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Abstract

The evaluation of the nuclear matrix elements (NME) of the two-neutrino double beta (2νββ) decay and neutrinoless doub
beta (0νββ) decay using the proton–neutron quasiparticle random-phase approximation (pnQRPA) is addressed. In p
the extraction of a proper value of the proton–neutron particle–particle interaction parameter,gpp, of this theory is analyzed in
detail. Evidence is shown, that it can be misleading to use the experimental half-life of the 2νββ decay to extract a value fo
gpp. Rather, arguments are given in favour of using the available data on single beta decay for this purpose.
 2004 Elsevier B.V.
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The recent large-scale neutrino-oscillation exp
ments, Super-Kamiokande[1], SNO [2], KamLAND
[3], CHOOZ[4], have confirmed the existence of t
neutrino mass. These experiments can only probe
differences of the squares of the masses, not the
solute mass scale of the neutrino. On the contr
the neutrinoless double beta (0νββ) decay can probe
the absolute mass scale using the effective neut
mass, 〈mν〉, extracted from the results of the u
derground double-beta-decayexperiments. To extrac
the absolute neutrino masses one needs informa
about the involved nuclear matrix elements[5,6], neu-
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trino mixing [7], and the associated CP phases[8].
As a matter of fact, knowing the underlying n
clear matrix elementsaccurately enough, one ca
extract from the double-beta experiments inform
tion about the CP phases of the neutrino-mixing m
trix [8].

One more fundamental piece of information wou
emerge if the 0νββ decay were detected, namely th
the neutrino would be a Majorana particle, i.e., an
ject for whom the particle and antiparticle states co
cide. The 0νββ decay then immediately implies als
nonconcervation of the lepton number, changing
lepton number by two units. Majorana neutrinos
naturally contained in various particle-physics the
ries going beyond the Standard Model, such as gra
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unification theories and supersymmetric extension
the Standad Model.

Given the above impressive list of important qua
tative and quantitative neutrino properties, potentia
probed by the 0νββ decay, one cannot stress enou
the importance of a reliable calculation of the involv
nuclear matrix elements (NME). Lack of accuracy
the values of these matrix elements is the sourc
inaccuracy in the information on the neutrino mas
and CP phases, extracted from the 0νββ-decay experi-
ments. In particular, in view of the planned near-futu
large-scale underground experiments, with detec
in the ton scale, knowledge of the most promis
nuclear candidates for detection is of paramount
portance.

Contrary to the 0νββ decay, the two-neutrino dou
ble beta (2νββ) decay, with two neutrinos and tw
electrons in the final state, can proceed as a pe
bative process within the Standard Model. It can a
be used as a test bench for the nuclear models, s
the decay proceeds via only the 1+ states of the in-
termediate double-odd nucleus. Success in descri
this decay mode is a prerequisite for a reliable ca
lation of the NME’s related to the 0νββ decay. During
the last two decades a host of different nuclear m
els have been used to compute values of the ma
elements involved in both types of double-beta-de
transition[5,9,10]. The mostly used nuclear models
the evaluation of the NME’s of double beta decay
the nuclear shell model and the proton–neutron qu
particle random-phase approximation (pnQRPA),
signed for spherical or nearly spherical nuclei.

After the first shell-model attempts, the problem
the NME’s of the 2νββ and 0νββ decays was viewe
in a fresh new way by the introduction of the p
QRPA with an adjustable particle–particle part of t
proton–neutron two-body interaction. Determinat
of the value of the corresponding strength parame
gpp, has been a key issue since the mid 80’s. As not
in the early works[11,12], the NME of the 2νββ decay
is very sensitive to the value of this parameter, le
ing to the so-calledgpp problem of the pnQRPA. On
the other hand, the NME of the 0νββ decay is much
less dependent on the value ofgpp, as discussed, e.g
in [5,13]. Many extensions of the pnQRPA have com
to light during the last nine years. The first of the
was the so-called renormalized pnQRPA (pnRQR
of Ref. [14]). Other extensions of the pnQRPA, us
in the ββ-decay calculations, are cited, e.g., in[5,6,
15,16]. A common feature of all these extensions is
attempt to introduce the Pauli exclusion principle in
the pnQRPA by improving on the quasiboson comm
tation relations, adopted at the pnQRPA level. In th
theories different types of correction to the boson co
mutators of the bifermionic operators are introduc
leading to renormalization factors at the level of t
pnQRPA equations of motion.

The results of theββ-decay calculations are qui
scattered[17] (see also[5,9] for a detailed discus
sion of the matrix elements up to the year 1998), a
recently it has been suggestedthat this shortcoming
could be overcome in the framework of the pnQR
and its renormalized extensions. In this scheme it
been suggested[16] that one could use data on th
2νββ decay to extract a more accurate value for
NME corresponding to the neutrino-mass mode (i
decay mode mediated by the mass of the neutrino
of the 0νββ decay. The essentials of this method
summarized as follows: the value of the interact
strength parametergpp of the pnQRPA (or any of its
renormalized extensions) can be determined by fit
the value of the computed NME to the one extrac
from the experimental half-life of the correspondi
2νββ transition. This fitted value ofgpp is then used in
the computation of the 0νββ NME. This suggestion
has recently been made also in[15]. In the follow-
ing, the implications and pitfalls of this scheme a
analyzed in detail by using the simple and transpa
framework of the plain pnQRPA. The same qualitat
features persist largely also in its renormalized ext
sions. At the same time, arguments are given in fav
of an other approach, namely fittinggpp by the data on
single beta decay(s).

To have an idea of the suggested procedure[16],
and its alternative, advocated in this Letter, it is
structive to write down an expression for the 2νββ-
decay half-life,t(2ν)

1/2 , for a transition from the initia

ground state, 0+I , to the final ground state, 0+
F . This

expression reads

(1)
[
t
(2ν)
1/2

(
0+

I → 0+
F

)]−1 = G(2ν)
∣∣M(2ν)

DGT

∣∣2,

whereG(2ν) is an integral over the phase space of
leptonic variables[5]. The nuclear double Gamow
Teller matrix element,M(2ν)

DGT, corresponding to the
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Table 1
Experimental EC- andβ−-decay logf t values for heavy double-odd nuclei involved as intermediate nuclei in doubleβ− and doubleβ+
decays. For completeness, also theQ values of theββ decays are given in the second column

ββ mode Q [MeV] Init. nucl. Final nucl. Mode logf t Ref.

β−β− 3.03 100Tc 100Mo EC 4.45 [18]
100Tc 100Ru β− 4.6 [19]

β−β− 1.30 104Rh 104Ru EC 4.3 [19]
104Rh 104Pd β− 4.5 [19]

β+β+ 0.73 106Ag 106Pd EC 4.9 [19]
106Ag 106Cd β− � 4.2 [19]

β−β− 2.01 110Ag 110Pd EC 4.1 [19]
110Ag 110Cd β− 4.7 [19]

β−β− 0.53 114In 114Cd EC 4.9 [19]
114In 114Sn β− 4.5 [19]

β−β− 2.80 116In 116Cd EC 4.39 [20]
116In 116Sn β− 4.7 [19]

β−β− 0.87 128I 128Te EC 5.0 [19]
128I 128Xe β− 6.1 [19]

β+β+ 0.54 130Cs 130Xe EC 5.1 [19]
130Cs 130Ba β− 5.1 [19]

β+β+ 0.37 136La 136Ba EC 4.6 [19]
136La 136Ce β− ? [19]
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2νββ decay, can be written as

M
(2ν)
DGT =

∑

n

(0+
F ‖∑

j σ (j)t−j ‖1+
n )

(1
2Qββ + En − MI)/me + 1

(2)× (
1+
n

∥∥∑

j

σ (j)t−j
∥∥0+

I

)
,

where the transition operators are the usual Gam
Teller operators forβ− transitions,Qββ is the 2νββ Q

value,En is the energy of thenth intermediate state
MI is the mass energy of the initial nucleus, andme is
the rest-mass of the electron.

As an alternative to the proposed[15,16]use of the
measured 2νββ decay half-life to determine the valu
of gpp, the use of the measured single-beta-decay h
lives is advocated in this work. The available data
Gamow–Teller transitions of heavy double-odd nuc
involved in doubleβ− and doubleβ+/EC transitions,
have been summarized inTable 1. At the moment,
it is believed that the doubleβ− decays are bette
accessible to experiments than the doubleβ+/EC de-
cays. Nevertheless, it is instructive to show the av
able beta-decay data for nuclei involved in the dou
β+/EC decays, as well.

As the first, clean-cut test case one can take the
cay of116Cd which is a nearly spherical, almost sem
magic nucleus. The corresponding final nucleus of
2νββ decay is116Sn, a genuine spherical semi-mag
nucleus. Both these nuclei are well describable by
spherical pnQRPA.

The calculation of the matrix element of Eq.(2)
proceeds on the following lines. The single-parti
energies of the spherical mean field are obtai
from a Woods–Saxon single-particle potential, inclu
ing the Coulomb and spin–orbit parts in the Boh
Mottelson parametrization[21]. The single-particle
valence space is taken typically to span two to th
oscillator major shells around the proton and neut
Fermi surfaces. The adopted two-body interaction
realistic one, based on the one-boson-exchange p
tial of the Bonn type, transformed to nuclear matter
the G-matrix technique. The finite-size effects ha
been taken into account in an approximate way
using simple scaling parameters for the short-ra
monopole part, and separate scalings for theJπ = 1+
multipole in the particle–hole and particle–partic
channels. Details of the calculation can be read in[22].

The strong short-range correlations between nu
ons have been treated by using the BCS approxi
tion. The associated pairing strengths are adjuste
reproduce the empirical pairing gaps, extracted fr
the experimental separation energies of protons
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h,
Fig. 1. (a) The NME’s corresponding to the 2νββ decay of116Cd shown as functions ofgpp. The complete NME,M(2ν)(tot), the NME with

only the lowest intermediate contribution included,M(2ν)(1+
1 ), and the experimental NME,M(2ν)(exp), have been shown. (b) The left-branc

EC NME,MEC, and the right-branch NME,β− NME, Mβ− , shown as functions ofgpp. (c), (d) The same as (a) and (b) for the 2νββ decay of
128Te.
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neutrons, in a way described in[23]. The proton–
neutron correlations are treated at the pnQRPA le
by fixing the scale of the particle–holeJπ = 1+ two-
body matrix elements to reproduce the empirical
cation of the Gamow–Teller giant resonance, wher
the particle–particle part of the same interaction
scaled by the interaction strength constantgpp, left
as a free parameter in the calculations. This met
was used for realistic interactions in the context of
2νββ decay in[12], and in description of single bet
decays in[23].

In Fig. 1(a), the NMEM(2ν)(tot), corresponding to
the 2νββ decay of116Cd, is drawn as a function ofgpp.
In the same figure a rough value of the extracted ex
imental NME,M(2ν)(exp), has been shown as a ho
zontal line, since its value is independent ofgpp. Here
the uncertainties in the value of this extracted NM
arising from the experimental error in the measu
half-life, and the uncertainty in the proper value of t
axial-vector coupling constant,gA, for medium-heavy
and heavy nuclei, have been omitted. The intersec
point of these two curves gives now the fitted val
gpp(ββ) � 1.03, ofgpp. As can be seen from the curv
denoted byM(2ν)(1+

1 ) in Fig. 1, the NME including
only the contribution arising from the virtual transitio
through the first 1+ state, 1+1 , of the intermediate nu
cleus116In, almost coincides with the complete NM
M(2ν)(tot), especially forgpp values around unity
This is a characteristic of the so-called single-st
dominance (SSD), studied extensively, e.g., in[22].

In the case of such a SSD, the NME(2) of the 2νββ

decay can be approximately written as

(3)M(2ν) � MECMβ−

(1
2Qββ + E1 − MI)/me + 1

.

The two branches of the 2νββ transition,MEC and
Mβ− are drawn as functions ofgpp in panel (b) of
Fig. 1. It is remarkable that the magnitudes of the le
branch NME, corresponding to the electron-capt
(EC) decay of the 1+1 state in116In to the ground state
of 116Cd, and the right-branch NME, corresponding
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theβ− decay of the same state to the ground stat
116Sn, can in some cases be determined from exp
mental data on the corresponding decay half-lives. I
is also clear that in this kind of a simple case the st
of the relation between the single and double beta
cays is most transparent, in particular, related to
determination of thegpp parameter.

Using the extracted value ofgpp(ββ), one imme-
diately obtains, due to the SSD, the values of
left- and right-branch NME’s, as shown in panel (
of Fig. 1. From Fig. 1 one obtainsMEC � 1.4 and
Mβ− � 0.24. These values of the NME’s can, in tur
be used to compute the half-lives of the EC andβ− de-
cays from the 1+1 state in116In. Comparison of thes
computed values with the corresponding experime
ones, extracted fromTable 1, yields

(4)
t
(EC)
1/2 (exp)

t
(EC)
1/2 (th)

� 2.6,
t
(β−)

1/2 (exp)

t
(β−)

1/2 (th)
� 0.16,

indicating that forgpp(ββ) � 1.03 one obtains too
fast an EC transition and much too slow aβ− tran-
sition. Fitting theβ− decay half-life, instead of th
2νββ decay half-life, would yield a valuegpp(β

−) �
0.85, which also would result in a more reasona
matrix element for the EC branch, namelyMEC �
1.2. The corresponding experimental magnitude
MEC(exp) � 0.8, the exact value depending on t
adopted value forgA. As can be seen, the proper d
termination of the value of thegpp parameter, by using
theβ− decay half-life, can lead to a notably differe
value from the one extracted by using the 2νββ decay
half-life, even in the simple case of the SSD. Su
marizing the above: use of the valuegpp(ββ) � 1.03
reproduces the 2νββ half-life via two compensating
errors: too large an EC NME is compensated by
small aβ− NME.

As the second test case one can take the 2νββ de-
cay of 128Te to the ground state of128Xe. This case
can be analyzed using the very methods deviced
116Cd in Fig. 1(a) and (b). A corresponding schem
is shown for the128Te decay inFig. 1(c) and (d). As
can be seen from panel (c), the curves for the t
matrix element and theM(2ν)(1+

1 ) matrix element are
very much separated everywhere but at the value
gpp close to the point which reproduces the value
the experimental matrix element. Hence, in this c
one cannot speak about SSD, and the situation is m
complicated than in the116Cd case. In this case th
intersection point of the curves, corresponding to
total and experimental matrix elements, gives the fi
value,gpp(ββ) � 0.82, ofgpp.

The two branches of the matrix elementM(2ν)(1+
1 ),

MEC andMβ− , are drawn as functions ofgpp in panel
(d) of Fig. 1. Using the extracted value ofgpp(ββ),
one obtains for the left- and right-branch matrix e
mentsMEC � 1.19 andMβ− � 0.05. These values o
the NME’s can, in turn, be used to compute the h
lives of the EC andβ− decays from the 1+1 state of
128I. Comparison of these computed values with
corresponding experimental ones, extracted fromTa-
ble 1, yields

(5)
t
(EC)
1/2 (exp)

t
(EC)
1/2 (th)

� 9.7,
t
(β−)

1/2 (exp)

t
(β−)
1/2 (th)

� 0.17,

indicating that forgpp(ββ) � 0.82 one obtains muc
too fast an EC transition and much too slow aβ− tran-
sition. Fitting theβ− decay half-life, instead of th
2νββ decay half-life, would yield a valuegpp(β

−) �
0.755, which would only slightly change the valu
of the matrix element for the EC branch, namely
MEC � 1.15. The corresponding experimental ma
nitude isMEC(exp) � 0.38, for gA = 1.0. As can be
seen, in this case the proper determination of the v
of thegpp parameter, by using theβ− decay half-life,
does not lead to a notably different value ofMEC from
the one extracted by using the 2νββ decay half-life.
The reason for this discrepancy is not clear, but
formation effects could play some role. Even so,
above tells us that the use of the valuegpp(ββ) � 0.82
reproduces the 2νββ half-life via two compensating
errors: too large an EC NME is compensated by
small aβ− NME.

As the third case, the 2νββ decay of76Ge to the
ground state of76Se will be discussed. This case c
be analyzed along the lines of the previous two ca
A corresponding scheme is shown for the76Ge de-
cay in Fig. 2(a) and (b). As can be seen fromFig. 2,
there exists no SSD, and the situation is in this res
similar to the128Te case. In this case the interse
tion point of the curves, corresponding to the total a
experimental matrix elements, gives the fitted val
gpp(ββ) � 0.94, ofgpp.

The two branches of the matrix elementM(2ν)(1+
1 ),

MEC andMβ− , are drawn as functions ofgpp in panel
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Fig. 2. The same asFig. 1 for NME’s corresponding to the 2νββ decays of76Ge and82Se.
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(b) of Fig. 2. Using the extracted value ofgpp(ββ),
one obtains the valuesMEC � 1.52 andMβ− � 0.09
of the left- and right-branch NME’s, which give fo
the corresponding logf t values

(6)logf t (EC) � 3.9, logf t
(
β−) � 6.4,

for gA = 1.0. The lowest state in the intermediate n
cleus,76As, is a 2− state, and hence the Gamow–Tel
decays of the lowest 1+ state are hard to observe d
to the fast gamma decays to this 2− state.

As the next example of thegpp(ββ) problem, the
2νββ decay of82Se to the ground state of82Kr is dis-
cussed inFig. 2(c) and (d). As for the76Ge case, also
here the SSD is not applicable. FromFig. 2 one can
read for the intersection point of the total and expe
mental matrix elements the valuegpp(ββ) � 1.07, giv-
ing for the EC andβ− NME’s the valuesMEC � 1.32
and Mβ− � 0.11. These, in turn, give for the corr
sponding logf t values

(7)logf t (EC) � 4.0, logf t
(
β−) � 6.2,

for gA = 1.0. The lowest two states in the intermedia
nucleus,82Br, are a 5− state and a 2− state, and henc
Table 2
EC- andβ−-decay logf t values for selected decays of double-o
nuclei in the pf shell. The data is taken from[19]

Init. nucl. Final nucl. Mode logf t

70Ga 70Zn EC 4.7
70Ga 70Ge β− 5.1
78Br 78Se EC 4.8
78Br 78Kr β− ?
80Br 80Se EC 4.7
80Br 80Kr β− 5.5

the Gamow–Teller decays of the lowest 1+ state have
not been observed.

Although no measured EC orβ− NME can be ex-
tracted for the76Ge and82Se cases, one can compa
the computed logf t values of Eqs.(6) and (7)to the
logf t values of similar cases in the same mass reg
In the relevant mass region there are three double
nuclei with a 1+ ground state and decay patterns an
ogous to the ones of76As and82Br, namely the one
listed inTable 2. From this table one immediately n
tices that the logf t values of the relevant EC deca
range between logf t (EC) = 4.7–4.8 and values of th
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relevantβ− decays range between logf t (β−) = 5.1–
5.5. This would suggest that the extracted logf t val-
ues of Eqs.(6) and (7)for the EC decays are to
small and the corresponding extracted logf t values
for the β− decays far too large. Much better agre
ment between the theoretical and experimental
andβ− logf t values, around logf t (EC) � 4.6 and
logf t (β−) � 5.3 could be obtained for smallergpp
values than the one, suggested by the 2νββ-decay half-
life. For the two discussed decays a valuegpp(β

−) �
0.8 would do quite well.

Based on the previous analysis one can say tha
conclusions arising from the analysis of the 2νββ de-
cays of76Ge and82Se coincide with the ones arisin
from the 2νββ decays of116Cd and128Te: cancella-
tion of errors in the two matrix elements,MEC and
Mβ− , conspire to produce a 2νββ NME which exactly
reproduces the corresponding experimental matrix
ement. This demonstrates that it can be dangerou
determine the value ofgpp by fitting the 2νββ decay
half-life.

In fact, determination of the value ofgpp by the data
on single beta decay leaves the 2νββ-decay half-life
as a prediction of the theory. Comparison of this p
diction to the experimental half-life would tell abo
the predictive power of the adopted theoretical fram
work, in terms of the size of the adopted sing
particle space, the adopted single-particle energ
etc. A roughly correct prediction for the 2νββ-decay
half-life would shed more confidence on the theor
ical predictions concerning the other multipoles,
volved in the 0νββ decay.

As the final example of thegpp(ββ) problem,
the 2νββ decay of 100Mo to the ground state o
100Ru is discussed inFig. 3. In this case the SSD i
roughly applicable. FromFig. 3 one can see that i
this particular nuclear-structure calculation, the one
Ref. [22] where one can read more details of the u
single-particle basis, etc., the computed total NM
never reaches the experimental NME, extracted
usinggA = 1.0. Hence, in this case one is forced
use the experimentalβ−-decay logf t value, quoted
in Table 1, to determine the value ofgpp, result-
ing in gpp(β

−) � 1.02. This gives for the EC th
valueMEC � 1.97, and for the corresponding logf t

value

(8)logf t (EC) � 3.7,
Fig. 3. The same asFig. 1 for NME’s corresponding to the 2νββ

decay of100Mo.

usinggA = 1.0. This is too low a value for this deca
as seen from the data ofTable 1, indicating that some
nuclear-structure effects, e.g., deformation, beyond
reach of the spherical pnQRPA, might be present.

Summarizing the above presented results, the p
lem of determination of the proton–neutron interact
strength,gpp, in a pnQRPA type of calculation, be
the plain pnQRPA or one of its renormalized exte
sions, has been addressed. The apparent solution o
“gpp problem” by fittinggpp to available data on 2νββ-
decay half-lives has been critically analyzed. Fitti
this parameter to the existing data on singleβ− tran-
sitions is found to be a more meaningful solution
the problem. Arguments favouring this method ha
been summarized inTable 3where the positive point
(+) and negative points (−) of the two fitting methods
have been listed. Below few comments concerning
listed points of the table are made.

Concerning point one, one can even perform a s
tematical study of the beta-decay properties of a gi
nuclear region in the fit to beta decays. This appro
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f

Table 3
Pros (+) and cons (−) of the two discussed recipes to fit the parametergpp. For more explanation on the various points see the text

Point Fit toβ− and/or EC decay(s) Fit to 2νβ−β− decay

1 One, two or more observables can be used for the fit (+) Only one observable can be used for the fit (−)

2 Direct access to grass-root-level deficiencies of a nuclear
model (+)

Two or more compensating errors may conspire to
produce a good 2νβ−β− decay rate (−)

3 The beta-decay properties better reproduced (+) The 2νβ−β− decay properties better reproduced (+)

4 Error limits from comparison of the experimental and
computed 2νβ−β− decay rate (+)

Advisable to check against data onβ− decays

5 Largely eliminates the model-space dependence of the
computed 0νβ−β− decay rates (+)

Largely eliminates the model-space dependence o
the computed 0νβ−β− decay rates (+)

6 Can be extended to study of forbidden contributions, e.g.,
2−, in 0νβ−β− decay (+)

No access to a possible variation ofgpp from
multipole to multipole (−)

7 Can accessββ decays where no 2νββ data exists, see
Table 2(+)

Can accessββ decays where no directβ-decay data
exists (76Ge and82Se) (+)

Balance 7× (+) 3× (+) and 3× (−)
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would correspond to a shell-model[24] type of appli-
cation of the beta-decay data. Referring to point tw
fit to β− data can reveal deficiencies in the predict
power of the used nuclear model in the case of the
rates of the other branch. This seems to be the c
e.g., in the present calculation.

In regard to point four, the first method can be us
to draw some conclusions about the error limits
the ββ calculations, whereas in the second meth
one necessarily should check the consistency of
calculations against the available beta-decay obser
ables. This is a necessary procedure, not warran
either a plus or a minus mark. In point five the si
ilar behaviour of the two discussed fitting metho
comes, on one hand, from the fact that in both meth
one fixes first the pairing parameters by semiempir
pairing gaps. This is an essential step and produces
each single-particle space, the consistent quasipar
mean field. On the other hand, as the next step, b
methods use experimental data to fit thegpp parameter
This two-step fitting procedure is enough to eliminat
almost completely the dependence of the compu
0νββ-decay rates on the size of the model space.

The point number six is a very important one co
sidering the actual computation of the 0νββ-decay
rates. In the first procedure a separategpp analysis
of higher multipoles can be performed, e.g., in the
shell where data on beta decays of 2− states are avail
able. In the second method the same value of thegpp
parameter has to be assumed for all multipoles.
,

nally, it is to be noted that in the previous analysis
axial-vector coupling constant,gA, has been assume
to be roughly the same for both theβ andββ decays.
Since no exhaustive studies of this matter have b
performed, we take this assumption at face value
this work.

Concluding, the last line ofTable 3sums up the
positive and negative points of each method. This fi
balance clearly supports the argument that the b
decay fitting should be favoured, rather than the 2νββ-
decay fitting.

Acknowledgements

I thank M. Kortelainen for assistance in drawing t
figures of this Letter. This work has been suppor
by the Academy of Finland under the Finnish Ce
tre of Excellence Programme 2000–2005 (Project
44875, Nuclear and Condensed Matter Programm
JYFL).

References

[1] Super-Kamiokande Collaboration, S. Fukuda, et al., Phys. Re
Lett. 86 (2001) 5651.

[2] SNO Collaboration, Q.R. Ahmad, et al., Phys. Rev. Lett.
(2002) 011302.

[3] KamLAND Collaboration, K. Eguchi, et al., Phys. Re
Lett. 90 (2003) 021802.



J. Suhonen / Physics Letters B 607 (2005) 87–95 95

549

87)

543

1)

68

de

ip-

in,

88)

ev.
[4] M. Appollonio, et al., Phys. Lett. B 466 (1999) 415.
[5] J. Suhonen, O. Civitarese, Phys. Rep. 300 (1998) 123.
[6] A. Faessler, F. Šimkovic, J. Phys. G 24 (1998) 2139.
[7] O. Civitarese, J. Suhonen, Nucl. Phys. A 729 (2003) 867.
[8] S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Lett. B

(2002) 177.
[9] J. Suhonen, Phys. At. Nucl. 61 (1998) 1286.

[10] J. Suhonen, Phys. At. Nucl. 65 (2002) 2176.
[11] P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57 (1986) 3148.
[12] O. Civitarese, A. Faessler, T. Tomoda, Phys. Lett. B 194 (19

11.
[13] J. Suhonen, O. Civitarese, A. Faessler, Nucl. Phys. A

(1992) 645.
[14] J. Toivanen, J. Suhonen, Phys. Rev. Lett. 75 (1995) 410.
[15] S. Stoica, H.V. Klapdor-Kleingrothaus, Phys. Rev. C 63 (200

064304.
[16] V.A. Rodin, A. Faessler, F. Šimkovic, P. Vogel, Phys. Rev. C
(2003) 044302.

[17] J. Suhonen, in: Proceedings of NEUTRINO’2004, Collége
France, Paris, June 13–19, 2004, in press.

[18] A. Garcia, et al., Phys. Rev. C 47 (1993) 2910.
[19] R.B. Firestone, V.S. Shirley, S.Y.F. Chu, C.M. Baglin, J. Z

kin, Table of Isotopes, eighth ed., Wiley, New York, 1996.
[20] M. Bhattacharya, et al., Phys. Rev. C 58 (1998) 1247.
[21] A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I, Benjam

New York, 1969.
[22] O. Civitarese, J. Suhonen, Nucl. Phys. A 653 (1999) 321.
[23] J. Suhonen, T. Taigel, A. Faessler, Nucl. Phys. A 486 (19

91.
[24] E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. R

Lett. 77 (1996) 1954.


	Nuclear matrix elements of betabeta decay from beta-decay data
	Acknowledgements
	References


