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Let k be an algebraically closed field and let C be a non-
hyperelliptic smooth projective curve of genus g defined over k.
Since the canonical model of C is arithmetically Gorenstein,
Macaulay’s theory of inverse systems allows us to associate to C
a cubic form f in the divided power k-algebra R g−3 in g − 2
variables. The apolarity ap(C) of C is the minimal number t of
linear form �1, . . . , �t ∈ R g−3 needed to write f as the sum of
their divided power cubes.
It is easy to see that ap(C) � g − 2 and P. De Poi and F. Zucconi
classified curves with ap(C) = g − 2 when k ∼= C. In this paper, we
give a complete, characteristic free, classification of curves C with
apolarity g − 1 (and g − 2).

© 2011 Elsevier Inc. All rights reserved.

0. Introduction and notation

Throughout the paper k will denote an algebraically closed field of arbitrary characteristic. Let C be
a non-hyperelliptic smooth projective curve of genus g � 3 over k. It is well known that the canonical
map φ : C → |ωC |ˇ = P̌g−1

k is an embedding.
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The classical Babbage–Enriques–Noether–Petri Theorem (see [SD]) gives a complete description of
the generators of the homogeneous ideal Iφ(C) ⊆ k[x0, . . . , xg−1] of the canonical model φ(C) ⊆ P̌g−1

k
and some results are known about the higher syzygies of its homogeneous coordinate ring T (φ(C)) :=
k[x0, . . . , xg−1]/Iφ(C) , especially in the set up of the well-known Green’s conjecture.

Another approach for studying the canonical embedding of C is suggested in [I–R] (see also [R–S])
when k ∼= C is the complex field. The basic idea is that the ring T (φ(C)) is Gorenstein, i.e. it is self-
injective. Since T (φ(C)) has Krull-dimension 2, it follows that, for any choice of general linear forms
h1,h2 ∈ k[x0, . . . , xg−1], the quotient ring T (φ(C))/(h1,h2) is an Artinian Gorenstein graded ring and
it is not difficult to check that its Hilbert function is (1, g − 2, g − 2,1).

Artinian Gorenstein graded rings with Hilbert function (1,n,n,1) have been object of a deep study
(see e.g. [Ia1] or [C–R–V] for general results about them, [C–N1] for their classification when n � 3 and
[C–N2] for some results in the case n = 4). In particular, the well-known Macaulay’s inverse system
method asserts that there is a bijective correspondence between Artinian Gorenstein graded quotient
rings of k[t0, . . . , tn−1] with Hilbert function (1,n,n,1) and forms of degree 3 up to scalars in the
divided power k-algebra in the variables y0, . . . , yn−1 (see Appendix A of [I–K] for the definition and
main properties of the divided power algebra: for the sake of simplicity we only recall that such an
algebra is isomorphic to k[y0, . . . , yn−1] when k ∼= C).

It is thus natural to relate geometric properties of C , hence projective properties of its canonical
model φ(C), with algebraic properties of the corresponding quotient ring T (φ(C))/(h1,h2). When
k ∼= C, such an idea has been smartly used in [DP–Z1] in order to prove the following result (see
Theorem 4: see also [DP–Z2] for similar results for subcanonical curves).

Theorem. Let k ∼= C. A non-hyperelliptic smooth projective curve C of genus g � 3 over k is either trigonal or
isomorphic to a plane quintic if and only if the corresponding polynomial is a Fermat cubic in k[y0, . . . , yg−3],
up to the natural action of the general linear group GLg−2 (i.e. the corresponding polynomial is in the GLg−2-
orbit of y3

0 + · · · + y3
g−3).

The proof of the above Theorem rests on the aforementioned description of the generators of the
ideal Iφ(C) . Since such a description is characteristic free, our first result is its generalization in any
characteristic. In particular, in Section 1 we prove that

Theorem A. A non-hyperelliptic smooth projective curve C of genus g � 3 over k is either trigonal or iso-
morphic to a plane quintic if and only if the corresponding polynomial is a Fermat cubic in the divided power
algebra, up to the natural action of the general linear group GLg−2 .

It is interesting to recall that the aforementioned Babbage–Enriques–Noether–Petri Theorem relates
the degrees of a minimal set of generators of Iφ(C) with the existence of surfaces S ⊆ P̌g−1

k of minimal
degree g − 2 containing φ(C).

Thus it is natural to inspect the case when the canonical model of C lies on a surface S ⊆ P̌g−1
k

of almost minimal degree g − 1. Such an analysis yields to the main result of this paper, proved in
Section 4.

Theorem B. A non-hyperelliptic smooth projective curve C of genus g � 5 over k is either bielliptic (i.e. there
is a map of degree 2 from C to a smooth elliptic curve) or it is birationally isomorphic to a plane sextic with at
most 10 − g double points as singularities or it is isomorphic to a smooth complete intersection inside P3

k of an
integral quadric Q with an integral quartic surface if and only if the corresponding polynomial can be written
as the sum of g − 1 cubes in the divided power algebra.

The structure of this paper is as follows. In Section 1 we recall some facts about apolarity and we
prove Theorem A above. In Section 2 we summarize some results about surfaces of almost minimal
degree: in particular, we give their classification in the normal case. In Section 3 we prove a charac-
terization of canonical curves lying on a surface of almost minimal degree. Finally, in Section 4, we
prove the main result of this paper, namely Theorem B above.
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Notation. We work over an algebraically closed field k and we will denote by char(k) its characteristic.
The symbol GLn denotes the general linear group of invertible n × n matrices with coefficients in k.

Let k[t0, . . . , tn] be the ring of polynomials in the variables t0, . . . , tn with coefficients in k and
let k[t0, . . . , tn]d be the vector space of degree d forms. If q1, . . . ,qh ∈ k[t0, . . . , tn]d , we denote by
〈q1, . . . ,qh〉 the subspace of k[t0, . . . , tn]d generated by q1, . . . ,qh .

If V is a vector space, then we denote by P(V ) the corresponding projective space. In particular,
we set Pn

k := P(kn+1). A curve is a projective connected smooth scheme of dimension 1.
Let Pn

k be the projective space with coordinates t0, . . . , tn . If q1, . . . ,qh ∈ k[t0, . . . , tn] are forms,
we will denote by D0(q1, . . . ,qh) the corresponding zero scheme inside Pn

k . If X ⊆ Pn
k is a closed

subscheme, then we denote by I X its saturated homogeneous ideal in k[t0, . . . , tn] and we define its
homogeneous coordinate ring as

T (X) := k[t0, . . . , tn]/I X .

We will say that X is arithmetically Cohen–Macaulay (resp. arithmetically Gorenstein), aCM for short
(resp. aG for short), in Pn

k if the ring T (X) is Cohen–Macaulay (resp. Gorenstein).
If γ := (γ0, . . . , γn) ∈ Nn+1 is a multi-index, then we set |γ | := ∑n

i=0 γi , γ ! := ∏n
i=0 γi !, tγ :=

tγ0
0 · · · tγn

n ∈ k[t0, . . . , tn] and we say that γ � 0 if and only if γi � 0 for each i = 0, . . . ,n: if δ :=
(δ0, . . . , δn) ∈ Nn+1 is another multi-index, then we write γ � δ if and only if γ − δ � 0.

For other definitions, results and notation we always refer to [Ha].

1. Apolarity and first results

In [I–K] (see also [R–S] and [I–R] for the characteristic 0 case) some facts about the classical
Macaulay’s correspondence are summarized.

We recall that we can consider two graded rings, namely the polynomial ring T n := k[x0, . . . , xn]
and the divided power k-algebra Rn in the n + 1 variables y0, . . . , yn .

As explained in [I–K, Appendix A], the k-vector space Rn coincides with k[y0, . . . , yn], hence there
exists a natural action of GLn+1 on Rn . Let γ := (γ0, . . . , γn) ∈ Nn+1: the divided power monomial
yγ0

0 · · · yγn
n ∈ Rn will be usually denoted as y[γ ] (instead of yγ ). The k-algebra structure on Rn is

obtained by extending by linearity the monomial multiplication

y[γ ] y[δ] := (γ + δ)!
γ !δ! y[γ +δ].

The algebra T n acts on Rn by differentiation. More precisely, if γ := (γ0, . . . , γn), δ := (δ0, . . . , δn) ∈
Nn+1, we have the natural pairing T n

g × Rn
d → Rn

d−g (we denote by ∗n
d the summand of degree d

elements in ∗n) given on monomials by the rule

xγ
(

y[δ]) :=
{

y[δ−γ ] if δ � γ ,

0 if δ � γ .

For any linear form � := ∑n
i=0 ai yi ∈ Rn

1 the divided power �[d] is defined as

�[d] :=
∑

δ∈Nn+1, |δ|=d

aδ0
0 · · ·aδn

n y[δ0]
0 · · · y[δn]

n .

Let � ∈ Rn
1 be as above and let a := (a0, . . . ,an). If q ∈ T n

e , then the above formula yields q(�[d]) =
q(a)�[d−e] if e � d, thus we deduce

q
(
�[d]) = 0 ⇐⇒ q(a) = 0. (1.1)
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Such an action defines a perfect pairing T n
d × Rn

d → k between forms of degree d in Rn and in T n . In
particular, Rn

1 and T n
1 are natural dual vector spaces. Therefore, the projective spaces with coordinates

y0, . . . , yn and x0, . . . , xn are naturally dual each other and we denote them by Pn
k and P̌n

k respectively.
We will say that two homogeneous forms f ∈ Rn and q ∈ T n are apolar if q( f ) = 0. As explained in

[I–K], apolarity allows us to associate an Artinian Gorenstein graded quotient of T n to a form in Rn

as follows. Let f ∈ Rn
d: then we set

f ⊥ := {
q ∈ T n

∣∣ q( f ) = 0
}

and it is easy to prove that both f ⊥ is a homogeneous ideal in T n and A f := T n/ f ⊥ is an Artinian
Gorenstein graded quotient of T n with socle 0 :T n T n

1 in degree d. Also the converse is true i.e. if A is
an Artinian Gorenstein graded quotient of T n , say A := T n/I , with socle in degree d, then there exists
f ∈ Rn

d such that I = f ⊥ . The main result about apolarity due to Macaulay (see [I–K, Lemma 2.12] and
the references cited there) is the following

Theorem 1.2. The map f �→ A f induces a bijection between P(Rn
d) and the set of graded Artinian Gorenstein

quotient rings of T n with socle in degree d.

Now we restrict our attention to non-hyperelliptic curves C (recall that a curve is smooth by
definition in this paper) of genus g � 3. Then the homogeneous coordinate ring of the canonical
model of C inside P̌g−1

k satisfies

T
(
φ(C)

) ∼= TC :=
+∞⊕
h=0

H0(C,ωh
C

)
.

If we take a general linear subspace H = D0(h1,h2) ⊆ P̌g−1
k of codimension 2, then the algebra

TC /(h1,h2) turns out to be naturally an Artinian Gorenstein graded quotient of T g−1/(h1,h2) with
socle in degree 3 and Hilbert function (1, g − 2, g − 2,1). With a proper choice of coordinates
y0, . . . , yg−1 in Pg−1

k and of the corresponding dual coordinates x0, . . . , xg−1 in P̌g−1
k , we can as-

sume that hi = xg−3+i , i = 1,2, i.e. H = V (xg−2, xg−1) so that the morphism T g−1 → T g−3 sending to
zero both xg−2 and xg−1 induces a natural identification T g−1/(h1,h2) = T g−3.

Thus we can associate a polynomial f ∈ R g−3
3 to C and H in such a way that, via the aforemen-

tioned identification,

f ⊥ = Iφ(C) + (h1,h2)

(h1,h2)

or, equivalently,

TC

(h1,h2)
= T g−3

f ⊥ .

Remark 1.3. Since xg−2, xg−1 is a regular sequence in TC , it follows that the Betti numbers of TC as
module over T g−1 coincide with the Betti numbers of TC /(xg−2, xg−1) ∼= T g−3/ f ⊥ as module over
T g−3 (see e.g. Theorem 1.3.6 of [Mi]).

Definition 1.4. With the notation introduced above we say that the polynomial f ∈ R g−3 and the
curve C are apolar each other.
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Following the definition given in [I–R] when char(k) = 0, apolarity allows us to define a rational
map

ψC : G(g − 2, g) ��� H g−3,3

where G(g − 2, g) denotes the Grassmannian of subspaces of codimension 2 of P̌g−1
k and H g−3,3 :=

R g−3
3 /GLg−2 without restrictions on char(k). On the other hand, in H g−3,3 it is also defined the locus

H g−3,3(h) of GLg−2-orbits of cubics (in the sense of divided power algebra when char(k) > 0) which
can be written as sum of h (divided power) cubes of linear forms. Obviously we must have h � 1
and H g−3,3(h) ⊆ H g−3,3(h + 1). For simplicity we denote by ap(C) the apolarity of C , i.e. the smallest
integer h such that the general point of im(ψC ) is in H g−3,3(h).

When char(k) �= 2,3, Theorem 2 of [Ia2] (which is based on the results proved in [A–H]) asserts
that the general point of H g−3,3 lies in H g−3,3(hgen) where

hgen :=
⌈

g(g − 1)

6

⌉
except for g = 7, when hgen = 8 (instead of 7). Thus it is reasonable to hope that ap(C) � hgen . Actually
a better upper bound holds: indeed in Remark 3.3 of [I–R] it is proved that ap(C) � 2g − 4 when C
is general and char(k) = 0.

The following lemma provides a lower bound for the apolarity of a non-hyperelliptic curve C .

Lemma 1.5. Let C be a non-hyperelliptic curve of genus g � 3, apolar to the polynomial f ∈ R g−3
3 . If there

exist �0, . . . , �s ∈ R g−3
1 such that f = ∑s

i=0 �
[3]
i , then dim〈�0, . . . , �s〉 = g − 2.

Proof. We have dim〈�0, . . . , �s〉 � g − 2. Assume that dim〈�0, . . . , �s〉 = t � g − 3. Up to GLg−2 we
can assume that f ∈ Rt ⊆ R g−3, so that yg−3 does not appear in f . It follows that xg−3( f ) = 0, thus
xg−3 ∈ f ⊥ . Due to Remark 1.3 there should exist a linear form in Iφ(C) ⊆ T g−1, a contradiction. �

A natural problem is to inspect curves C with low apolarity. To this purpose a fundamental tool is
the following fundamental result known as Apolarity Lemma.

Lemma 1.6. Let �i ∈ Rn
1 and let Li ∈ P̌n

k be the corresponding point, i = 1, . . . , s. Then f = ∑s
i=0 λi�

[d]
i for

some λi ∈ k∗ , i = 0, . . . , s, if and only if the homogeneous ideal IΓ ⊆ T n of Γ := {L0, . . . , Ls} ⊂ P̌n
k satisfies

IΓ ⊆ f ⊥ .

Proof. In [I–K, Lemma 1.15], it is proved that
⋂s

i=0(�
[d]
i )⊥ = IΓ ∩ T n

d ⊆ T n
d . If IΓ ⊆ f ⊥ , then IΓ ∩ T n

d ⊆
f ⊥ ∩ T n

d : since the map T n
d × Rn

d → k is a perfect pairing, then f ∈ 〈�[d]
0 , . . . , �

[d]
s 〉, thus f = ∑s

i=0 λi�
[d]
i

for some λi ∈ k∗ , i = 0, . . . , s.
Conversely let f = ∑s

i=0 λi�
[d]
i , for some λi ∈ k∗ , i = 0, . . . , s. If q ∈ IΓ , then q(�

[d]
i ) = 0 due to

formula (1.1), thus q ∈ f ⊥ . �
The condition IΓ ⊆ f ⊥ is often summarized, in the standard literature, by saying that Γ is apolar

to f .
The above result and Babbage–Enriques–Noether–Petri Theorem describing the ideal of a canonical

curve have been used in [DP–Z1] (see Theorem 4) to prove an interesting characterization of curves
which are either trigonal or isomorphic to a plane quintic. Here we rephrase it in terms of apolarity
of C and we prove it without any restriction on the characteristic of the base field k (see Theorem A
stated in the introduction).
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Theorem 1.7. A non-hyperelliptic curve C of genus g � 3 is either trigonal or it is isomorphic to a plane quintic
if and only if ap(C) = g − 2.

Proof. If g = 3 the statement is obvious. Indeed each non-hyperelliptic curve C of genus g is trigonal.
On the other hand the ring TC /(x1, x2) has Hilbert function (1,1,1,1), thus

TC /(x1, x2) ∼= T 0/
(
x4

0

) ∼= T 0/ f ⊥

where f := y[3]
0 .

Thus, from now on, we will assume g � 4. It is easy to check that f is the, possibly divided power,
Fermat cubic y[3]

0 + · · · + y[3]
g−3 ∈ R g−3

3 if and only if

f ⊥ = (
xi x j, x3

i − x3
g−3

)
0�i< j�g−3.

Due to Remark 1.3 this happens if and only if a minimal set of generators of the ideal Iφ(C) contains
at least one cubic form. The well-known Babbage–Enriques–Noether–Petri Theorem on the ideal of
the canonical model of C , which holds true in any characteristic for curves (see [SD, Theorem 3.1]),
says that Iφ(C) has a minimal generator of degree 3 if and only if C is either trigonal or isomorphic
to a plane quintic.

On the other hand if im(ψC ) is the orbit of the Fermat cubic, then im(ψC ) ⊆ H g−3,3(g − 2). Since
Lemma 1.5 implies im(ψC ) � H g−3,3(g − 3), it follows that ap(C) = g − 2. Conversely let us assume
that ap(C) = g − 2, so that the general point of im(ψC ) is in H g−3,3(g − 2) \ H g−3,3(g − 3). If the gen-

eral point of im(ψC ) is in the orbit of f := ∑g−3
i=0 λi�

[3]
i , then the linear forms �0, . . . , �g−3 are linearly

independent by Lemma 1.5, thus f is a, possibly divided power, Fermat cubic, up to GLg−2. �
Remark 1.8. In the proof of Theorem 1.7 above we saw that

f ⊥ = (
xi x j, x3

i − x3
g−3

)
0�i< j�g−3.

Let Γ ⊆ H := D0(xg−2, xg−1) consist of the g − 2 fundamental points

E0 := [1,0, . . . ,0,0,0,0], . . . , E g−3 := [0,0, . . . ,0,1,0,0]

in H ⊆ P̌g−1
k . In what follows we will show that T g−3/ f ⊥ can be obtained from T (Γ ) via the anti-

canonical construction (see [Mi, Theorem 4.2.8]).
The homogeneous ideal of Γ in T g−3 is IΓ |H = (xi x j)0�i< j�g−3, and the Betti numbers of its

minimal free resolution are the same as the defining ideal of the rational normal curve in T g−2.
In order to describe the maps of such a resolution, for each h = 1, . . . , g − 3 let us consider the

natural exact sequence

0 −→ Ih ∩ (xh+1) Jh −→ Ih ⊕ (xh+1) Jh −→ Ih + (xh+1) Jh −→ 0

where Ih := (xi x j)0�i< j�h , Jh := (x0, . . . , xh), the first non-trivial map is u �→ (u,−u), the second
one is (u, v) �→ u + v . We trivially have Ih(−1) ∼= xh+1 Ih = Ih ∩ (xh+1) Jh , Ih + (xh+1) Jh = Ih+1 and
(xh+1) Jh

∼= Jh(−1) (here and in the following (−1) denotes the degree shifting, as usual), then the
above sequence is isomorphic to a sequence of the form

0 −→ Ih(−1) −→ Ih ⊕ Jh(−1) −→ Ih+1 −→ 0

where the first non-trivial map is u �→ (xh+1u,−u) and the second one is (u, v) �→ (u + xh+1 v).
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The last sequence above allows us to compute inductively via mapping cone the maps of the
minimal free resolution of IΓ |H . In particular, such a resolution ends with

0 −→ (
T g−3)⊕(g−3)

(−g + 2)
δ−→ (

T g−3)⊕(g−4)(g−2)
(−g + 3).

In order to describe the matrix M := (mp,q) of δ we set Xi = (xg−3, . . . , xi+1, xi−1, . . . , x0), i =
0, . . . , g − 5, and Xg−4 = (xg−5, . . . , x0). Then we have

mp,q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)q+ j(Xq−1) j if p = (q − 1)(g − 3) + j, 1 � q � g − 4, 1 � j � g − 3,

(−1)g−3+ j(Xg−4) j if p = (g − 4)(g − 3) + j, q = g − 3, 1 � j � g − 4,

(−1)i+1xg−3 if p = i(g − 3) + 1, q = g − 3, 0 � i � g − 5,

0 otherwise,

where (Xs) j is the j-th entry of the vector Xs .

Let KΓ be the canonical module of Γ , that is to say, KΓ = Extg−3
S (T (Γ ), T g−3)(−g + 2). The

scheme Γ is aCM, since it is 0-dimensional, hence the minimal free resolution of KΓ as module over
T g−3 can be obtained by dualizing the one of IΓ |H . In particular, the minimal free resolution of KΓ

starts as

(
T g−3)⊕(g−4)(g−2)

(−1)
δ̌−→ (

T g−3)⊕(g−3) −→ KΓ −→ 0,

where δ̌ is represented by t M , the transpose of M .
We want to prove that f ⊥/IΓ |H ∼= KΓ (−3). At first, we have the obvious short exact sequence

0 −→ f ⊥/IΓ |H −→ T (Γ ) −→ T g−3/ f ⊥ −→ 0.

By comparing the minimal free resolutions of the last two modules, and the fact that f ⊥/IΓ |H is
generated in degree 3, we get that the Betti numbers of KΓ (−3) and f ⊥/IΓ |H are equal. Moreover,
one can also check directly that the columns of t M are syzygies of x3

0 − x3
g−3, . . . , x3

g−4 − x3
g−3. Hence,

both KΓ (−3) and f ⊥/IΓ |H are minimally presented by t M and so the isomorphism follows.
Thus we have finally proved that T g−3/ f ⊥ is obtained from T (Γ ) via the anticanonical construc-

tion (see [Mi, Theorem 4.2.8]) as stated at the beginning of this remark.

2. Surfaces of almost minimal degree

In this section we will recall some facts about canonical curves of genus g lying on integral
surfaces of degree g − 1 in the canonical space, i.e. surfaces of almost minimal degree (see the intro-
duction). Such results are more or less known (see e.g. [Sch2, Section 4]).

We start by recalling the definition and the classification of surfaces of almost minimal degree.

Theorem 2.1. Let S ⊆ Pn
k be an integral non-degenerate surface of degree n � 4. Then the following assertions

hold true.

i) If S is not aCM or it is aCM but not normal, then it is the projection of a surface of minimal degree in Pn+1
k

via a linear projection.
ii) If S is aCM, then ωS ∼= O S (−1): in particular, S is aG.

Proof. See [B–S, Theorem 6.2 and Corollary 6.10]. In [B–S] a very explicit description of the structure
of the projection when S is not aCM or it is aCM but not normal can be also found. �
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In the next section we will see that the class of integral normal (hence aG and anticanonically
embedded due to the above Theorem) surfaces is actually the most interesting for us. For this reason
we now go to summarize some facts about them (see [H–W] for their proofs).

Remark 2.2. If S is a non-degenerate integral normal cone, then the general hyperplane section E of S
is a non-degenerate curve of degree n in Pn−1

k . Thus Castelnuovo’s bound (see [A–C–G–H, Chapter III,
Section 2] when char(k) = 0 and [Ha, Theorem IV.6.4] or [Ra, Theorem 2.9], when char(k) > 0) yields
that the arithmetic genus of E is either 0 or 1. If E is aCM, it follows that it must be necessarily an
elliptic curve.

Now let us assume that S is not a cone. In this case it is proved in [H–W] that such integral
surfaces coincide with the ones described in [De]. Before stating the main theorem, we recall some
facts about them. Following the notation and definitions introduced in [H–W] and [De], let r � 8 be
a positive integer and consider (possibly infinitely near) points p1, . . . , pr such that: p1 ∈ S̃0 := P2

k ,
p j+1 ∈ S̃ j , j = 1, . . . , r − 1 and S̃ j is the blow-up of S̃ j−1 at p j , j = 1, . . . , r. We thus have a chain of
blow-up’s

S̃ := S̃r → S̃r−1 → ·· · → S̃2 → S̃1 → S̃0 = P2
k .

We will denote by E j ⊆ S̃ j the exceptional divisor of the blow-up S̃ j → S̃ j−1.

Definition 2.3. With the above notation the set { p1, . . . , pr } is said to be in almost general position
if the following conditions hold.

i) No four of them are on the same line.
ii) No seven of them are on the same conic.

iii) For each j = 1, . . . , r − 1 the point p j+1 ∈ S̃ j does not lie on any proper transform Ê i of Ei ,

i = 1, . . . , j, such that Ê i
2 = −2.

Let S̃ be a surface obtained by blowing up a set of points in almost general position. The Picard
group Pic(̃S) of S̃ is freely generated by the class � of the proper transform of a line in P2

k and by the
r classes e1, . . . , er of the total transforms of the exceptional divisors E1, . . . , Er . Notice that �2 = 1,
� · ei = 0, e2

i = −1 and ei · e j = 0, i, j = 1, . . . , r, i �= j. The canonical system on S̃ is |3� − ∑r
i=1 ei|.

The anticanonical map is a birational morphism onto a surface S ⊆ P9−r
k of degree 9 − r when r � 6.

In [H–W] a converse of this fact is proven. We write below the part of this result that we will need
in the following.

Theorem 2.4. Let S ⊆ Pn
k be a non-degenerate integral normal aCM surface of degree n. Assume that S is not

a cone on a curve of degree n lying in a hyperplane. Then the following assertions hold true.

i) 3 � n � 9.
ii) S carries at most rational double points as singularities.

iii) If n = 9, then S is the anticanonical image in P9
k of P2

k .

iv) If n = 8, then S is the anticanonical image in P8
k of either P1

k × P1
k or F1 := P(O

P
1
k

⊕ O
P

1
k
(−1)) or

F2 := P(O
P

1
k
⊕ O

P
1
k
(−2)).

v) If 3 � n � 7, then S is the anticanonical image in Pn
k of the blow-up of P2

k along a set of 9 − n points in
almost general position.

In all the above cases the blow-up map S̃ → S is the contraction of all the curves D ⊆ S̃ such that D2 = −2, if
any.
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Proof. Thanks to Theorem 2.1ii) it follows that S is Gorenstein and ωS ∼= O S(−1). Thus S is either
rational or it is a cone over an elliptic curve, thanks to [H–W, Theorem 2.2]. Since we are assuming
it is not a cone, then the minimal desingularization S ′ of S satisfies h1(S ′, O S ′ ) = 0. At this point the
theorem is a particular case of the more general Theorem 3.4 of [H–W]. �
Definition 2.5. The embedded surfaces described in the previous statement will be called weak
del Pezzo surfaces of degree n.

3. Canonical curves on surfaces of almost minimal degree

We recall here some facts about the canonical embedding of non-hyperelliptic curves (recall that
we are considering only smooth curves). First of all, let C be a non-hyperelliptic curve of genus g � 5.
Then Iφ(C) has a minimal free resolution over T g−1 of the form

0 −→ F g−2 −→ F g−1 −→ · · · −→ F1 −→ Iφ(C) −→ 0. (3.1)

Since the embedding φ(C) ⊆ P̌g−1
k is aG, such a resolution is isomorphic to its dual, up to twist. Thus

F p ∼= T g−1(−p − 1)⊕βp,p+1 ⊕ T g−1(−p − 2)⊕βp,p+2

if p = 1, . . . , g − 3 and F g−2 ∼= T g−1(−g − 1). In particular, the Hilbert polynomial of TC is

(
g − 1 + t

g − 1

)
+

g−3∑
p=1

(−1)p
(

βp,p+1

(
g − 2 + t − p

g − 1

)

+ βp,p+2

(
g − 3 + t − p

g − 1

))
+ (−1)g−2

(
t − 2

g − 1

)
.

It follows that

βp,p+1 − βp−1,p+1 = p

(
g − 2

p + 1

)
− (g − 1 − p)

(
g − 2

g − p

)
. (3.2)

We conclude this preliminary part with the following

Lemma 3.3. Let C be a non-hyperelliptic curve of genus g � 5. Assume that the canonical model φ(C) of C
is contained in an integral aCM normal surface S ⊆ P̌g−1

k of degree g − 1. Then φ(C) is cut out on S by a
quadric hypersurface Q such that Sing(S) ∩ Q = ∅. In particular, C is neither trigonal nor isomorphic to a
plane quintic.

Proof. By Theorem 2.1 the surface S is aG. Up to a proper choice of the coordinates x0, . . . , xg−1

in P̌g−1
k we can assume that xg−2, xg−1 is a regular sequence in T (S). Thus the subspace H :=

D0(xg−2, xg−1) ⊆ P̌g−1
k has codimension 2 and the minimal free resolution of the homogeneous co-

ordinate ring T (Γ ) of the scheme Γ := S ∩ H over T g−1/(xg−2, xg−1) ∼= T g−3 has the same Betti
numbers of the minimal free resolution of the T g−1-module T (S) (the argument is the same used in
Remark 1.3).

Since S is aG, non-degenerate, of degree g − 1 in P̌g−1
k , the same is true for Γ in H ∼= Pg−3

k . In
[G–O] (see also Section 4 of [Sch1]) the Betti numbers of IΓ |H are computed. In particular, we know
that the minimal free resolution of IΓ |H has the shape

0 −→ T g−3(1 − g) −→ T g−3(3 − g)⊕γg−4 −→ · · · −→ T g−3(−2)⊕γ1 −→ IΓ |H −→ 0 (3.3.1)
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where

γi := i(g − 3 − i)

g − 2

(
g − 1

i + 1

)
.

It follows from the above sequence and from formula (3.2) that I S is generated by

γ1 :=
(

g − 2

2

)
− 1 = β1,2 − 1

quadratic forms. In particular, there exists a quadric Q ⊆ P̌g−1
k such that φ(C) ⊆ S ∩ Q . Since S is

integral, due to degree reasons, equality must hold. The tangent space T p(C) of C at any point p ∈ C
is the intersection T p(S) ∩ T p(Q ) of the tangent spaces of S and Q at the same point p. Since Q is
a hypersurface it follows that necessarily dim(T p(S)) = 2 for each p ∈ C .

It is now an easy consequence of the Babbage–Enriques–Noether–Petri Theorem (see [SD]) that C
is neither trigonal nor isomorphic to a plane quintic. �

We are now ready to recall the main result of this section which is a quite natural generalization
of the classical result for canonical curves on surfaces of minimal degree.

Theorem 3.4. Let C be a non-hyperelliptic curve of genus g � 5. Then the canonical model φ(C) of C is
contained in an integral surface S ⊆ P̌g−1

k of degree g − 1 if and only if one of the three following conditions
holds.

i) C is bielliptic: in this case S is a cone on an elliptic normal curve contained in a hyperplane of P̌g−1
k with

vertex not on φ(C).
ii) g � 10 and C is birationally isomorphic to a plane sextic carrying exactly 10 − g double points as sin-

gularities: in this case the double points of such a sextic are in almost general position and S is the weak
del Pezzo surface obtained by embedding anticanonically P2

k blown up at the singular points of the afore-
mentioned plane sextic.

iii) g = 9 and C is isomorphic to a smooth complete intersection inside P3
k of an integral quadric Q with an

integral quartic surface: in this case S is the weak del Pezzo surface obtained by embedding anticanoni-
cally Q .

Proof. We first prove the “if” part of the statement. Assume that C is birationally isomorphic to a
plane sextic D carrying exactly 10 − g double points as singularities. Thus conditions i) and ii) of
Definition 2.3 are trivially satisfied. Also condition iii) is satisfied since the strict transform of D on
each surface S̃ i is always transversal to the exceptional divisor at its double point, if any (see [Ha,
Example V.3.9.5]). It follows that φ(C) lies on the weak del Pezzo surface S obtained as anticanonical
embedding of the blow-up of P2

k at the singular points of D . A similar argument holds if C is iso-
morphic to a smooth complete intersection inside P3

k of an integral quadric Q ⊆ P3
k with an integral

quartic surface.
Now we examine the case when C is bielliptic. For the following construction we refer to [Sch1]

(in particular, see Section 6). Let C be bielliptic. Thus there exists a morphism ϕ : C → E of degree 2
onto an elliptic curve. The pull-back to C of each g1

2 on E gives rise to a g1
4 on C . Fix one of such

g1
4’s: the union of planes in the canonical space P̌g−1

k generated by the divisors belonging to the fixed

g1
4 is a singular rational normal scroll Σ ⊆ P̌g−1

k over P1
k .

The canonical model φ(C) of C is the complete intersection inside Σ of two surfaces, namely
a cone S of degree g − 1 and another surface of degree 2g − 6. Since the curve φ(C) is smooth, it
follows that the two surfaces are necessarily smooth at the points of φ(C). Let us consider the general
hyperplane section E of S . The scheme E has dimension 1, degree g − 1 and it lies in a hyperplane of
P̌g−1

k . Moreover, it is non-degenerate since, otherwise, the curve φ(C) would be degenerate. If E were
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singular, then S , being a cone on E , would have a line r of singular points, thus S would be singular
at the points in r ∩ φ(C), a contradiction.

Thus Castelnuovo’s bound (see [A–C–G–H, Chapter III, Section 2] when char(k) = 0 and [Ha, The-
orem IV.6.4] or [Ra, Theorem 2.9], when char(k) > 0) yields that the (geometric) genus of E is either
0 or 1. In the first case C would be hyperelliptic. We conclude that E is an elliptic curve. Due to
Corollary 2.3 of [C–G–N] it follows that E is aCM, thus the same is true for S .

We have thus proved that in all the above cases the canonical model of C lies on an integral
surface S ⊆ P̌g−1

k of degree g − 1. Moreover, we have also given a complete description of such a
surface S .

Now we prove the “only if” part of the statement. Let us assume that φ(C) is contained in an
integral surface S ⊆ P̌g−1

k of degree g − 1. Since φ(C) ⊆ P̌g−1
k is non-degenerate, the same holds for

S ⊆ P̌g−1
k .

If S were not aCM or it were aCM, but not normal, then S would be obtained as the linear
projection of a surface Σ of degree g − 1 contained in a projective space of dimension g � 6 and
containing P̌g−1

k as a hyperplane. In [E–H, Theorem 1], it is proved that such a surface Σ would
either be a ruled (possibly singular) surface or the Veronese surface in P5

k (hence g = 5).
Consider the first case. The images of the fibres of Σ are lines sweeping S and cutting out a g1

d
on φ(C). Necessarily d � 3 since C is neither rational nor hyperelliptic. Let |D| be the complete linear
system containing such a g1

d . The geometric interpretation of Riemann–Roch Theorem (see [A–C–G–H,
Chapter 1, Section 2]: the formula holds in any characteristic) implies that the spaces generated by
such divisors in P̌g−1

k have dimension d − 1 − dim |D|, whence dim |D| = d − 2. Since g � 5 such a
linear system is special, thus Clifford’s theorem yields d − 2 � d/2, i.e. d � 4. If equality holds, then
|D| would be the canonical system, thus d = 3, whence C is trigonal. In Theorem 4.7 and Lemma 4.8
of [SD] it is proved that the quadrics through φ(C) cut out a surface S ′ ⊆ P̌g−1

k of degree g − 2. Since
S ′ is intersection of quadrics, we deduce that it contains each line cutting the g1

3 on φ(C), hence
S ⊆ S ′ , a contradiction.

In the second case φ(C) would be the birational image of an integral divisor F ⊆ V ⊆ P5
k via a pro-

jection from a point not on V , hence deg(F ) = deg(φ(C)) = 8 and its genus should be 5. Since V ∼= P2
k ,

it follows that F ∈ |O
P

2
k
(4)|, hence the arithmetic genus of F would be at most 3, a contradiction.

Thus we can assume that C is both aCM and normal. Due to the results listed in Section 2 (in
particular, see Remark 2.2) the surface S is either a weak del Pezzo surface or it is a cone over an
elliptic curve E in a hyperplane H ⊆ P̌g−1

k with vertex a point V /∈ H .
In both the cases φ(C) is cut out on S by a single quadric (see Lemma 3.3) not containing any

singular point of S . In particular, C ∈ |ω−2
S |. Thus, in the first case, thanks to the classification of weak

del Pezzo surfaces given in Theorem 2.4, we obtain curves which are either birationally isomorphic
to plane sextics carrying 10 − g double points in almost general position as singularities or that
are isomorphic to smooth complete intersections inside P3

k of integral quadrics Q with an integral
quartics. In the second case the vertex V of the cone S is not on the quadric Q , thus the projection
φ(C) → E with center V has degree 2, i.e. C is bielliptic. �
4. Curves with almost minimal apolarity

In this section we will prove Theorem B stated in the introduction. To this purpose we first prove
the following technical lemma.

Lemma 4.1. Let C be a non-hyperelliptic curve of genus g � 5 apolar to the polynomial f ∈ R g−3
3 . If f =

f0 + f1 y[3]
g−3 where f0 ∈ R g−4

3 ⊆ R g−3
3 and f1 ∈ k, then C is either trigonal or isomorphic to a plane quintic.

Proof. In order to show that C is trigonal or isomorphic to a plane quintic it suffices to prove that a
minimal set of generators of the homogeneous ideal Iφ(C) ⊆ T g−1 of its canonical model φ(C) ⊆ P̌g−1

k
contains at least a non-quadratic polynomial. Since the Betti numbers of Iφ(C) ⊆ T g−1 coincide with
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the ones of f ⊥ ⊆ T g−3 (see Remark 1.3), it then suffices to prove that a minimal set of generators of
f ⊥ contains at least a non-quadratic polynomial.

Choose a quadratic polynomial q ∈ f ⊥: we can write

q = q0 +
g−4∑
i=0

aixi xg−3 + ag−3x2
g−3

where q0 ∈ T g−4
2 and a0, . . . ,ag−3 ∈ k. Since we certainly have f1 �= 0 (Lemma 1.5) and q0( f0) ∈ R g−4

1 ,
the equality

0 = q( f ) = q0( f0) + ag−3 f1 yg−3

yields ag−3 = 0. We conclude that each quadratic polynomial q ∈ f ⊥ vanishes at [0, . . . ,0,1]. Since
T g−3/ f ⊥ has dimension 0, it follows that there is another minimal non-quadratic generator of f ⊥ . �

We are now ready to prove Theorem B stated in the introduction.

Theorem 4.2. A non-hyperelliptic curve C of genus g � 5 is either bielliptic or birationally isomorphic to a
plane sextic carrying 10 − g double points or isomorphic to a smooth complete intersection inside P3

k of an
integral quadric Q with an integral quartic surface if and only if ap(C) = g − 1.

Proof. In view of Theorem 3.4 it suffices to prove that ap(C) = g − 1 if and only if there exists an
integral surface S ⊆ P̌g−1

k of degree g − 1 containing the canonical model φ(C) of C .

Assume that such a surface S ⊆ P̌g−1
k exists. Thus S is either a weak del Pezzo surface or it is a

cone over an elliptic normal curve contained in a hyperplane. In both the cases S has at most a finite
number of singular points due to Theorem 3.4.

Let H := D0(h1,h2) ⊆ P̌g−1
k where h1 and h2 are general linear forms. The geometric characteriza-

tion of the degree of a surface allows us to assume that Γ := S ∩ H consists of exactly g − 1 pairwise
distinct points.

As usual let I S be the homogeneous ideal of S . We know that IΓ is the saturation of I S + (h1,h2).
By construction we have

I S + (h1,h2)

(h1,h2)
⊆ Iφ(C) + (h1,h2)

(h1,h2)

and the quotient on the right is saturated, since the same is true for Iφ(C) , being φ(C) aG (see [Mi,
Proposition 1.3.4]). Thus, by saturating both the sides of the above inclusion the quotient on the right
does not change and we finally obtain

IΓ |H ⊆ Iφ(C) + (h1,h2)

(h1,h2)
.

We can assume that hi = xg−3+i , i = 1,2. Via the natural identification T g−1/(h1,h2) = T g−3, we can

find f ∈ R g−3
3 such that

f ⊥ = Iφ(C) + (h1,h2)

(h1,h2)

(as in Section 1), hence IΓ |H ⊆ f ⊥ ⊆ T g−3 and a natural identification

TC = T g−3

⊥ .

(h1,h2) f



E. Ballico et al. / Journal of Algebra 332 (2011) 229–243 241
It then follows from Lemma 1.6 that the general point of im(ψC ) is in H g−3,3(g − 1), hence ap(C) �
g − 1. If ap(C) < g − 1, then C would be either trigonal or isomorphic to a plane quintic due to
Theorem 1.7, a contradiction due to Lemma 3.3.

Let us now prove the converse. To this purpose let us assume that ap(C) = g − 1: hence C is nei-
ther trigonal nor isomorphic to a plane quintic. Furthermore, we can find linear forms �0, . . . , �g−2 ∈
T g−3 such that f = ∑g−2

i=0 �
[3]
i .

Due to Lemma 1.5 we can assume that �i = yi and �g−2 = ∑g−3
i=0 λi yi , where λi ∈ k, i = 0, . . . , g −3.

Lemma 4.1 forces the non-vanishing of λi , i = 0, . . . , g − 3. The transformation yi �→ yi/λi , i =
0, . . . , g − 3 allows us to assume

f :=
g−3∑
i=0

λ−1
i y[3]

i +
( g−3∑

i=0

yi

)[3]
. (4.2.1)

It follows by the Apolarity Lemma that IΓ |H ⊆ f ⊥ , where IΓ |H is the ideal of the set Γ ⊆ H consisting
of the g − 1 fundamental points

E0 := [1,0, . . . ,0,0,0,0], . . . , E g−3 := [0,0, . . . ,0,1,0,0], E g−2 := [1,1, . . . ,1,1,0,0]

giving the standard projective frame in H ⊆ P̌g−1
k .

We thus have that the minimal free resolution of IΓ |H over T g−3 coincides with resolution (3.3.1),
while the Betti numbers of the minimal free resolution of f ⊥ over T g−3 coincide with those in
resolution (3.1) due to Remark 1.3. The fact that C is neither trigonal nor isomorphic to a plane
quintic yields that β1,3 = 0, hence formula (3.2) with p = 1 implies that f ⊥ is generated by

β1,2 =
(

g − 2

2

)
= γ1 + 1

quadratic polynomials. It follows that f ⊥ = IΓ |H + (q f ) for a suitable q f ∈ T g−3
2 . Fix an ordered min-

imal set of generators (q1, . . . ,qγ1 ,q f ) of f ⊥ in such a way that IΓ |H = (q1, . . . ,qγ1 ).
Moreover, formula (3.2) with p = 2 gives

β2,3 = (g − 1)(g − 3)(g − 5)

3
= γ2,

hence the linear syzygies of f ⊥ are exactly the linear syzygies of IΓ |H with a 0 in correspondence of
the last generator q f . In degree 2 we have the γ1 = (g−2

2

) − 1 Koszul syzygies of the form

(0, . . . ,0,−q f ,0, . . . ,0,qi)

where the q f sits in the i-th position. Such syzygies are obviously not generated by the syzygies in
degree 1 since their last entries are always non-zero, thus β2,4 = γ1. It follows now from the table in
Theorem 4.1 of [Sch2] that φ(C) lies on an integral surface of degree g − 1. Since C is neither trigonal
nor isomorphic to a plane quintic, there are no surfaces of lower degree containing φ(C). �
Remark 4.3. From the proof of Theorem 4.2, we can assume that Γ = S ∩ H consists of the g − 1
fundamental points E0, . . . , E g−3, E g−2 giving the standard projective frame, thus

IΓ |H = (xhxi − xhx j)0�h<i< j�g−3.
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Moreover, we also know that f ⊥ = IΓ |H + (q f ), thus it could be interesting to identify the class of q f
modulo IΓ |H . To this purpose we can assume that

f :=
g−3∑
i=0

λ−1
i y[3]

i +
( g−3∑

i=0

yi

)[3]

for suitable non-zero λi , i = 0, . . . , g − 3 (see equality (4.2.1)). It is easy to check that the polynomial

q′ := xg−4xg−3 −
g−3∑
i=0

λi
(
x2

i − xg−4xg−3
)

is in f ⊥ . Since q′ does not vanish at E0 = [1,0, . . . ,0], it follows that q′ /∈ IΓ |H , thus q f ≡ q′ modulo
IΓ |H .

Remark 4.4. The quotient morphism

T g−1 � T g−1/(h1,h2) ∼= T g−3

induces by restriction an isomorphism ψ : (Iφ(C))2
∼−→ ( f ⊥)2 of k-vector spaces. Recall that the sub-

scheme Γ ⊆ H satisfies IΓ |H ⊆ f ⊥ . Thus the ideal I S of S is the ideal generated by ψ−1((IΓ |H )2).

Remark 4.5. With the same notation used in the proof of Theorem 4.2 and in Remarks 4.3, 4.4,
equality IΓ |H ∩ (q f ) = IΓ |H · (q f ) holds. In fact, if q f g ∈ IΓ |H , then q f (Ei)g(Ei) = 0 for each point Ei ,
with i = 0, . . . , g − 2. From the equality IΓ |H + (q f ) = f ⊥ and the fact that T g−3/ f ⊥ has Krull-
dimension 0, we deduce that g(Ei) = 0 for each i = 0, . . . , g − 2 i.e. g ∈ IΓ |H and the claim follows.

From the previous equality, we deduce the exactness of the following short sequence of modules
over T g−1/(xg−2, xg−1) ∼= T g−3

0 −→ T (Γ )(−2)
·q f−→ T (Γ ) −→ T g−3/ f ⊥ −→ 0.

It shows that we can get the minimal free resolution of T g−3/ f ⊥ via mapping cone from the one
of T (Γ ).

Furthermore, let KΓ be the canonical module of Γ , that is to say,

KΓ := Extg−3
T g−3

(
T (Γ ), T g−3)(−g + 2).

From the minimal free resolution of IΓ |H (see resolution (3.3.1)) and standard results on Gorenstein
rings, we get that KΓ (−1) ∼= T (Γ ). From such an equality, it then follows that

f ⊥/IΓ |H ∼= T (Γ )(−2) ∼= KΓ (−3),

that is to say, T g−3/ f ⊥ can be obtained from T (Γ ) via the anticanonical divisor construction (see
[Mi, Theorem 4.2.8]).
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