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Abstract

It is widely recognized that formulating program analysis by a type system is a
promising approach because of its clarity and rigidity. However, there remains
much to be done for applying them to practical use. One of the problems is that it
is not trivial what kind of type systems is appropriate for low level languages. To
solve the problem, the type systems must be closely related to data flow analysis
because it has been the major method for analyzing low level languages. In this
paper, taking array bound checks as an example, first we propose a framework for
type systems for low level languages derived from data flow analysis. Second, we
propose a type system for analyzing programs as a network of blocks(especially
loops), dealing with SSA form and induction variables.

1 Introduction

It is widely recognized that formulating program analysis by a type system is
a promising approach because of its clarity and rigidity. Morrisett et al. in-
troduce typed assembly language in which labels are typed([10,11]). [10] shows
that type systems are useful for analyzing low level languages. For example,
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certifying assembly codes with types protects memory from violations by un-
safe codes. However, there remains much to be done for applying them to
practical use. One of the problems is that it is not trivial what kind of type is
appropriate for low level languages. Specifically, we must associate some kind
of types with jumps, which characterize low level languages. A hint is that
data flow analysis in conventional compilers is a major concern for analyzing
programs written in low level languages. Therefore, type systems for low level
languages must be based on data flow analysis. Many previous works of type
systems for low level languages essentially use data flow analysis though they
do not address explicitly, or their systems would be much simpler if they use
data flow analysis more directly.

In this paper, we take a low level language as our target, and analyze
array bound checks in type theoretical way. Because array bound checks
essentially use data flow analysis(for example, [6] uses available expressions
for eliminating redundant checks), this is a typical example of type theory for
low level languages.

The object for analyzing array bound checks is ranges of array subscripts.
If a compiler detects that the value of subscripts are within the array bounds,
no checks need to be inserted. Otherwise we must insert codes for run time
checks. Therefore we introduce range types for registers. Range types are of
the form r : [1, 10], which means that the value of r is within 1 ≤ r ≤ 10 at
that program point. A program of our target is represented by a network of
basic blocks. With each basic block in a program, a type is associated, which
we call basic block types. If all basic blocks have types, then the program is
well typed. Next, we extend our types so that previous studies on compiler
optimizations can be formulated in type theoretical way. For an example, we
introduce IVrange types. If a register is detected as an induction variable, it is
typed as IV range, a subtype of range types. Because many of array subscripts
in loops are affine conjunctions of induction variables, these types are useful
enough in the fields of science and engineering programs which consist mainly
of nested loops such as Gaussian elimination(Program 1).

Program 1 (Gaussian Elimination)

for(k=0;k<=N-2;k++){
for(i=k+1;i<=N-1;i++){
m[i][k]=a[i][k]/a[k][k];
for(j=k;j<=N-1;j++)
a[i][j]=a[i][j]-m[i][k]*a[k][j];

}
}

As mentioned in [15,5] which propose an algorithm to detect induction vari-
ables, Static Single Assignment form(SSA form) is useful for analyzing induc-
tion variables and loops. Therefore we define typing rules on SSA form, which
is not mentioned in previous type theoretical papers. The compilation stages
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are as follows.

Target Language → SSA form → Target Language

On our target language, we analyze basic blocks and complete programs. In
SSA form, we analyze induction variables in loops. Translation to SSA form
and set back to original languages are explained in [4].

Our Contribution
We list our contributions as follows.

• We propose a framework of type systems for low level languages which
corresponds to traditional data flow analysis. This will be the core of type
systems for low level languages

• Besides, as an extension of the framework, we take a program as a network
of basic blocks and analyze them in a way as usual in studies of compiler
optimizations. Specially, we focus on loop analysis, dealing with induction
variables and SSA form.

The rest of this paper is: in section 2, we show preliminaries for this paper.
Section 3 introduces type systems for basic blocks and for complete programs,
which we call flow analytic type system. Then in section 4 we introduce type
inference rules for induction variables in loops. Section 5 shows soundness
of our type system. Section 6 lists related works. In section 7, we give a
summary of this paper and future works.

2 Preliminaries

2.1 Syntax for Target Language

We define syntax of our target language as Fig 1. The language is a small
subset of RISC-like assembly languages. Register file consists of nr registers
and heap consists of a sequence of nh heap elements with addresses which can
contain word size values. To focus on our interest we assume:

• nr and nh are large enough.

• Arrays are already allocated in the heap.

• Registers which contain heap addresses point to valid offset of the arrays at
the beginning of the program.

We explain here load and store, which are our main concerns.

• load and store

“load rs(v), rd” loads a heap value whose heap address is calculated by
adding v to the heap address stored in register rs, the pointer for an array.
if v is greater than the length of the array, memory violation occurs. Our
type system tries to detect whether this will happen or not in executions of
load and store. If it cannot be proved that the array access is not within
the bound of the array, our type checker reports error.
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integers i ∈ I

labels l ∈ L

heap address h ::= h0 | h1 | . . . | hnh−1

registers r ::= r0 | r1 | . . . | rnr−1

word values wv ::= i | h
values v ::= i | r

heap H ::= [h0 �→ wv0, h1 �→ wv1, . . . , hnh−1 �→ wvnh−1]
register file R ::= [r0 �→ wv0, r1 �→ wv1, . . . , rnr−1 �→ wvnr−1]

stack S ::= [] | wv :: S

arithmetic ops aop ::= add | sub | mul | div
branch ops bop ::= beq | bne | blt | blte | bgt | bgte

branch instructions bins ::= bop r, v, l | jmp l | halt
instructions ins ::= aop rs, v, rd | mov v, r |

load rs(v), rd | store vs, rd(v) |

instruction sequences I ::= [ empty instructions ] | ins | ins; I
basic blocks B ::= I | I; bins

programs P ::= l0 : B0 ; l1 : B1 ; . . . ; ln−1 : Bn−1

Fig. 1. Syntax for Target Language

2.1.1 Abstract Machine

We consider an abstract machine by a standard approach. A machine state
M is a triple (pc,H,R). pc stands for program counter which starts from 0
to ni-1 where ni is the number of instructions. P [pc] denotes an instruction
whose order is pc in program P . H and R are finite mappings which stand
for a heap and a register file respectively.

Notation 1 (map functions)

Let g be a map, Dom(g) be the domain of g; for x ∈ Dom(g), g[x] is the
value of g at x, and g[x → v] is the map with the same domain as g defined
by the following equation, for all y ∈ Dom(g): (g[x → v])[y] = if y �=
x then g[y] else v.

2.1.2 Dynamic Semantics

We model the state of an execution as follows.
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• Initial machine state: M0 = (0, H0, R0) where H0 and R0 correspond to the
initial state of the heap and register.

• Program executions are denoted as P � (pc,H,R) → (pc′, H ′, R′), which
means that program P can, in one step, go from state (pc,H,R) to state
(pc′, H ′, R′).

• If the program reaches the halt instruction, the state transfers to HALT
state.

Fig. 2 contains a small-step operational semantics for some instructions where
M = (pc,H,R). We also define M as maps: if v ∈ Dom(R) then M [v] = R[v]
else M [v] = i when v is i ∈ I. Furthermore, We define a set of labels L =
{l0, l1, . . . , ln−1} as finite maps to the set of order of instruction with which
they are associated.

P [pc] = add rs, v, rd M [rs] = i M [v] = j

P � M → (pc+ 1, H,R[rd �→ (i+ j)])

P [pc] = mov v, rd

P � M → (pc+ 1, H,R[rd �→ M [v]])

P [pc] = load rs(v), rd R[rs] = h M [v] = i

P � M → (pc+ 1, H,R[rd �→ (H[h(R[rs]+M [v])])])

P [pc] = store vs, rd(v) R[rd] = h M [v] = i

P � M → (pc+ 1, H[h(R[rd]+M [v]) �→ M [vs]], R)

P [pc] = jmp l l ∈ L

P � M → (L[l], H,R)

P [pc] = bop r, v, l R[r] = i M [v] = j

P � M → (pc+ 1, H,R)
(bop− False)

P [pc] = bop r, v, l l ∈ L R[r] = i M [v] = j

P � M → (L[l], H,R)
(bop− True)

P [pc] = halt

P � M → HALT
(HALT)

Fig. 2. Dynamic semantics for some instructions from M = (pc,H,R)

2.2 Types

We define types as Fig.4:

• basic types
· int. In this paper we only consider integers as a data type for simplicity.
· const. When analyzing programs, sometimes it is useful to assume that

the value of a register as invariant. For such registers we use const. Spe-
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cially, this type is essential for loop analysis as in section 4. Note that
a register typed as const should not be the destination register for arith-
metic, move and load instructions. We omit the details in this paper.

• range types
If the range of a register can be deduced, we use range types. This is a
kind of dependent types. For expressions of range types, we allow affine
conjunctions of integers and registers which are typed as const. Also, we
allow min and max functions as Fig.3.

• IV range types
These types are for induction variables. If a register which has range type
is deduced as an induction variable, we annotate its range type as IV . We
will explain them in section 5.

• dimension types
These types are given to registers which are pointers for arrays. e denotes
the length of the array. We allow multi-dimensional arrays. For simplicity
we assume that typing dimension types to a register is valid.

• heap types and register file types
We define these types as maps, such as Rτ (r) equals to the type of register
r in the register file.

• basic block types
A basic block type consists of a register file type at the entry of the block.

range expressions e ::= i | r | i · e | e1 + e2 | e1 − e2 |
min(e1, e2, · · · ) | max(e1, e2, · · · )

Fig. 3. Range Expressions

2.2.1 Subtyping Rule

Relations between types and a subtyping rule are defined in Fig.5. A range
type [e1, e2] is a subtype of another range type [e3, e4] if e1 ≥ e3 and e2 ≤ e4

can be deduced. Range types are subtypes of int. IV range types are subtypes
of range types and const is a subtype of int. We can extend these relations to
heap types and register file types easily. For example, if Rτ = [r1 : [1, 2], r2 :
IV [1, 2]] and R′

τ = [r1 : int, r2 : [1, 2]], we can deduce that Rτ ≤ R′
τ .

3 Static Semantics

Static semantics of our type system consists of two levels: semantics inside a
basic blocks and the one for complete programs.
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basic types τb ::= int | const | ⊥ | 	
range types τr ::= [e1, e2]

IVrange types τiv ::= IV τr

dimension types τd ::= int array(e) | τd array(e)

types τ ::= τb|τr | τiv | τd
heap types Hτ ::= [h0 : τ0, h1 : τ1, . . . , hnh−1 : τnh−1]

register file types Rτ ::= [r0 : τ0, r1 : τ1, . . . , rnr−1 : τnr−1]
basic block types φ ::= Rτ

Fig. 4. Types

e1 ≥ e3 e2 ≤ e4

[e1, e2] ≤ [e3, e4] const ≤ int IV τr ≤ τr

⊥ ≤ τ τ ≤ 	 τr ≤ int τ ≤ τ

φ � r : τ1 τ1 ≤ τ2

φ � r : τ2

Fig. 5. Subtyping Rules

3.1 For Basic Blocks

We show static semantics for basic blocks as Fig.6. φinit denotes the register
file type at the entry of the basic blocks. This semantics uses three judgments:

• φ � r : τ
This ensures that if φ = Rτ , then Rτ (r) = τ .

• φ � I
This judgment says that instruction sequence I is well typed under φ.

• φ � B(φ)
We denote B(φ) as a register file type at the exit of block B. This judgment
says that B(φ) can be deduced if we assume that the register file type at
the entry of B is φ.

φ � I is derived from the following static semantics.

• int and const rules
Integers can be typed as int or [i, i] for any φ. Also, register r typed as
const for φ can be typed as [r, r] for φ.

• arithmetic instructions
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Range types are introduced for deducing ranges of registers value statically.
However, it is impossible to deduce ranges for all calculations: for example,
it involves complicated judgments for typing register rd in mul rs, v, rd where
rs and v have range types. Therefore we only focus on range types of affine
conjunctions on integers and registers. This is ensured by the following
lemma.

Lemma 3.1 If φ � r : τr, then expressions appearing in τr are restricted to
affine conjunctions of registers typed as const and integers.

Proof. By inspections on static semantics of arithmetic instructions. ✷

If type checker cannot use this semantics for typing arithmetic instruc-
tions, it is allowed to use trivial semantics such as

φ � rs : int, v : int φ � I

φ[rd : int] � I ; mul rs, v, rd

(type-mul-int)

• branch instructions and the last instructions of basic blocks
These derive a judgment φ � B(φ). This ensures that inside of the basic
block is well typed.

• load and store

These require that array references are within bounds. For this to be satis-
fied, τr 
 [0, e− 1](see Definition 3.4) must be proved.

3.2 For Complete Programs

For complete programs, we define Flow Analytic Type System derived from
data flow analysis. In syntax of our target language, we define a program as
a network of basic blocks as usual in data flow analysis whereas in previous
works it is defined as just a sequence of instructions.

Notation 2

A basic block which has predecessors P1, P2, . . . Pn and successors S1, S2 is denoted
as:

(P1, P2, . . . Pn)B(S1, S2)

Sometimes we abbreviate it just as B.

Definition 3.2 [�]
• Case 1: τ and τ ′ are range types.

[e1, e2] � [e3, e4] = [min(e1, e3),max(e2, e4)]

• Case 2: τ � τ ′ where τ and τ ′ are dimension types.
Only if two types are equivalent we get τ � τ = τ , otherwise τd � τ ′d = 	

Definition 3.3 [
⊔
]
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φ � i : int φ � i : [i, i]
(int rule)

φ � r : const
φ � r : [r, r]

(const rule)

φinit � [ empty instructions ]
(start rule)

φ � rd : [e1, e2], v : [e3, e4] φ � I

φ[rd : [e1 + e3, e2 + e4]] � I ; add rs, v, rd
(type-add)

φ � rs : [e1, e2], v : [e3, e4] φ � I

φ[rd : [e1 − e4, e2 − e3]] � I ; sub rs, v, rd
(type-sub)

φ � rs : [e1, e2], v = i ≥ 0 φ � I

φ[rd : [i · e1, i · e2]] � I ; mul rs, v, rd
(type-mul ≥ 0)

φ � rs : [e1, e2], v = i < 0 φ � I

φ[rd : [i · e2, i · e1]] � I ; mul rs, v, rd
(type-mul < 0)

φ � rs : int, v = i = 0 φ � I

φ[rd : int] � I ; div rs, v, rd
(type-div)

B = I ; bop r, l φexit � I

φinit � B(φinit)(≡ φexit)
(type-bop)

φ � rs : τ array(i), v : τr, rs(v) : τ τr � [0, i− 1] φ � I

φ[rd : τ ] � I ; load rs(v), rd
(type-load)

φ � rs : τ, rd : τ array(i), v : τr τr � [0, i− 1] φ � I

φ � I ; store rs, rd(v)
(type-store)

φ � v : τ φ � I

φ[r : τ ] � I ; mov v, r
(type-mov)

B = I; jmp l φexit � I

φinit � B(φinit)(≡ φexit)
(type-jmp)

B = I; halt φexit � I

φinit � B(φinit)(≡ φexit)
(type-halt)

B = I φexit � I

φinit � B(φinit)(≡ φexit)
(end rule)

Fig. 6. Static Semantics

⊔
{τ1, . . . τn} =

n⊔

i=1

τi

⊔
{Rτ1 , . . . , Rτn} =[

n⊔

i=1

Rτi(r1), . . . ,
n⊔

i=1

Rnr−1(rnr−1)]

Definition 3.4 [�]
• τ1 � τ2 iff τ1 ≤ τ2, i.e. τ1 is a subtype of τ2.
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• If ∀r.Rτ (r) � R′
τ (r), then Rτ � R′

τ .

• Assume that φ = Rτ and φ′ = R′
τ . φ � φ′ iff Rτ � R′

τ .

Our main type system is shown in Fig.7. Consider a basic block B which
has predecessors P1, P2, · · · , Pn and successors S1 and S2. Note that blocks
have at most two successors because branch instructions allow only two branches.
Conditions for the typability of B are (we consider here two successors): (1)
P1, P2, · · · , Pn have types φp1 , φp2 , ...φpn , (2) successors have types φs1 and φs2

, (3) B(φ) can be deduced from φ where φ =
⊔
Pi(φpi

), and (4) φs1 and φs2

are greater than B(φ). If all basic blocks inside a program have types, the
program is well typed. Well-typedness of a program ensures that there is no
out of array reference occurred in the execution of the program. Clearly, this
framework can be applied for other analysis by defining types and several op-
erators such as �,

⊔
and 
 appropriately: traditional data flow analysis are

subsumed to our framework.

P1 : φp1 , P2 : φp2 , . . . , Pn : φpn

S1 : φs1 , S2 : φs2

φ =
⊔
Pi(φpi)

φ � B(φ)

B(φ) � φs1 , φs2

(P1, P2, . . . , Pn)B(S1, S2) : φ

P = l1 : B1; l2 : B2; · · · ; ln : Bn

B1 : φ1, B2 : φ2, · · · , Bn : φn

P [well typed]

Fig. 7. Flow Analytic Type System

Type inference in our framework corresponds to known methods for data
flow equations such as MFP algorithms([13]).

4 Induction Variable Analysis in Loops

In this section we sketch to give a type untyped programs with loops and
induction variables. We consider here only natural loops, which consist of a
backedge be, Bexit → Bentry, where Bentry dominates Bexit, and a set of blocks
B such that Bentry dominates B and there is a path from B to Bexit not con-
taining Bentry. We denote a natural loop by a triple : Pl = (Bentry, Bexit, be).

4.1 Translation from Target Language into SSA form

We introduce SSA form as follows. Registers are extended for SSA values.
A register ri is divided to ri0, ri1, . . . for each definitions of ri. Also we add
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another pseudo instruction loadssa (rip0 , rip1 , . . .) rid which corresponds to φ
functions(i.e., rid = φ(rip0 , rip1 , . . .)). The static semantics is :

φ � ripj
: τipj

φ � I

φ[rid :
⊔
τipj

] � I ; loadssa (rip0 , rip1 , . . .) rid

As a benefit of SSA form, we can state following typing rules(Fig.8), because
in SSA form all assignments of variables are determined uniquely(there is
only one assignment for a variable). These rules say that if a register(rd) is
assigned by using another register(rs) and rs is typed a type at the top level
of the program, the type of rd can be deduced easily.

� rs : τs

mov rs, rd ∈ P

� rd : τs

(type-mov-init)

� rs : [e1, e2]

add rs, i, rd ∈ P

� rd : [e1 + i, e2 + i]

(type-add-init)

� rs : [e1, e2]

sub rs, i, rd ∈ P

� rd : [e1 − i, e2 − i]

(type-sub-init)

Fig. 8. Some Typing Rules for program P

4.2 Single Loop Analysis

In [15,5], if an assignment such as add r,i,r is in a program, then r is detected
as a basic induction variable. In Program 2, r1 and r2 are basic induction
variables(note that r0 is an assignment from outside of the loop. r0,r1,r2

are originally the same registers.)

Program 2

L: loadssa (r0,r2) r1;
...
add r1,1,r2;
...
blt r2,100,L;

In single loops such as Program 2, to deduce ranges of registers, we focus on
conditions for backedges. We define such conditions as Backedge Conditions.

Definition 4.1 [Backedge Condition] Given a backedge be we define its as-
sociated condition, Backedge Condition as Fig.9 corresponding to the last
instruction of the exit block of the loop. The notation BECbe � . . . express
what can be derived from the backedge condition of be.

We assume that some registers are typed as const to deduce backedge
condition. We call such assumptions as constant assumption.

Definition 4.2 [Constant Assumptions]
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Bexit = I; blt r, i, l
BECbe � r < i

Bexit = I; blte r, i, l
BECbe � r < i+ 1

Bexit = I; bgt r, i, l
BECbe � r > i

Bexit = I; bgte r, i, l
BECbe � r > i− 1

Bexit = I; blt r1, r2, l
BECbe, [r2] � r1 < r2

Bexit = I; blte r1, r2, l
BECbe, [r2] � r1 < r2 + 1

Bexit = I; bgt r1, r2, l
BECbe, [r2] � r1 > r2

Bexit = I; bgte r1, r2, l
BECbe, [r2] � r1 > r2 − 1

Bexit = I; blt r1, r2, l
BECbe, [r1] � r2 > r1

Bexit = I; blte r1, r2, l
BECbe, [r1] � r2 > r1 − 1

Bexit = I; bgt r1, r2, l
BECbe, [r1] � r2 < r1

Bexit = I; bgte r1, r2, l
BECbe, [r1] � r2 < r1 + 1

Fig. 9. Backedge Conditions with be = Bexit → Bl

Constant Assumption C = {r0, r1, . . . , rc} is a finite set of registers to be
typed as const in assumptions.

Notation 3 C[r], C\r
C[r] means appending r to C. C\r means deleting r from C.

Fig. 10 shows typing rules for linearly incrementing induction variables.
We abbreviate other kinds of induction variables in this paper for simplicity.

• type-inv-IV
If there is a move instruction“move i, rd” in a loop of backedge be, rd is typed
as induction variables.

• type-basic-IV-∗
· loadssa assignment

By the property of SSA form, assignments from outside of the loop and
from the backedge are merged by loadssa assignment at loop header of
the entry block.

· Assignment from backedge
Registers such as r2 in add r1, i, r2 in loops are used in loadssa assignment.
Thus, assignments make a chain. This chain is called strongly connected
component [15,5].

· Backedge Condition
¿From backedge conditions and taking r0 as const, we can deduce that r2

is at most e+ i− 1 and r1 is at most e− 1 because the value of r1 is one
iteration before the execution exits the loop.

• type-derived-IV-∗
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mov i, r ∈ Pl

BECbe � r : IV [i, i]
(type-inv-IV)

loadssa (r0, r2) r1 ∈ Pl

add r1, i, r2 ∈ Pl BECbe, C � r2 < e

BECbe, C[r0] � r2 : IV [r0, e+ i− 1]

(type-basic-IV-1)

loadssa (r0, r2) r1 ∈ Pl

add r1, i, r2 ∈ Pl BECbe, C � r2 < e

BECbe, C[r0] � r1 : IV [r0, e− 1]

(type-basic-IV-2)

mov rs, rd ∈ Pl rd /∈ C

BECbe, C � rs : IV τr

BECbe, C � rd : IV τr

(type-derived-mov-IV)

add rs, i, rd ∈ Pl rd /∈ C

BECbe, C � rs : IV [e1, e2]

BECbe, C � rd : IV [e1 + i, e2 + i]

(type-derived-add-IV)

Fig. 10. Some Typing Rules for Pl = (Bentry, Bexit, be)

If r is assigned by mov or add instructions, and an induction variable is used,
r is defined as a derived induction variable. One condition is that r is not
assumed to be const for the derivation of the induction variable.

4.3 Nested Loop Analysis

First, we define partial order for backedges.

Definition 4.3 [≤ for backedges]

Two backedges be and be′ satisfy be ≤ be′ iff incoming point of be′ domi-
nates both outgoing point and incoming point of be.

In the above typing rules, registers are typed as IV range by assuming some
registers as const. It is necessary to substitute them for their actual ranges.
We introduce two substitution rules as follows: a register can be substituted
for its range type if it is deduced without any assumptions or typed as IV range
by the outer loops backedge condition.

For example, if rd is typed as rd : IV [rs, 100 + rs] and rs is typed as
rs : IV [10, 20] in the outer loops, then rd can be typed as rd : IV [10, 120].
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� r1 : τr1 r1 ∈ C BECbe, C � r2 : τr2

BECbe, C\r1 � r2 : τr2 [r1/τr1 ]

(type-subst-1)

be ≤ be′ BECbe′ , C
′ � rout : IV τrout rout ∈ C BECbe, C � rin : IV τrin

BECbe, {C ∪ C ′}\rout � rin : IV τrin [rout/τrout ]

(type-subst-2)

Fig. 11. Substitution of registers typed as const in Nested Loops

4.4 Type Inference of Gaussian Elimination

We show type inference of Gaussian Elimination in our target language. We
adopt C-like notations to represent array references instead of combination of
load’s and store’s. The program consists of three nested loops: the outermost
loop(loop1 with backedge be1), the middle loop(loop2 with backedge be2), and
the innermost loop(loop3 with backedge be3). In Fig.12 r11,r21, and r31 are
used for array references. We focus on deducing the ranges of them.

L0: mov 0,r10;
----------------------------------------------------------|
L1: loadssa (r10,r12) r11; loop1(be1) |

add r11,1,r20; |
--------------------------------------------------------| |
L2: loadssa (r20,r22) r21; loop2(be2) | |

m[r21][r11]=a[r21][r11]/a[r11][r11]; | |
mov r11,r30; | |

------------------------------------------------------| | |
L3: loadssa (r30,r32),r31; | | |

a[r21][r31]=a[r21][r31]-m[r21][r11]*a[r11][r31]; | | |
add r31,1,r32; loop3(be3) | | |
blt r32,r00,L3; | | |

------------------------------------------------------| | |
L4: add r21,1,r22; | |

blt r22,r00,L2; | |
--------------------------------------------------------| |
L5: add r11,1,r12; |

sub r00,1,r40; |
blt r12,r40,L1; |

----------------------------------------------------------|

Fig. 12. Gaussian Elimination Program P

r00 corresponds to N in Program 1, the length of arrays a[], a[][],m[], and
m[][]. r10 is assigned by 0 outside of loops. We assume � r00 : const and
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� r10 : [0, 0] at the top level of the program. Backedge conditions are:

BECbe1, {r40} � r12 < r40

BECbe2, {r00} � r22 < r00

BECbe3, {r00} � r32 < r00

By using typing rules for induction variables, we get

BECbe1 � r11 : IV [0, r00 − 2]

BECbe2 � r21 : IV [1, r00 − 1]

BECbe3 � r31 : IV [0, r00 − 1]

For example, the derivation of r21 is shown in Fig.13. By these typing it is

loadssa (r20, r22) r11 ∈ loop2

add r21, 1, r22 ∈ loop2 BECbe2, {r00} � r22 < r00

BECbe2, {r00, r20} � r21 : IV [r20, r00 − 1]

(type-basic-IV-2)

add r11, 1, r20 ∈ loop1 r20 /∈ ∅
BECbe1 � r11 : IV [0, r00 − 2]

BECbe1 � r20 : IV [1, r00 − 1]

(type-derived-add-IV)

be2 ≤ be1 BECbe1 � r20 : IV [1, r00 − 1] r20 ∈ {r00, r20}
BECbe2, {r00, r20} � r21 : IV [r20, r00 − 1]

BECbe2, {r00} � r21 : IV [1, r00 − 1]

(type-subst-2)

� r00 : [r00, r00] BECbe2, [r00] � r21 : IV [1, r00 − 1]

BECbe2 � r21 : IV [1, r00 − 1]

(type-subst-1)

Fig. 13. Derivation of r21(i in Program 1)

straightforward to type the whole program.

5 Soundness

Cleary we can prove the following theorem for our framework described in
section 3.
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Theorem 5.1 (Soundness) If P [well typed], out of array references never
occur in P .

This theorem also holds when we extend our framework with IV range
types described in section 4 by the following way.

Theorem 5.2 If BECbe � r : IV [e1, e2] where be is a backedge from the loop
exit Bexit to the loop entry Bentry, then Bexit(φexit)[r] 
 [e1, e2] is satisfied.

Assume that be = Bexit → Bentry. When the program execution goes to
Bentry from Bexit via be and the range of r is [e′1, e

′
2] where [e′1, e

′
2] denotes the

range of one iteration before the execution exits the loop(the last time the
execution goes to loop entry). Note that [e′1, e

′
2] can be deduced if we change

typing rules for basic induction variable to deduce range types of one iteration
before the execution exits. To get the least upper bound, by lemma 5.2, we
break down the condition for r as:

φ[r] = [e′1, e
′
2] �

⊔

j �=exit

Pj(φpj
)[r]

As this extension, other specialized analysis done in studies of compiler opti-
mization can be applied to our framework.

6 Related Works

Recently there have been many papers of type system for low level languages
([14,7,16]). For example, Necula et al. introduced proof carrying code. In
their system all codes are sent with proofs of their safety. The host certifies
the proof and then determines to execute the codes([12,3]). Xi et al. intro-
duced practical dependent types for the type system of ML. As one of the
application of dependent type, they tried to detect array bound violations
([18,17]). However, their type systems are rather involved or require strict
restrictions on languages. Our framework described in section 3 has much
clarity than their paper. Also, there are few papers focusing on loop analysis
in low level languages as in section 4.
There have been many papers for array bound checks such as [8,2,9]. [8] is an
extension of [6]. [2] uses the constraint system of SSA graph. However, it is
not clear which methods of such papers are better. In [9] Midkiff et al. focus
on for loops. However, they are not considering general loops. As shown in
our paper, detecting induction variables is essential.

7 Concluding Remarks

In this paper we have proposed flow analytic type system for array bound
checks. In section 3 we have introduced the type system for basic blocks
and complete programs. Then in section 4 we have focused on loops where
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optimizing array bound checks is crucial. In section 5 we have stated soundness
of our type system. Section 6 has listed related works.
The most important future work is memory management analysis, especially
stack analysis with pop and push instructions. Recent researches have been
trying to overcome this task by applying logics such as linear logic([1]). We
regard this approach is promising, and in addition to the approach we are
considering the relation between logics and data flow analysis.
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