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Abstract

High Reynolds number turbulence is characterized by extreme fluctuations of velocity gradients which can interact with shock

waves in compressible flows. While these processes are traditionally thought to happen at very disparate range of scales, both

turbulence gradients as well as shock gradients become stronger as the Reynolds number increases. Our interest here is to in-

vestigate their relation in the high-Reynolds number limit. Our conclusion is that for intermittent turbulence with inertial range

scaling exponents which grow more slowly than linear at asymptotically high orders, small-scale intermittency produces gradients

which are commensurate with shocks. This result is interpreted in the context of shock-turbulence interactions where intermittency

appears to be responsible, in part, for the holes observed in shocks from simulations and experiments. This effect is aided by

the correlation between strong gradients and flow retardation ahead of the shock which is observed from analysis of our direct

numerical simulation database of incompressible and compressible turbulence.

c© 2013 The Authors. Published by Elsevier Ltd.
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1. Introduction

An intrinsic feature of turbulent flows, especially at high Reynolds numbers is the appearance of extreme fluctua-

tions in dissipation rates, enstrophy (vorticity squared), velocity gradients in general, velocity increments across small

distances, among others [1]. This phenomenon, commonly referred to as internal intermittency, is present in both

incompressible [2] and compressible flows [3–5]. The nature of these fluctuations can be seen in Fig. 1 where we

show a normalized velocity gradient at an arbitrary plane from our DNS database of incompressible turbulence. As

the Reynolds number increases, gradients (and hence dissipation) tends to become stronger in increasingly smaller

regions of space, an effect also seen in the figure.

At the same time, in many applications turbulence could also interact with shock waves. A few examples include

supernovae explosions, supersonic aerodynamics and propulsion, and inertial confinement fusion. Even in isotropic

turbulence in a periodic domain without any external agent to generate conditions for a large-scale shock formation,
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Fig. 1. Instantaneous velocity gradient (normalized by its rms values) on an arbitrary plane of the computational domain from our DNS database of

incompressible turbulence at Rλ ≈ 140 (a), 400 (b) and 1000 (c). In addition to changes in the spatial distribution of intense events as Rλ increases,

the amplitude of such fluctuations (both positive and negative) increases as well (note values in vertical axes).

turbulence develops so-called shocklets [6–8] even at moderate turbulent Mach numbers (Mt = u′/c, where u′ and

c are the rms velocity and speed of sound respectively). Our focus, however, will be on the interaction of isotropic

turbulence convected through a normal shock at Mach number M =U/c (where U is the mean velocity of the incoming

flow and c the mean speed of sound), a canonical problem which has received substantial attention [9] from theoretical

[10–17], numerical [18–21], and experimental standpoints [22–25].

Most of the efforts mentioned above to understand shock-turbulence interactions, relied on treating the shock as

a discontinuity, based on the assumption that the shock thickness is infinitely thin compared to all turbulence scales.

However, this is, in many instances, not strictly justified [26]. (In the case of isotropic turbulence with shocklets it has

even been suggested that the shocklet thickness is of the order of a few Kolmogorov length scales [7].) Moreover, most

theoretical treatments further assumed an inviscid approximation and use linearized equations during the derivations.

Results from such analyses, typically led to expressions which depend only on the shock Mach number M and not on

the Reynolds number (Rλ ≡ u′λρ/μ where u′ is the root-mean-square velocity, λ the Taylor microscale, and ρ and

μ the mean density and viscosity of the turbulence before the interaction) or the turbulent Mach number (Mt ). It has

become clear, though, that the result of the interaction does depend on other characteristics of the incoming turbulence

such as velocity and length scales [9]. It has also been observed that depending on the characteristics of the incoming

flows, the interaction could be such that the nominally planar shock, is subjected to substantial deformation and could

even develop “holes” through which properties do not undergo a quasi-discontinuous jump determined by Rankine-

Hugoniot conditions [27, 18, 21]. Instead, multiple weak compression waves or even smooth transitions are observed

along particular instantaneous streamlines. Interactions that present these characteristics are commonly referred to as

in the “broken” regime. Although recent efforts [17] have successfully reproduced data in terms of low-order statistics

of the distribution of gradients at the shock, a complete understanding of the scaling and origin of broken shocks, is

still lacking.

Traditionally, turbulence processes and shock waves are assumed to happen at very disparate range of scales which

is used to justify some strong simplifications widely used to study the interaction between them. However, because

both, turbulence gradients and the shock gradient become steeper as the Reynolds number increases, it is of practi-

cal as well as fundamental importance to investigate whether turbulence gradients can become commensurate with

shock gradients in high Reynolds number flows and have a first order effect on the shock structure. Investigating the

plausibility of this scenario is the main thrust in the present work.

In [26] we have suggested that broken shocks may be possible if the shock thickness is comparable to the Kol-

mogorov length scale of the incoming turbulence. However, in subsequent work [17] we have studied the internal

structure of the shock under turbulent conditions and suggested that milder conditions may lead to broken shocks

too. In particular, locally sonic (or even subsonic) regions can create conditions where locally a shock is no longer

possible. The resulting scaling does not depend on the Reynolds number. Here we extend our analysis to include

dynamical aspects of the incoming flows. In particular, we will explore the influence of intermittency in the creation

of broken shocks at high Reynolds numbers. As we will show, intermittency provides a viable mechanism for broken

shocks which is further facilitated by local retardation of the flow ahead of the interaction.
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2. Moments of velocity gradients

As noted in the introduction, extreme fluctuations in velocity gradients are an intrinsic feature of high-Reynolds

numbers turbulent flows. These very intense gradients imply intense dissipation which at high Reynolds numbers,

exhibit extreme fluctuations that could be several thousands times their mean value [28]. These are also related to the

range of dissipative scales which are known to exist in intermittent turbulence that could be much smaller than the

Kolmogorov scale [29].

In the context of turbulence interacting with a stationary shock, while linear superposition is clearly unjustified,

intuitively it still seems possible that a very strong positive longitudinal gradient ∂u/∂x can interact with the negative

mean gradient of the shock to produce local topological changes in the flow which may result in smooth transitions

or multiple weaker compression waves. It is natural to think that this interaction may be effective, though, only if

turbulence gradients are commensurate to shock gradients. Estimating the conditions under which this is possible is

the main objective of the next sections.

2.1. Shock gradient

Laminar solutions to the problem of a one-dimensional shock at Mach number M are well known [30]. In the case

of an inviscid approximation (or far away from the shock), the conditions upstream and downstream of the shock

are completely determined by M. If viscosity is taken into account, one can still solve the Navier-Stokes equations

numerically to obtain the structure of the shock. This has been extensively compared to experimental measurements

[e.g. 31] in both monoatomic and diatomic gases and the general conclusion is that Navier-Stokes equations provide

a reasonable approximation of the shock structure for values of M in the range 1.0− 2.0 depending on the accuracy

needed. For strong shocks the Navier-Stokes equations result in inaccurate predictions of shock thicknesses [e.g. 32].

In particular, the predicted thickness is smaller (and gradients larger) than what is observed in experiments. Recent

work, however, suggests that the inclusion of additional stress terms appear to improve the predictions [e.g. 33, 34, 32].

While further consequences of these inaccuracies will be discussed in the context of the results obtained below,

here we focus on the classical analytical solution for weak shocks [35] to obtain first order estimates of the quantities

involved. In particular, if we use ux to denote ∂u/∂x (both u and x are in the streamwise direction) one can write the

maximum gradient at the shock, ûs
x (caret represents the maximum velocity gradient and the superscript s is used to

denote shock gradients), as [30]

ûs
x = k[u]2, (1)

where k =−(γ +1)/8D, D = (μ/ρ)(4/3+μv/μ +(γ −1)/Pr), γ is the ratio of specific heats, μv is the bulk viscosity,

Pr is the Prandtl number and, [u] is the velocity jump across the shock as obtained from Rankine-Hugoniot conditions.

This relation can also be written in terms of the mean Mach number M by noting that the velocity jump is given by

[u] = 2c/(γ +1)(M−1/M). We will also assume, for simplicity in the argument, that D ≈ μ/ρ = ν which is valid for

zero bulk viscosity (or constant μv/μ) and constant Prandtl number. For example, for μv = 0, γ = 1.4 and Pr ≈ 0.72

the proportionality constant is not far from unity. Thus we can write,

ûs
x ≈

ρc2

μ

(
M− 1

M

)2

. (2)

It will be convenient to recast this expression also in terms of ΔM = M−1 [26, 17]. Furthermore, for future use, we

note that we can expand Eq. (2) in series of ΔM. To leading order, the term in parenthesis scales as ΔM both at low

and high values of ΔM (with different O(1) prefactors). Thus, we could write

ûs
x ≈

ρc2

μ
ΔM2, (3)

if we drop all order-unity prefactors. Furthermore, in terms of non-dimensional numbers, Eq. (3) can be easily recast

in the following form

ûs
x ≈

1

T
RL

Mt
2

ΔM2, (4)
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where T ≡ L/u is the so-called eddy-turnover time and RL ≡ ρuL/μ is the large-scale Reynolds number which is also

related to the Taylor Reynolds number through the well known formula RL ∼ Rλ
2.

2.2. Turbulence gradients

While the origin of the strong fluctuations in velocity gradients is still an open problem, their effect is commonly

linked to the so-called anomalous scaling of structure functions [2] which are defined as moments of velocity incre-

ments over a distance r: thus Sn(r) ≡ 〈Δrun〉 = 〈[u(x+ r)− u(x)]n〉 is the longitudinal structure function of order n,

where the velocity u is in the direction of the separation r and angular brackets represent an ensemble average.

While our interest is in velocity gradients, much more effort has been devoted to measure structure functions, in

part because of the relative ease in which they can be obtained in experiments and numerical simulations as well

as accuracy issues when compared to, for example, the full dissipation rate. This is especially so when high-order

moments are considered. The relation between the scaling of velocity gradients and structure functions, however, has

been recognized for a long time [2]. In fact, a number of theoretical results predicting the scaling of dissipation or

velocity gradients have been developed assuming the scaling of structure functions is known [36, 37]. This is the

approach we will follow here as well.

The anomalous scaling of structure functions can be quantified by their departure from the self-similar scaling of

Kolmogorov 1941 (K41 for short) which predicts,

Sn(r) =Cn(r〈ε〉)n/3, (5)

in the inertial range of scales, η 	 r 	 L where η ≡ (ν3/〈ε〉)1/4 and L are the Kolmogorov and integral length scales

of the flow. The relation between them is given by η/L ∼ Rλ
−3/2. In Eq. (5), Cn is a flow-dependent constant, and

〈ε〉 is the average energy dissipation rate. It has become clear, however, that due to intermittency, exponents depart

from K41 predictions and that this effect increases with the order of the moment considered [2]. Instead of Eq. (5), it

is found that structure functions scale as

Sn(r)∼
( r

L

)ζn
, (6)

with ζn < n/3 for n > 3. As we will see below, our interest is in the asymptotic behavior of ζn for large n.

For very small separations, the first term in a Taylor expansion of Sn(r) can be taken and the resulting expression

is

Sn(r) = rn〈un
x〉. (7)

The range of scales where Eq. (7) is valid, is usually called the analytic range. This range is observed as a plateau at

small scales if structure functions are normalized as Sn(r)/rn and plotted against r. An example from well-resolved

DNS [28] at Rλ ≈ 140 is shown in Fig. 2.

The matching of Eqs. (6) and (7) presents a basis for the relation between scaling exponents of structure functions

and moments of velocity gradients. While some early work assumed the matching scale between analytical and inertial

ranges to be close to the mean Kolmogorov length scale [39, 40], later work [e.g. 36] assumed this matching scale

to be determined by the local scaling exponents of structure functions within the so-called multifractal formalism

[see 29, for more details]. More recently Yakhot and Sreenivasan [37, 38] attempted to stay closer to the governing

equations and obtained specifically these order-dependent matching scales. It was found that different orders require

different matching separations [41, 28]. These scales, which behave as Rλ
3/2+2/(ζn−ζn+1−1) when normalized by the

mean Kolmogorov scale, are also indicated in Fig. 2.

Because, as we will see momentarily, extreme events are governed by the asymptotic behavior of scaling exponents

at large n where obtaining reliable data from experiment and simulations is extremely challenging, we have examined

the predictions of both, the recent theory of Yakhot-Sreenivasan [37] (YS for short) and the multifractal model (MF

for short) with the hope that some consistently is found. This is indeed the case as we show next.
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Fig. 2. Scaling of normalized longitudinal structure functions Sn(r)/rn for n =2, 4, 6, 8, 10, 12, 14 and 16, from a highly resolved simulation

at Rλ ≈ 140 and 20483 resolution [28]. Moments of velocity gradients 〈un
x〉 are shown as dashed lines. Solid circles denote the order-dependent

dissipative scales proposed by Yakhot and Sreenivasan [38].

2.2.1. Velocity gradients according to YS
Following the theoretical work of Ref. [37] we can write the moments of velocity gradients as 〈un

x〉 ∼ RL
mn with

mn = (ζn −n)/(ζn −ζn+1 −1). Velocity gradients can be conveniently normalized with the result for n = 2, namely,

〈u2
x〉n/2 ∼ RL

m2n/2 where m2 = 1 due to dissipative anomaly [42]. We can then write 〈un
x〉/〈u2

x〉n/2 ≈ RL
mn−m2n/2 ≈

Rλ
2mn−n where the relation RL ≈ Rλ

2 has been used. Since we also have 〈u2
x〉 ∼ 〈ε〉/ν , the moments can then be

written as

〈un
x〉 ≈ τ−n

η Rλ
2mn−n, (8)

where τη ≡ (ν/〈ε〉)1/2 is the Kolmogorov time scale, charactersitic of the small scales of motion. The strongest

turbulence gradients can now be obtained by taking the n → ∞ limit of 〈un
x〉1/n as follows

ût
x ≈ lim

n→∞

{
[τ−n

η Rλ
(2mn−n)]1/n

}

≈ τ−1
η Rλ

s∞ , (9)

where s∞ = limn→∞ sn = limn→∞(2mn/n−1) is given explicitly in terms of inertial range scaling exponents as

s∞ = lim
n→∞

[
2

n
ζn −n

ζn −ζn+1 −1
−1

]
. (10)

The notation ût
x in Eq. (9) is used to emphasize the distinction between the maximum velocity gradients in the incom-

ing turbulence (superscript t) and that at the shock in Eq. (1) (superscript s).

2.2.2. Velocity gradients according to MF
The main idea of the multifractal model is that velocity increments possess a local scaling exponent h such that

Δru ∼ rh on a set of fractal dimension D(h). The consequences of the multifractal model for velocity gradients

were first put forth by Nelkin [36] who pointed out that one can write ux ∼ lh−1 for l in the analytic range which is

determined by l ∼ ν1/(1+h). By using a steepest descent argument one can find [see, Ref. 29, for details] that moments

of velocity gradients are given by

〈un
x〉 ≈ τ−n

η Rλ
2dn , (11)
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with dn = p(n)− 3n/2 and p(n) is the value of p that satisfies ζp = 2n− p for a given n and scaling exponents ζp.

Again, the strongest gradients are then found by taking the limit limn→∞〈un
x〉1/n. The result is

ût
x ≈ τ−1

η Rλ
s∞ , (12)

where s∞ is now given by

s∞ = lim
n→∞

(
2p(n)

n
−3

)
. (13)

While the scaling of moments appear to be different for the two theoretical approaches (Eqs. (10) and (13)), as we

show below, the scaling of extreme events is actually similar.

3. Comparison between turbulence and shock gradients: Reynolds number scaling

3.1. Ratio of strongest turbulence and shock gradients

We are now interested in comparing the strongest gradients in the incoming turbulence with the gradient at the

shock. Using Eq. (4) and either Eq. (9) or (12) , we can now compute the ratio between them, Ku, as

Ku ≡ ût
x

ûs
x
≈ T

τη

Rλ
s∞

RLΔM2Mt
−2

≈ Mt
2

Rλ ΔM2
Rλ

s∞ . (14)

where, for the last equality, we have used the well-known result T/τη ≈ Rλ and RL ≈ Rλ
2. This can also be written in

terms of the parameter K = Mt/Rλ
1/2ΔM which was suggested in [26] to provide a universal description of so-called

amplification factors of velocity fluctuations across the shock. It is also possible to show that K ≈ δl/η where δl is

the laminar shock thickness [17]. The result is

Ku ≈ K2Rλ
s∞ . (15)

which shows that while the mean Kolmogorov length scale may be larger than the laminar shock thickness (i.e. K < 1),

depending on the value of s∞, small-scale intermittent activity could be as strong as the shock at high Reynolds

numbers. Quantitatively, if Ku � 1 then the turbulence velocity gradients are comparable or larger than the shock

gradient and a local disruption of the shock seems plausible. However, we also note that for such events to be

possible, Ku does not necessarily need to be much greater than unity; even if Ku ∼ O(1) (or even smaller) turbulence

can still create large perturbations in the shock. As we will see below, this effect is aided by retardation of the flow

ahead of the shock.

Clearly, from Eq. (15), if s∞ > 0, then for fixed K, Ku grows unbounded as the Reynolds number increases and

local topological changes (“holes” in the shock) due to strong intermittent events, become more likely. To examine

more closely the conditions under which intermittency is a viable route for broken shocks as different parameters are

changed, we rewrite Eq. (15) as

Ku ≈ Mt
(3+s∞)/2

Rc
(1−s∞)/2ΔM2

(16)

where Rc = ρcL/μ [17]. The advantage of using these parameters is that u, for example, is reflected in only one

nondimensional group (Mt ) instead of two (Mt and Rλ ). This also helps clarify the differences between increasing u
or L, for example, as opposed to simply increasing RL.

Eq. (16) now clearly shows that increasing u will lead to Ku � 1 regardless of the value s∞ making intermittency

effects more predominant. The behavior with Rc, on the other hand, is more interesting since it can, in principle,

present different qualitative trends depending on how s∞ compares to unity.

To estimate s∞, we note that although a number of theoretical results have been proposed for ζn for realistic

turbulence with anomalous scaling [29], all comparisons with experimental and numerical data were necessarily

performed for low to moderate values of n where models typically agree reasonably well [29, 41]. However, as
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(dashed), which correspond to YS and MF theories, respectively.

we pointed out above, the relevant information is contained in the asymptotic behavior of ζn and not in the specific

functional form for small n. Furthermore, different models are based on (sometimes completely) different physical

pictures of the mechanisms for extreme invents in high-Reynolds number turbulence.

Thus, we now consider particular expressions for ζn which are shown in Fig. 3.1(a) for values of n well beyond

what can be reliably estimated from experiments and simulations. For non-intermittent turbulence K41 provides

ζn = n/3 which, by using Eq. (10), yields s∞ = 0. This result is expected since fluctuations in velocity gradients are

neglected in the theory. As expected, the same exponent s∞ = 0 is obtained when ζn = n/3 is used with the MF result

Eq. (13). A more sophisticated approach that accounts for anomalous scaling is the She-Leveque model [43] which is

based on a hierarchy of dissipative structures and results in ζn = n/9+2[1− (2/3)n/3]. It is easy to see that ζn scales

as 2+n/9 for large n which, therefore, results in s∞ = 3/5 from either Eq. (10) or Eq. (13).

Now consider Yakhot’s result [46] ζn = (1+ 3β )n/3(1+βn). In the high-n limit, ζn approaches a constant and

thus, s∞ = 1 using either Eq. (10) or Eq. (13). Nelkin [47] noted that using Novikov models [45] one can write

ζn = [1+n(cN/3)]1/2/[(1+ cN)
1/2 −1] where cN is a constant. For very large n, ζn scales as ∼√

n and s∞ will also

tend to 1. More generally, it is possible to show from Eq. (10), for example, that the result s∞ = 1 is valid for any

model that predicts an asymptotic growth of ζn slower than n, which obviously includes those predicting the saturation

of scaling exponents, at large n. (Saturation of scaling exponents has been observed [48] also for density and entropy

fluctuations in simulations of weakly compressible turbulence which was attributed to “front-like” structures in the

flow.)

The asymptotic behavior of ζn has been discussed before. For example, [46] argues that a linear asymptotic regime

ζn ∝ n in the high-n limit it is rather improbable (as exhibited by K41 and the She-Leveque model). This conclusion is

based on the structure of the governing equations for moments of velocity increments (structure functions) of arbitrary

order and the probability density functions of those velocity increments. On the other hand, Yakhot suggests that

saturation of exponents ζn → const is possible for a wide class of probability densities functions. Nelkin [36] has also

studied the asymptotic behavior of ζn in the context of the Novikov and She-Leveque models. While experimentally

indistinguishable from each other for n < 100 (see Fig. 3.1(a)), the underlying dynamical assumptions are quite

different and some of the consequences can be seen in the exponents sn seen in Fig. 3.1(b). The fact that She-Leveque

presents a linear scaling at large n, can be traced back to the assumption behind the most intense events of the locally

averaged dissipation rate which are assumed to scale according to K41 [36]. Thus the asymptotic linear scaling

appears to be a residual effect of such an assumption.

We now turn again to Eq. (16) in the context of broken shocks. Under K41, we saw that s∞ = 0 and, therefore,

Ku ≈ K2. Since typically K < 1 [see e.g. 26], turbulence gradients are not expected to be comparable to the shock

gradient, which is consistent with a thin shock interacting with non-intermittent turbulence. If instead, 0 < s∞ < 1, an

increase in the Reynolds number Rc will lead to a decrease in Ku and a broken shock through intermittency mechanisms

is less likely. Eq. (16) also allows us to see that an increase in the integral length scale of the turbulence L will have
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the opposite effect than increasing the turbulence fluctuations u, a result that is not readily seen if Rλ is used instead

of Rc. However, as argued above, there are reasons against a linear asymptotic scaling of ζn, making s∞ = 1 the most

plausible result. In that case the Reynolds number dependence disappears in Eq. (16) and

Ku ≈ Mt
2/ΔM2. (17)

This is the direct result of small-scale intermittent events having the same scaling as the shock itself. In Sec. 5 we

show that this can also be interpreted in terms of the most singular structures leading to very fine structures.

The conclusion is, thus, that for non- and weakly-intermittent turbulence characterized by scaling exponents of the

form ζn ∼ n for asymptotically large n, broken shocks are likely when K is large [26] (see Eq. (15) with s∞ = 0).

For strongly intermittent (and more realistic) turbulence characterized by scaling exponents with asymptotic behavior

weaker than ∼ n, on the other hand, broken shocks are likely when Mt/ΔM is not too small (see Eq. (16) with s∞ = 1),

a situation of practical interest. The significance of this result is that even at moderate values of Mt/ΔM, intermittency

may become a major factor in broken shocks, independent of Reynolds numbers.

We note that although Eq. (17) turns out to have no Reynolds number dependence, its derivation is based on

moments of velocity gradients and increments approaching their high-Reynolds number asymptotic scaling state. It

seems, however, that these scaling exponents are already seen at very low Reynolds numbers [41].

4. Regime of the interaction

As mentioned above, the interaction of isotropic turbulence and a normal shock could be in different regimes

depending on whether the shock remains a sharp gradient across the entire surface or it is greatly distorted leading

to very smooth compressions or multiple compression waves along individual streamlines. These have been referred

to as wrinkled and broken (or peaked and rounded) regimes [27, 21] respectively. Since their definition has been

typically based on visual inspections of instantaneous profiles or contours of pressure or density, in Ref. [26] we

have suggested that the parameter K can be used to quantitatively assess the characteristics of the interaction. More

recently [17] we have proposed another mechanism based on locally subsonic regions under which a stable shock is

not possible and appears to agree well with results of numerical simulations and is briefly described below. Here, we

examine these results in light of our findings of the scaling of intermittent gradients.

The mechanism suggested in [17] assumes that the incoming turbulent velocity field is described by Gaussian

statistics which is, in general, a good approximation [49]. Note that this assumption is needed only for the one-

point PDF of the velocity component normal to the shock and, therefore, does not preclude intermittency effects.

Since at any given location across the shock surface the local Mach number is given by 1+ΔM + m̃, where m̃ is the

instantaneous Mach number defined as ũ/c (ũ is the instantaneous velocity component normal to the shock surface),

the probability of finding subsonic velocities is given by PS ≡ P(m̃ < −ΔM). For a Gaussian velocity field, one can

then obtain [17] Ps = (1− erf(
√

3/2ΔM/Mt))/2 where erf(.) is the error function. For later comparison, we note that

the likelihood of broken shocks scales with the parameter Mt/ΔM.

In previous sections we have argued that intermittent gradients can cause local disruptions of the shock and could

thus lead to a broken regime when Ku � 1. Here we note that there are two additional factors that could make inter-

mittency effects even more preeminent in shock-turbulence interactions. First, in Eq. (14), Ku may be underestimated

since the shock gradient ûs
x has been calculated assuming that the incoming flow is characterized by ΔM. However,

since the Mach number at the shock surface locally includes also turbulence fluctuations the appropriate Mach number

is 1+ΔM + m̃ [17]. Thus, due to fluctuations, wider shocks may appear in regions where the local Mach number is

close to unity, or equivalently, ΔM + m̃ is small. If the most negative value of m̃ is some fraction α of Mt we obtain,

for s∞ = 1, Ku ≈ Mt
2/(ΔM−αMt)

2 ≈ (Mt
2/ΔM2)/(1−αMt/ΔM)2. For fluctuations of, say, four times the turbulent

Mach number (i.e. α = 4) then Ku will be much larger than that predicted by Eq. (15) even for moderate values of

Mt/ΔM, say, 0.25 which is lower than that required for significant subsonic regions according to the arguments in

[17]. We must note, however, that this scenario will require both an extreme turbulence velocity gradient (as sug-

gested above) combined with a local negative velocity fluctuation (as suggested in Ref. [17]). To assess the likelihood

of such an event, joint statistics of velocity and its gradient are needed.

We have analyzed our DNS database of forced isotropic incompressible turbulence (e.g. Ref. [28], where details of

the simulations can be found), to assess whether such a correlation exists, supporting the scenario of a combination
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of large velocity gradients and relatively low speeds. The results are seen in Fig. 4 where we show the conditional

expectation of the square of (normalized) longitudinal velocity gradients (i.e. u2
x/〈u2

x〉) given values of the velocity

component in the same direction, normalized by the rms (i.e. ũ/u) at two Reynolds numbers (Rλ ≈ 140 and 400) higher

than those achievable for current shock-turbulence interactions since our main interest is in high-Reynolds number

flows. Clearly, regions of high (positive and negative) velocities are correlated with larger values of velocity gradients.

To test the effect of compressibility, we have also performed DNS of forced isotropic compressible turbulence at

comparable conditions (Rλ ≈ 160) but at Mt ≈ 0.3.1 We can see that the correlation between large gradients and large

(positive and negative) velocities is maintained, at least, at these Reynolds and Mach numbers.

The second factor that could make intermittency effects on the shock more severe than one-point statistics may

indicate, is the fact that intense events tend to cluster in space [50, 51]. In such a case, the shock will be subjected to

a train of strong gradients whose cumulative effect, as they are advected to the shock, could destroy the shock locally.

It is interesting to note that due to intermittency broken shocks appear when Mt/ΔM increases (Eq. (17)) which rep-

resent the same scaling, though based on completely different physical mechanisms, than that predicted for a Gaussian

velocity field producing subsonic local conditions [17]. While the former is a high-Reynolds number phenomenon,

the latter is based on kinematics independent of the Reynolds number.
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ũ/u

〈
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x
〈u2

x〉

∣∣∣∣ ũ
u

〉

Fig. 4. Conditional mean of normalized velocity gradients given normalized velocity from direct numerical simulations of incompressible

turbulence at Rλ ≈ 140 (circles) and 400 (triangles) and compressible turbulence at Rλ ≈ 160 and Mt ≈ 0.3 (thick line with no symbol).

We finally make a note about the generality of the preceding results. The estimate of the shock gradient in Eq. (3)

can be derived from Navier-Stokes equations for small values of ΔM, thus limiting, in principle, its applicability to

weak shocks. However, if intermittent gradients are accompanied by negative velocity fluctuations creating close-to-

sonic regions, then at those locations the Mach number will not be much different than unity in which case, Eq. (3) is

locally a good approximation. It is also known that for strong shocks the Navier-Stokes equations result in inaccurate

predictions of shock thicknesses. In particular, the predicted thickness is smaller than what is observed in experiments

[31] (though the inclusion of bulk viscosity appear to improve the predictions [33]). Therefore, at high ΔM, shock

gradients will be smaller than predicted by Eq. (3) resulting in a larger Ku. Intermittency appears then to be even more

effective when strong shocks not captured accurately by Navier-Stokes solutions are considered.

1The details of the simulations will be presented elsewhere we note here their main characteristics. Discretization is based on tenth-order

compact schemes in space and third-order Runge-Kutta in time and grid-convergence studies have been performed. The forcing scheme is stochastic

similar to the one in incompressible simulations but energy is removed in the energy equation to maintain the mean temperature constant and achieve

a stationary state.
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5. A multifractal interpretation in terms of length scales

The similar scaling of turbulence and shock gradients in intermittent turbulence can also be interpreted in terms

of length scales within the multifractal formalism. Since intermittent turbulence possess scales much smaller than

the mean Kolmogorov scale, η , it has become increasingly clear [52, 53] that it is more appropriate to determine the

local Kolmogorov scale η ′ = (ν3/ε)1/4 using instantaneous values of the dissipation, ε . The smallest scale, then, is

obtained as

ηmin = (ν3/εmax)
1/4 (18)

where εmax is the largest value of dissipation. To estimate εmax, one can consider εr, the local average of dissipation

over a linear dimension r, which according to the MF model scales as

εr ≈ 〈ε〉(r/L)α−1 (19)

where α is the singularity exponent, itself a random variable. At the corresponding local Kolmogorov scale η ′ one

would expect the local Reynolds number Rr = ε1/3
r r4/3/ν to be O(1) when r corresponds to the local dissipation scale,

η ′. This condition is equivalent to Eq. (18).

From Rr ≈ 1 and the well-know result 〈ε〉 ∼ u3/L we can now obtain

η ′/L ≈ Rλ
−6/(3+α) (20)

or in terms of the mean Kolmogorov scale

η ′

η
≈ Rλ

−(3/2)(1−α)/(3+α) (21)

The smallest dissipative scale would then correspond to the smallest scaling exponent αmin which, in turns, corre-

sponds to the strongest fluctuations in dissipation according to Eq. (19):

ηmin

η
≈ Rλ

−(3/2)(1−αmin)/(3+αmin) (22)

We now want to compare ηmin with the shock thickness δl . Since the ratio of the latter with the mean Kolmogorov

scale is given by δl/η = K with K = Mt/Rλ
1/2ΔM [17] we can readily obtain

δl

ηmin
≈ Mt

ΔM
Rλ

β (23)

where β = (3/2)(1−αmin)/(3+αmin)− 1/2. While extremely difficult to measure, αmin may not be too far from

zero [53]. In such a case β = 0, and therefore,

δl

ηmin
≈ Mt

ΔM
. (24)

This result suggests that, as a consequences of the intermittency in the quasi-singular dissipation field, scales much

smaller that the mean Kolmogorov scale can be of the order of the shock thickness if Mt/ΔM is not too small. In

such a case, the interaction between small-scale turbulence and the shock can lead effectively to a broken regime. The

scaling with the parameter Mt/ΔM is consistent with the estimates in Sec. 3 based on velocity gradients.

6. Conclusions

We have investigated the relation between small-scale intermittency and shocks in turbulent flows. Since both

turbulence and shock gradients become stronger at high Reynolds number, it is important from a fundamental as

well as practical perspective to understand whether intermittent turbulence gradients can be as strong as shocks in

compressible flows and have a sizable (even disruptive) effect on, for example, the shock structure in shock-turbulence

interactions. To assess this possibility we have considered the interaction of isotropic turbulence with a normal
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shock, a configuration where it has indeed been observed that under certain conditions, turbulence can produce local

topological changes in the otherwise well-defined shock surface leading to “holes” in the shock. When the interaction

leads to such a phenomenon the interaction is said to be in the “broken” regime.

Our main result is based on the comparison of turbulent and shock gradients. In particular we introduced the pa-

rameter Ku defined as the ratio of most intense turbulence gradient and the largest gradient at the shock. While the

latter can be easily estimated using classical solutions of Navier-Stokes equations in the low Mach number limit, the

former presents more challenges. In order to estimate the turbulence gradients we consider two theoretical approaches

(Yakhot and Sreenivasan [37] and the multifracal formalism [36]), which relate moments of the most intense turbu-

lence gradients with widely studied scaling exponents of structure functions ζn in the inertial range. The most intense

gradients are shown to be related to the asymptotic form of ζn at large n.

For non-intermittent turbulence, we have shown that as the Reynolds number increases the shock gradient becomes

stronger compared to gradients in the incoming turbulence. However, for more realistic intermittent turbulence with

scaling exponents ζn that grow more slowly than linear in n, the Reynolds number dependence disappear. The param-

eter Ku is then simply given by Ku = Mt
2/ΔM2 which shows that for real life applications, turbulence gradients are

comparable to the shock. This result is also consistent with our analysis of the length scales involved in the problem

using the multifractal description of turbulence. We have shown that the ratio of the shock thickness with the smallest

scale (associated with the most singular fluctuations of the dissipation rate) scales as Mt/ΔM.

Our results, thus, suggest that strong intermittent (positive) gradients in the incoming turbulence may counteract

the (negative) shock gradient in such a way to create holes and, therefore, a broken shock. Using our DNS database

of incompressible and compressible turbulence, we have further shown that strong gradients are correlated with lower

velocities. Thus, the strongest turbulence gradients will interact with a lower-Mach number (weaker) shock making

this a plausible mechanism for broken shocks. This result is consistent with recent work [17] suggesting flow retar-

dation ahead of the shock was related to broken shocks. In that reference, the parameter Mt/ΔM is also suggested to

control the regime of the interaction, consistent with our results.
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