a finite state automaton accepting L. To be able to deal
with automata that accept pairs of words and to define automatic semigroups we need to define
the set A(2,$) = ((A∪{$})×(A∪{$}))\{($,$)} where $ is a symbol not in A (called the padding
symbol) and the function δA :A∗ × A∗ → A(2,$)∗ defined by

(a1 . . . am, b1 . . . bn)δA =

⎧⎪⎪⎨
⎪⎪⎩

ε if 0 = m = n,

(a1, b1) . . . (am, bm) if 0 < m = n,

(a1, b1) . . . (am, bm)($, bm+1) . . . ($, bn) if 0 � m < n,

(a1, b1) . . . (an, bn)(an+1,$) . . . (am,$) if m > n � 0.

Let S be a semigroup and A a finite generating set for S with respect to ψ :A+ → S. The pair
(A,L) is an automatic structure for S (with respect to ψ ) if
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• L is a regular subset of A+ and Lψ = S,
• L= = {(α,β): α,β ∈ L, α = β}δA is regular in A(2,$)+, and
• La = {(α,β): α,β ∈ L, αa = β}δA is regular in A(2,$)+ for each a ∈ A.

We say that a semigroup is automatic if it has an automatic structure.
Given an alphabet A and a set K ⊆ A+ we define

Pref(K) = {w ∈ A∗: ww′ ∈ K for some w′ ∈ A∗},
Suff(K) = {w ∈ A∗: w′w ∈ K for some w′ ∈ A∗},

Subw(K) = {w ∈ A∗: w1ww2 ∈ K for some w1,w2 ∈ A∗}
to be the sets of prefixes, suffixes and subwords of words in K , respectively.

If S1, . . . , Sn are semigroups with presentations 〈A1 | R1〉, . . . , 〈An | Rn〉 then their free prod-
uct, S = S1 ∗· · ·∗Sn, is the semigroup defined by the presentation 〈A1 ∪· · ·∪An | R1 ∪· · ·∪Rn〉.
Any element s ∈ S can be identified with a sequence

s1 . . . sm (m > 1)

of elements of
⋃n

k=1 Sk such that,

si ∈ Sk ⇒ si+1 /∈ Sk (i = 1, . . . ,m − 1; k = 1, . . . , n);
such a sequence we call a reduced sequence (of elements of

⋃n
k=1 Sk). Given two elements

s = s1 . . . sm, s′ = s′
1 . . . s′

p ∈ S, their product ss′ is the following: if the elements sm, s′
1 do not

belong to a common factor Sk then the product ss′ is the concatenation of sequences and in this
case we say simply that the product ss′ is the concatenation; otherwise we have sm, s′

1 ∈ Sk for
some k and the product ss′ is the reduced sequence s1 . . . sm−1s

′
0s

′
2 . . . s′

p where s′
0 = sms′

1 in Sk .

2. Main result

Our main result is the following:

Theorem 2.1. Let S be a free product of finitely many semigroups. Let H be a subsemigroup of
S generated by a finite set X such that no element of X belongs to a nonfree factor of S. Then H

is automatic.

This result has the following equivalent formulation:

Theorem 2.2. Let S be a free product of finitely many semigroups

S = S1 ∗ · · · ∗ Sn ∗ T1 ∗ · · · ∗ Tm

where T1, . . . , Tm are free semigroups on finite sets Y1, . . . , Ym, respectively. Let H = 〈t1, . . . , tl〉
be a subsemigroup of S where

t1, . . . , tl ∈ S\(S1 ∪ · · · ∪ Sn).

Then H is an automatic semigroup.



1346 L. Descalço / Journal of Algebra 319 (2008) 1343–1354
Proof. Let us denote Ti by Sn+i for i = 1, . . . ,m, and let Y = Y1 ∪ · · · ∪ Ym. Each generator ti

such that ti /∈ T1 ∪ · · · ∪ Tm can be written as a reduced sequence of elements of
⋃m+n

k=1 Sk :

ti = si,1si,2 . . . si,p(i),

with p(i) � 2. For each k ∈ {1, . . . , n} we define

Ak = {
ka1, . . . ,

kark

}

to be an alphabet in bijection with the following finite subset of Sk :

Fk =
l⋃

i=1

({
si,j ∈ Sk: j = 1, . . . , p(i)

}) ∪ {
si,p(i)sj,1 ∈ Sk: i, j ∈ {1, . . . , l}},

and let fk :Ak → Fk be that bijection (we assume that the alphabets are disjoint). The elements
in Fk are all those from Sk that may appear in a reduced sequence corresponding to an element
from H (here it is essential that no generator belongs to Sk). They are finitely many and each one
corresponds now to a letter from Ak .

We define the alphabet

A = A1 ∪ · · · ∪ An ∪ Y

and the language L ⊆ A+ by

L = {
y1 . . . yk: yi ∈ A1 ∪ · · · ∪ An ∪ Y+

1 ∪ · · · ∪ Y+
m ,

yi ∈ Aj ⇒ yi+1 /∈ Aj (i = 1, . . . , k − 1; j = 1, . . . , n)
}
.

The bijections fk induce a homomorphism

f :A+ → S

and we will now show that any element in H has a unique representative in L. Given an element
h ∈ H it can be written as a product of the generators t1, . . . , tl . Hence, when we write h as a
reduced sequence of elements of

⋃n+m
j=1 Sj : h = u1 . . . ur , each element ui is either some sk,l

or a product sk,p(k)sl,1 or belongs to a free semigroup Tj . It follows from the definition of the
alphabets A1, . . . ,An and from the definition of L that there is a unique word w ∈ L such that
wf = h.

Let γ1, . . . , γl be the unique words in L such that γif = ti , i = 1, . . . , l. Let X =
{x1, . . . , xl,1} be a new alphabet and ρ be the homomorphism defined by

ρ :
(
X ∪ {$})+ → A∗; xi �→ γi; 1,$ �→ ε.

We define the partial function

λ :A∗ → L ∪ {ε}; ε �→ ε,

w �→ w ∈ L if there is w ∈ L such that w = w in S,



L. Descalço / Journal of Algebra 319 (2008) 1343–1354 1347
Fig. 1. Diagram with ρ, f and λ.

which maps each word in A+ to the corresponding unique “reduced word” in L if such word ex-
ists. The domain of this partial function is not A∗ because there may, for example, exist a, b ∈ Ak

for some k, such that (af )(bf ) /∈ Fk and in this case there is no word w ∈ L such that w = ab

in S. Nevertheless, since we have

X+ρ\{ε} = {
γα1 . . . γαk

: k ∈ N;α1, . . . , αk ∈ {1, . . . , l}},
the partial function λ is defined on X+ρ, and more generally, it is easy to see that it is also defined
on

Subw
((

X+ρ ∪ X+ρ
)+)

.

We observe that the set X+ρ\{ε} ⊆ L ⊆ A+ is in bijection with H since, given an arbitrary
h ∈ H we have h = tα1 . . . tαk

if and only if h = (xα1 . . . xαk
)ρf , and we have already seen that

there is a unique word in L representing h. Therefore, we can identify the subsemigroup H with
the set X+ρ\{ε} which is a semigroup, defining the product of two words w1,w2 ∈ X+ρ\{ε},
representing two elements s1, s2 ∈ H , to be the word w1w2 ∈ X+ρ\{ε}, which represents the
element s1s2 ∈ H . This semigroup is generated by the words γ1, . . . , γl . We observe that this
product may be simply the concatenation or not, depending on the words w1,w2, but if it is not
the concatenation, it means that the last letter in w1 multiplies by the first letter from w2 and
we have |w1w2| = |w1w2| − 1, where |w| denotes the length of w as a word in the generators.
Fig. 1 illustrates the use of our functions by showing a diagram with the relevant subsets of their
domains and ranges.

Let us consider the language K ⊆ X+ defined by

K = {
xα1 1|γα1 |−1xα2 1r(α1,α2)xα3 . . .1r(αt−2,αt−1)xαt 1

r(αt−1,αt ):

t � 1, αi ∈ {1, . . . , l}, i = 1, . . . , t
}

where

r(i, j) =
{ |γj | − 1 if |γiγj | = |γiγj |,

|γj | − 2 if |γiγj | = |γiγj | − 1.

We observe that |w| = |wρ| for any word w ∈ K . We can easily define a finite deterministic
automaton that recognizes the language K and so K is a regular language.
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We denote by H 1 the monoid obtained by adjoining an identity 1H to H and we identify this
monoid with the monoid X+ρ, obtained from the semigroup X+ρ\{ε} defined above, by adding
the identity ε. Hence, we consider X as a generating set for X+ρ with respect to the unique
extension of the function ϕ :X → X+ρ; x �→ xρ to an homomorphism ϕ :X+ → X+ρ ∼= H 1.
We will show that (X,K1) is an automatic structure for H 1, where K1 is the regular language
K ∪ {1} ⊆ X+.

We have

K1= = K1
1 = K= ∪ {

(1,1)
}
,

K1
xi

= Kxi
∪ {

(1,w)δX: w ∈ K, wρ ≡ γi

}
.

The sets {(1,1)} and {(1,w)δA: w ∈ K,wρ ≡ γi} are finite, since wρ ≡ γi implies |w| = |γi |,
and so we just have to prove that K= and Kxi

, for each i, are regular languages.
Denoting by ia, ib, . . . generic elements in Ai , for w1,w2 ∈ A∗ we write w1 �� w2 if one of

the following situations occur:

(
w1 ∈ Pref(w2) and w1 ∈ A∗Y

)
or(

w2 ∈ Pref(w1) and w2 ∈ A∗Y
)

or(
w1 ≡ wia and w2 ≡ w ibw′) for some i or(
w1 ≡ wiaw′ and w2 ≡ wib

)
for some i.

For w1 �� w2 we define

Rem(w1,w2) =

⎧⎪⎪⎨
⎪⎪⎩

(ε,w) (w2 ≡ w1w,w1 ∈ A∗Y),

(w, ε) (w1 ≡ w2w,w2 ∈ A∗Y),

(ia, ibw′) (w1 ≡ wia,w2 ≡ wibw′, i ∈ {1, . . . , k}),
(iaw′, ib) (w1 ≡ wiaw′,w2 ≡ wib, i ∈ {1, . . . , k}).

Intuitively, for two words w1,w2 ∈ L we have w1 �� w2 if one of the words is almost a prefix
of the other, in the sense that it may be possible to multiply the shorter word by a word from L

in order to obtain the longer word. The function Rem (which stands for remainder) gives us the
remainders of the two words: the two suffixes not belonging to the common prefix.

The following result tells us that there is a finite set where we can store the remainders, if we
are dealing with words from our languages.

Claim 1. There is a finite set W ⊆ A∗ such that (w1,w2)δX ∈ K= ∪ (
⋃l

i=1 Kxi
) implies that, for

all t ∈ N, we have w1(t)ρ �� w2(t)ρ and Rem(w1(t)ρ,w2(t)ρ) ∈ W × W .

Proof. We take

N = max
{|γi |: i = 1, . . . , l

}

and we will prove that the result holds with

W = {
w ∈ Suff(X+ρ): |w| � N + 1

}
.
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Let w1,w2 ∈ K and t � |w1|, |w2|. By the definition of K , we can write t � |wj(t)ρ| � t +
N (j = 1,2) and so we have

∣∣∣∣w1(t)ρ
∣∣ − ∣∣w2(t)ρ

∣∣∣∣ � N.

If (w1,w2)δX ∈ K= then w1ρ ≡ w2ρ and therefore

w1(t)ρ �� w2(t)ρ.

Let Rem(w1(t)ρ,w2(t)ρ) = (η1, η2) where η1, η2 ∈ A∗. Since w1,w2 ∈ K ⊆ X+ we have
w1(t)ρ,w2(t)ρ ∈ X+ρ and so w1(t)ρ,w2(t)ρ ∈ X+ρ. Therefore, by definition of Rem, η1, η2 ∈
Suff(X+ρ). Since ||w1(t)ρ| − |w2(t)ρ|| � N , again by definition of Rem, we have |η1|, |η2| �
N + 1 and we conclude that (η1, η2) ∈ W × W .

Suppose now that (w1,w2)δA ∈ Kxi
. Then we have (w1ρ)γi ≡ w2ρ and so

w1(t)ρ �� w2(t)ρ

for any t ∈ N. Since we have |w1ρ| = |w1| and |w2ρ| = |w2| we have either |w2| = |w1| + |γi |
or |w2| = |w1|+ |γi |− 1 according to whether w1ργi ≡ (w1ρ)γi or not. For t � |w1| we have as
above t � |wj(t)ρ| � t + N (j = 1,2) and so ||w1(t)ρ| − |w2(t)ρ|| � N . For |w1| < t � |w2|
we have

∣∣w1(t)ρ
∣∣ = |w1ρ| = |w1|, t � |w2(t)ρ| � |w1| + |γi | � |w1| + N

and so ||w2(t)ρ| − |w1(t)ρ|| � N . Again w1(t)ρ,w2(t)ρ ∈ X+ρ, since w1,w2 ∈ K ⊆ X+, and
we have Rem(w1(t)ρ,w2(t)ρ) ∈ W × W . �

From now on we assume that a set W satisfying the conditions of Claim 1 is fixed and we
will use this set to construct automata that allow us to prove the regularity of our languages. We
will prove that there is an automaton M such that K= = L(M) ∩ (K × K)δX and automata Mi

such that Kxi
= L(Mi ) ∩ (K × K)δX . Let

M = (
Q,B, (ε, ε),μ,T

)

where Q = W × W is the set of states, B = (X ∪ {$}) × (X ∪ {$}) is the alphabet, (ε, ε) is the
initial state, T = {(a, a): a ∈ A1 ∪ · · · ∪ An ∪ {ε}} is the set of terminal states and the transition
μ is the partial function from Q × B to Q defined by

(α,β)
(x,y)−−−→μ Rem

(
α(xρ),β(yρ)

)
if α(xρ) �� β(yρ) and

Rem
(
α(xρ),β(yρ)

) ∈ W × W

for (α,β) ∈ Q and (x, y) ∈ B . For i ∈ {1, . . . , l} we define

Mi = (
Q,B, (ε, ε),μ,Ti

)
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where the set of terminal states Ti is defined as follows. If γi ≡ jaγ ′
i for some word γ ′

i ∈ A+ then
we define

Ti = {(
jb, jcγ ′

i

)
: jbja = jc in Sj

} ∪ {(
kb, kbγi

)
: k �= j

} ∪ {
(ε, γi)

}
.

If γi ∈ YA∗ then we define

Ti = {(
ka, kaγi

)} ∪ {
(ε, γi)

}
.

For w1 ≡ x1 . . . xn, w2 ≡ y1 . . . yn, with x1, . . . , xn, y1, . . . , yn ∈ X∪{$}, and (α,β), (α′, β ′) ∈
W × W we write

(α,β)
(w1,w2)−−−−−→μ (α′, β ′)

and we say that there is a path in the automaton from (α,β) to (α′, β ′) labeled by (w1,w2), if
there are (α0, β0) = (α,β), (α1, β1), . . . , (αn,βn) = (α′, β ′) ∈ W × W such that

(αi−1, βi−1)
(xi ,yi )−−−−→ (αi, βi), i = 1, . . . , n.

The following result, relates a path in the automata with the remainders of the pair of words
labeling the path.

Claim 2. For any w1,w2 ∈ (X ∪ {$})+, with |w1| = |w2|, we have

(α,β)
(w1,w2)−−−−−→μ (θ1, θ2) ⇒ Rem

(
α(w1ρ),β(w2ρ)

) = (θ1, θ2). (1)

Proof. We will prove this claim by induction on m = |w1| = |w2|. For m = 1 the implication
follows from the definition of μ. Suppose the claim holds for words of length m and let w1,w2

be words of length m + 1 with (α,β)
(w1,w2)−−−−−→μ (θ1, θ2). Then we can write w1 ≡ w′

1x and

w2 ≡ w′
2y where w′

1 and w′
2 are words of length m. We have (α,β)

(w′
1,w

′
2)−−−−−→μ (η1, η2) and

(η1, η2)
(x,y)−−−→μ (θ1, θ2) for some words η1, η2 ∈ W . By the induction hypothesis and by defin-

ition of μ we have (η1, η2) = Rem(α(w′
1ρ),β(w′

2ρ)) and (θ1, θ2) = Rem(η1(xρ), η2(yρ)). We
can then write

α
(
w′

1ρ
) ≡ w′′η1, η1(xρ) ≡ w′θ1,

β
(
w′

2ρ
) ≡ w′′η2, η2(yρ) ≡ w′θ2,

for some words w′,w′′ ∈ A∗.
We will now show that

w′′w′θ1 ≡ w′′w′θ1.

The equation holds trivially for θ1 ≡ ε. If w′ �= ε the equation holds as well, since w′θ1 ∈ L. We
will now consider the case where θ1 �= ε and w′ ≡ ε. If w′′ ∈ A∗Y ∪ {ε} then the equation clearly
holds. Otherwise we have w′′ ≡ w′′′ ia for some i, we must have η1 �= ε by the definition of Rem
and, since w′′η1 ∈ L, we have either η1 ∈ YA∗ or η1 ≡ jbη′ with i �= j . Since η1(xρ) ≡ θ1 we
1
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have θ1 ∈ YA∗ or θ1 ∈ AjA
∗ with i �= j as well and, in either case, w′′θ1 ≡ w′′θ1 yielding again

w′′w′θ1 ≡ w′′w′θ1. A similar argument shows that w′′w′θ2 ≡ w′′w′θ2.
Therefore we have

α(w1ρ) ≡ α
(
w′

1ρ
)
(xρ) ≡ α

(
w′

1ρ
)
(xρ)

≡ (
w′′η1

)
(xρ) ≡ w′′η1(xρ) ≡ w′′w′θ1 ≡ w′′w′θ1

and

β(w2ρ) ≡ β
(
w′

2ρ
)
(yρ) ≡ β

(
w′

2ρ
)
(yρ)

≡ (w′′η2)(yρ) ≡ w′′η2(yρ) ≡ w′′w′θ2 ≡ w′′w′θ2.

Hence Rem(α(w1ρ),β(w2ρ)) = (θ1, θ2) which concludes the proof of the claim. �
We will now use the two claims to prove that

K= = L(M) ∩ (K × K)δX,

Kxi
= L(Mi ) ∩ (K × K)δX (i = 1, . . . , l),

by showing each of the four inclusions separately.
To prove that K= ⊆ L(M) let (w1,w2)δX ∈ K= arbitrary. We have w1ρ ≡ w2ρ, |w1| =

|w1ρ| = |w2ρ| = |w2| and we can write w1 ≡ y1 . . . yk and w2 ≡ z1 . . . zk with y1, . . . , yk, z1 . . . ,

zk ∈ X. Using the two claims and by definition of μ we can construct a unique path labeled by
(w1,w2),

(ε, ε)
(y1,z1)−−−−→μ

(
η1, η

′
1

) (y2,z2)−−−−→μ

(
η2, η

′
2

) (y3,z3)−−−−→μ · · · (yk,zk)−−−−→μ

(
ηk, η

′
k

)
,

with all ηi, η
′
i ∈ W . By Claim 2 we must have (ηk, η

′
k) = Rem(w1ρ,w2ρ). Since w1ρ ≡ w2ρ,

by definition of Rem we have (ηk, η
′
k) = (a, a) with a ∈ A1 ∪ · · · ∪ An ∪ {ε}, which means that

(w1,w2)δA ∈ L(M).
To prove that L(M) ∩ (K × K)δX ⊆ K= let w1,w2 be arbitrary words in K such that

(w1,w2)δX ∈ L(M). We can write w1 ≡ y1 . . . yq and w2 ≡ z1 . . . zr where y1, . . . , yq, z1, . . . ,

zr ∈ X. So there is a path

(ε, ε)
(y1...yk,z1...zk)−−−−−−−−−→ (a, a)

in M where k = max{q, r}, yq+1 = · · · = yk = zr+1 = · · · = zk = $ and a ∈ A1 ∪ · · · ∪ An ∪ {ε}.
By Claim 2 and since $ρ = ε, we have (a, a) = Rem(w1ρ,w2ρ) which implies that w1 = w2 as
elements of H and so (w1,w2)δX ∈ K=.

To prove that Kxi
⊆ L(Mi ) let (w1,w2)δA ∈ Kxi

be arbitrary. We have (w1ρ)γi ≡ w2ρ and
we write w1 ≡ y1 . . . yk , w2 ≡ z1 . . . zr with y1, . . . , yk, z1, . . . , zr ∈ X. We note that r = |w2| =
|w2ρ| = |(w1ρ)γi | > |w1ρ| = |w1| = t . Using the previous claims and by definition of μ we can
construct a unique path in Mi labeled by (w1$r−k,w2),
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(ε, ε)
(y1,z1)−−−−→μ

(
η1, η

′
1

) (y2,z2)−−−−→μ

(
η2, η

′
2

) → ·· ·
(yk,zk)−−−−→μ

(
ηk, η

′
k

) ($,zk+1)−−−−−→μ

(
ηk+1, η

′
k+1

) → ·· · ($,zr )−−−→μ

(
ηr , η

′
r

)
,

with all ηj , η
′
j ∈ W . By Claim 2, (ηr , η

′
r ) = Rem(w1ρ,w2ρ). If γi ∈ YA∗ then, we might have

w1ρ ∈ A∗Y and so (ηr , η
′
r ) = (ε, γi) ∈ Ti , or w1ρ ≡ wka and then (ηr , η

′
r ) = (ka, kaγi) ∈ Ti as

well. Otherwise we have γi ≡ jaγ ′
i and, since (w1ρ)γi ≡ w2ρ, there are three possibilities: we

have either w1ρ ≡ w′jb and w2ρ ≡ w′jcγ ′
i with jbja = jc in Sj , and so Rem(w1ρ,w2ρ) =

(jb, jcγ ′
i ) ∈ Ti ; or w1ρ ≡ w′kb (k �= j) and w2ρ ≡ w′kbγi and then Rem(w1ρ,w2ρ) =

(kb, kbγi) ∈ Ti ; or w1ρ ∈ A∗Y and then Rem(w1ρ,w2ρ) = (ε, γi) ∈ Ti . In any case (ηr , η
′
r ) =

Rem(w1ρ,w2ρ) ∈ Ti and so (w1,w2)δX ∈ L(Mi ).
To prove that L(Mi ) ∩ (K × K)δX ⊆ Kxi

let w1,w2 ∈ K arbitrary such that (w1,w2)δX ∈
L(Mi ). We can write w1 ≡ y1 . . . yq and w2 ≡ z1 . . . zr where y1, . . . , yq, z1, . . . , zr ∈ X. There
is a path

(ε, ε)
(y1...yk,z1...zk)−−−−−−−−−→ (η, η′)

in Mi where k = max{q, r}, yq+1 = · · · = yk = zr+1 = · · · = zk = $ and (η, η′) ∈ Ti . By Claim 2
we have (η, η′) = Rem(w1ρ,w2ρ). If γi ≡ jaγ ′

i then, by definition of Ti , we have either (η, η′) =
(jb, jcγ ′

i ) with jbja = jc in Sj , or (η, η′) = (kb, kbγi) with k �= j , or (η, η′) = (ε, γi). In the
first case we have w1ρ ≡ wjb and w2ρ ≡ wjcγ ′

i for some word w ∈ A∗ and so we can write

(w1ρ)γi ≡ wjbjaγ ′
i ≡ wjcγ ′

i ≡ w2ρ which means that w1xi = w2 in H . In the second case we
have w1ρ ≡ wkb and w2ρ ≡ wkbγi for some word w ∈ A∗ and so we can write (w1ρ)γi ≡
wkbγi ≡ w2ρ and again w1xi = w2 in H . In the third case we have w1ρ ∈ A∗Y and so w2ρ ≡
w1ργi ≡ (w1ρ)γi which implies w2 = w1xi in H . If we have γi ∈ YA∗ then, by definition of Ti ,
we have either Rem(w1ρ,w2ρ) = (ka, kaγi) or Rem(w1ρ,w2ρ) = (ε, γi). In the first case we
have w1ρ ≡ wka and w2ρ ≡ wkaγi which implies that (w1ρ)γi ≡ w kaγi ≡ w kaγi ≡ w2ρ and
therefore w1xi = w2 in H . In the second case we have w1ρ ∈ A∗Y and w2ρ ≡ w1ργi ≡ (w1ρ)γi

which implies again w2 = w1xi in H . So in any case (w1,w2)δX ∈ Kxi
and the inclusion is

proved.
To conclude the proof of the theorem we observe that, since K= = L(M) ∩ (K × K)δA and

Kxi
= L(Mi ) ∩ (K × K)δA, K= and Kxi

are regular languages and so H 1 is automatic which
implies, by Theorem 1.1, that H is automatic. �
3. Corollaries and problems

We have the following consequence of our result, which concerns free products of free and
finite semigroups:

Corollary 3.1. If S is a free product of semigroups that are either finite or free then any finitely
generated subsemigroup of S is automatic.

Proof. Let S = S1 ∗ · · ·∗Sn ∗T1 ∗ · · ·∗Tm where S1, . . . , Sn are finite semigroups and T1, . . . , Tm

are free semigroups. Let H be an (infinite) subsemigroup of S. Suppose that H is generated by
A = {t1, . . . , tl} ⊆ S and, without loss of generality, that A ∩ S1 = {t1, . . . , tk} (0 < k < l). Since
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the semigroup U = 〈t1, . . . , tk〉 is a subsemigroup of S1 it is finite. Let H ′ be the semigroup
generated by the finite set

A′ = {
U1tk+1U

1,U1tk+2U
1, . . . ,U1tlU

1}.
We observe that

A ∩ (S1 ∪ · · · ∪ Sn) � A′ ∩ (S1 ∪ · · · ∪ Sn), A′ ∩ S1 = ∅,

and H\H ′ = U is finite. If A′ contains elements from S2 we can remove them the same way
obtaining a semigroup H ′′ generated by a set A′′ that does not contain elements from S1 ∪S2 and
such that H\H ′′ is finite. Repeating this process for every Si that contains generators we will
obtain a semigroup V generated by a set B such that B ∩ (S1 ∪ · · · ∪ Sn) = ∅ and H\V is finite.
Since V is in the conditions of the previous theorem it is automatic. Since H\V is finite we can
use Proposition 1.1 and conclude the H is automatic. �
Corollary 3.2. Any finitely generated subsemigroup of a free product of finite semigroups is
automatic.

Proof. This is a particular case of the previous corollary, worth stating separately. �
We say that a semigroup is monogenic if it is generated by a single element and we have the

following result:

Corollary 3.3. Any finitely generated subsemigroup of a free product of monogenic semigroups
is automatic.

Proof. A monogenic semigroup is either free or finite and so we can use Corollary 3.1. �
Defining a semigroup to be strongly automatic if all its finitely generated subsemigroups are

automatic we may ask the following question:

Question 3.1. Is the free product of strongly automatic semigroups strongly automatic in gen-
eral?

The answer to the same question for groups is “yes” because we can use the Kurosh Subgroup
Theorem: If H is a subgroup of G1 ∗ G2 then H is isomorphic to F ∗ H1 ∗ H2 where F is a free
group, H1 is isomorphic to a subgroup of G1 and H2 is isomorphic to a subgroup of G2. For
semigroups it is still an open question.

By Proposition 1.2 the bicyclic monoid is strongly automatic and so we may also consider the
following question:

Question 3.2. Does Theorem 2.1 still hold if we allow generators to belong to factors isomorphic
to the bicyclic monoid?
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