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ABSTRACT We have measured the electronic circular dichroism (ECD) of the ferri- and ferro-states of several natural
cytochrome c derivatives (horse heart, chicken, bovine, and yeast) and the Y67F mutant of yeast in the region between 300 and
750 nm. Thus, we recorded the ECD of the B- and Q-band region as well as the charge-transfer band at ;695 nm. The B-band
region of the ferri-state displays a nearly symmetric couplet at the B0-position that overlaps with a couplet 790 cm�1 higher in
energy, which we assigned to a vibronic side-band transition. For the ferro-state, the couplet is greatly reduced, but still de-
tectable. The B-band region is dominated by a positive Cotton effect at energies lower than B0 that is attributed to a magnetically
allowed iron/heme charge-transfer transition as earlier observed for nitrosyl myoglobin and hemoglobin. The Q-band region of
the ferri-state is poorly resolved, but displays a pronounced positive signal at higher wavenumbers. This must result from a
magnetically allowed transition, possibly from the methionine ligand to the dxy-hole of Fe31. For the ferro-state, the spectra
resolve the vibronic structure of the Qv-band. A more detailed spectral analysis reveals that the positively biased spectrum can
be understood as a superposition of asymmetric couplets of split Q0 and Qv-states. Substantial qualitative and quantitative dif-
ferences between the respective B-state and Q-state ECD spectra of yeast and horse heart cytochrome c can clearly be
attributed to the reduced band splitting in the former, which results from a less heterogeneous internal electric field. Finally, we
investigated the charge-transfer band at 695 nm in the ferri-state spectrum and found that it is composed of at least three bands,
which are assignable to different taxonomic substates. The respective subbands differ somewhat with respect to their Kuhn
anisotropy ratio and their intensity ratios are different for horse and yeast cytochrome c. Our data therefore suggests different
substate populations for these proteins, which is most likely assignable to a structural heterogeneity of the distal Fe-M80
coordination of the heme chromophore.

INTRODUCTION

The heme group, an iron-porphyrin derivative, is a predomi-

nant active site of redox proteins. It is well established that its

structure and function are modulated by the protein environ-

ment by means of a variety of heme-protein interactions

(1,2). The respective perturbations involve direct deforma-

tions of the heme structure (2,3), as well as electronic per-

turbations assignable to the internal electric field produced by

charged, polar, and aromatic groups in the heme cavity (4,5).

The influence of the latter is sometimes modulated by a

network of hydrogen-bonded water molecules (6).

In principle, the most accurate method for probing asym-

metric deformations of the heme group is x-ray crystallog-

raphy. Indeed, crystallographic structures of various heme

proteins have been used by Shelnutt, Jentzen, and associates

to identify out-of-plane deformations of the heme group,

which have been found to be particularly significant in

cytochrome c isoforms (3,7). However, as recently shown,

the x-ray structure might not represent the conformational

average of the heme, which fluctuates between different sub-

states (8). In-plane deformations, though functionally rele-

vant, are generally too small to be inferable from the x-ray

structure. Resonance Raman (9–10), absorption (8,11,12),

EPR (13,14), NMR (15), and photon echo spectroscopy (16)

provide alternative tools to detect heme-protein interactions.

In principle, electronic circular dichroism (ECD) spectros-

copy is an ideal tool to probe the symmetry lowering of

a highly symmetric chromophore by its environment, but a

quantitative analysis is hampered by the necessity to apply a

rather complex theoretical approach (17). Consequently, the

number of articles in this field is rather limited. The first

optical rotary dispersion (ORD) studies on horse heart

cytochrome c have been undertaken in the sixties. Ulmermea-

sured the ORD spectrum in the visible and UV region (18).

For the Soret band, they measured a positive Cotton effect

for ferro- and a negative one for the ferri-state. Additionally,

their spectra suggest a couplet for the Q-band region of the

Q0-band. Urry and Doty (19) investigated the changes of the

B-band Cotton effect caused by denaturation. Myer performed

a more detailed study in that he investigated the temperature-,

ligand-, and pH-dependence of cytochrome c conformation

by ORD (20). Drucker et al. (21) measured the CD spectra of

cytochrome c3 derivative in the B- and Q-band regions and

found again substantial differences between the ferri- and

ferro-state. In all these articles, a physical rationale for the

observed spectra could not be provided and the interpretation
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of the Qv-band region generally ignored its vibronic origin.

The first real theoretical approach to visible heme protein

ECD spectra was undertaken by Hsu and Woody for apo-

myoglobin and hemoglobin (20). Basically, they described

the observed Cotton effect of the Soret band in terms of a

coupled oscillator model involving the p/p* transitions of
the heme and nearby aromatic side chains. In a more recent

study from the same research group, Blauer et al. (22)

modeled the ECD-Soret band spectra of different ligation and

oxidation states of the heme undecapeptide of cytochrome c
based on a structure obtained frommolecular dynamics simu-

lations. They found a substantial intrinsic heme contribution

to the Cotton signal, which arises from symmetry-lowering

deformations.Additionally, they identifiedcontributions from

coupling withp/p* transitions of the protein backbone and
even higher energy transitions,whichwere classicallymodeled

by polarizabilities. Kiefl et al. (23) reported a correlation be-

tween the ruffling of the heme macrocycle in carbonmonoxy

myoglobin and the rotational strength in the Soret band region.

In this study, we use ECD to compare various natural

cytochrome c isoforms. Furthermore, we investigated the

Y67F mutant of yeast cytochrome c. In addition to the ECD

spectrum of the classical B-band region, we report the

Q-band region, which thus far has been neglected because

of its low oscillator strength. Low- temperature absorption

measurements and resonance Raman excitation profiles have

revealed that the Q-band is split at cryogenic temperatures

(8,24) due to the combined contributions from electronic and

vibronic perturbations of the excited state (25). Mutations can

affect the degree of Q-band splitting and asymmetry (14,26).

Room temperature absorption spectra are generally ther-

mally broadened so that neither the splitting nor the vibronic

structure of the Qv-band can be resolved. However, in the

presence of a substantial band splitting, ECD spectra might

provide a much better spectral resolution if the respective

x- and y-components have rotational strengths of different

sign. Finally, we measured the absorption and the ECD

spectrum of ferricytochrome c in the region at ;690 nm,

which displays a weak charge-transfer band, which Eaton and

Hochstrasser assigned to A2u(heme)/A1g (d
2
z ) transition (14).

This band has been frequently used in experiments aimed at

exploring the folding and unfolding of various cytochrome

isoforms owing to its disappearance in the absence of the axial

methionine ligand of the heme iron (27–28). This observation

is consistent with an alternative assignment to a p(S)/
dp(Fe

31) transition suggested by McKnight et al. (29).

MATERIALS AND METHODS

Materials

Cytochromes c from horse heart (hh), chicken heart (ch), bovine heart (bh),

and Saccharomyces cerevisiae (yeast cytochrome c, yc), were purchased

from Sigma-Aldrich (St. Louis, MO) and dissolved in H2O without any

further purification. The yeast mutant Y67F was obtained by an earlier

described procedure (6,29). The pH of all samples was adjusted to pH 6.45–

7.4 by adding the appropriate HCl aliquots. Potassium ferricyanide was ob-

tained from Fisher Scientific (Pittsburgh, PA) and sodium dithionite was

obtained from Fluka (Fluka, Sigma-Aldrich).

Methods

Spectra for the B-band (300–500 nm) and Q-band (450–700 nm) regions

were taken for the samples mentioned above via absorption and ECD

spectroscopy for both ferri- and ferro-states using a 0.1 mM concentration

for B-band, and a 0.5 mM concentration forQ-band. The only exception was

the spectrum of yc Y67F, which was taken at a concentration of 0.15 mM for

both B- and Q-band. For the yc Y67F mutant, only the spectra of the ferro-

state were measured. A spectrum of the charge-transfer band (640–750 nm)

was also taken for hh and yc at a concentration of 5.0 mM. The ferro-states

were obtained by adding small quantities of sodium dithionite to the ferri

samples. Because the native state of yc is partially in the ferro-state at phys-

iological conditions, a small amount of potassium ferricyanide was added to

oxidize the sample. Apart from the Q-band spectrum of the yc Y67F mutant,

which was taken using a 2.0-mm quartz cell, all the spectra were measured in

a 1.0 mm quartz cell at the Drexel University College of Medicine by

employing a JASCO J-810 spectrapolarimeter (Tokyo, Japan) purged with

N2. Fifteen accumulations were taken using a 5-nm bandwidth, a 50-nm/min

scanning speed, and a 0.2-nm data pitch. Additionally, a background subtrac-

tion was carried out for all the spectra using similar parameters. Room tem-

perature variations were controlled by a Peltier heating and cooling system.

RESULTS AND DISCUSSION

B-band region

Fig. 1 a shows the B-band CD spectra of ferricytochrome c
from horse heart, bovine, chicken, and yeast. The respective

absorption spectra are shown in Fig. 1 b. For all cytochromes

we observe a slightly asymmetric, negatively biased couplet

with a minimum at 24 kK and a maximum at 24.7 kK, in

qualitative agreement with the horse heart spectrum reported

by Myer (23). The absorption peaks can be found in the

vicinity of 24.5 kK. The couplet is overlaid by another pos-

itive signal at 25.5 kK. Two further minima are observed at

;26.9 and 30 kK. While the CD couplets of horse heart, bo-

vine, and chicken cytochrome c are nearly identical, the re-

spective signal of yeast cytochrome c is substantially weaker.
The observed couplet unambiguously reveals a splitting

of the excited B-state, in agreement with polarized optical

absorption measurements of Eaton and Hochstrasser (14).

The overlapping maximum at 24.7 kK must be assigned to a

vibronic side band associated with an excited state vibrational

wavenumber of �900 cm�1. To illustrate the components of

the observed CD spectrum, we carried out a simulation based

on the following superposition of Gaussian profiles,

DeðVÞ ¼ +
i¼0;1

Dei 3 exp
�ðV�VBxi

Þ2
2s

� ��

�Dei 3 exp

��ðV�VByi
Þ2

2s

��
; (1)

where Dei is the dichroism associated with the x,y component

of the 0/0 (i¼ 0) and the 0/1 transition (i¼ 1). VBxi and
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VByi are the respective wavenumber positions. The value s
is the Gaussian half-width, which can be inferred from the

absorption spectrum. The simulation in Fig. 2 qualitatively

reproduces the spectrum of, e.g., horse heart cytochrome c.
We found that the positions of minimum and maximum do

not depend on the Bxy splitting for splitting values below

300 cm�1. A further decrease of the splitting value solely

reduces the CD couplet. We assumed a splitting of 60 cm�1,

which corresponds to the electronic perturbation recently de-

rived from the low temperature Q-band spectrum of horse

heart ferrocytochrome c (8). The simulated spectrum was

then obtained with De0 and De1 values of 120 and 30 M�1

cm�1. The simulation demonstrates that the negative contri-

bution of the vibronic side band overlaps with the positive

part of the B0-couplet, thus causing the observed asymmetry.

We did not take into account contributions at higher

wavenumbers, assignable to higher energy electronic tran-

sitions. To account for the reduced CD-couplet observed for

yeast cytochrome c, we reduced the splitting to 30 cm�1,

which again corresponds to the electronic perturbation

obtained from low temperature Q-band absorption (8). The

respective simulation, which reproduces the observed de-

crease of the CD signal, is also shown in Fig. 2.

Fig. 3 displays the Kuhn anisotropy spectrum of horse

heart ferricytochrome c. Apparently, the positive signal at

25.5 kK is not large enough to support an assignment to a

magnetically allowed transition (d/p* or d/d) (30,31),
thus corroborating the notion that its origin is vibronic. The

vibronic side band of the Soret band itself is governed by

Franck-Condon transitions of A1g-modes. If one invokes a

rather large frequency increase in the excited state, only the

n7-mode (690 cm�1) could be a suitable candidate (12). How-

ever, the observed frequency of ;900 cm�1 is very close to

that of the most intense vibronic side band of the Q-band

spectrum (1000 cm�1), which was recently assigned to the

A2g-type mode n22 (8). Generally, modes of this symmetry

contribute only weakly to the Bv-band, but since it has the

symmetry of an angular momentum, it might admix mag-

netic dipole strength into the corresponding B1-state. The

Kuhn anisotropy in Fig. 3 depicts another band at 20.5 kK,

which reaches a maximal value of 7 3 10�4. Addison and

Stephanos identified a d(Fe31)/ligand CT transition at very

similar wavenumbers for nitrosyl hemes (35). It is unclear

whether a similar transition can occur into the p-orbitals
of the (sixth) M80’s sulfur. Alternatively, one could propose

a dyx(Fe
31)/p*(heme) transition, which Addison and

FIGURE 1 ECD (a) and absorption (b) spectra of the B-band region of

ferri-horse heart (—), bovine (– –), chicken (� � �), and yeast (– � � –)
cytochromes c.

FIGURE 2 Simulation of the B-band ECD spectrum of horse heart (solid

line) and yeast (dashed line) ferricytochrome c based on the superposition of
two couplets described in the text. The corresponding horse heart (shaded

solid line) and yeast (shaded dashed line) experimental spectra are also shown.

FIGURE 3 Kuhn anisotropy B-band spectrum of horse heart ferricyto-

chrome c.
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Stephanos identified in the ECD spectra of ferric Mb(II)NO

at 20 kK.

The B-band spectra of the ferro-state of the investigated

cytochromes are shown in Fig. 4. At first glance, the ECD

spectra seem to be indicative of a positive Cotton effect, as

reported in the literature not only for cytochrome c, but also
for other heme proteins and for the truncated undecapeptide

of horse heart cytochrome c (23,25). However, a closer in-

spection and a comparison with the absorption spectra reveal

that the maximum of the positive band is substantially red-

shifted (;700 cm�1) with respect to the B0-band position. At

the position of the B-band maximum, a small but clearly

discernable couplet appears, which is most pronounced for

horse heart and the yeast cytochrome c mutant Y67F, some-

what smaller for chicken and bovine, and minimal for yeast

cytochrome c. This couplet has not been observed in earlier

measurements. We performed a simulation by invoking a

superposition of a B0 couplet with a positive Cotton-type

band at lower wavenumbers. For the former, we assumed the

same De values as used for the simulation of the respec-

tive ferricytochrome spectrum, but a reduced splitting, i.e.,

20 cm�1 for horse heart and 10 cm�1 for yeast. The simula-

tions in Fig. 5 reproduce the position and the magnitude of

the minima and maxima for both cytochromes. The experi-

mentally observed De values are more negative than the

simulated ones on the high-energy side of the B-band, which
clearly results from contributions of higher energy transitions

not taken into consideration in our simulation. This analysis

suggests that the small couplet reflects a splitting of the B-state
which is largest for horse heart and yeast Y67F and smallest

for yeast cytochrome c. The values for bovine and chicken

cytochrome c are intermediate. This resembles, though on a

lower scale, the behavior of the Q-band splitting (14,29), as

outlined in more detail below. Thus, we demonstrate that

ECD spectroscopy can be used to probe even small splittings

of the B-band, which would remain undetected in the ab-

sorption spectrum even at cryogenic temperatures.

The question arises about the origin of the positive Cotton

band. The only possible explanation is that it results from a

charge-transfer transition. Interestingly, Addison and Stephanos

found something similar for ferrous low spin Mb(II)NO by

means of optical absorption and ECD measurements, i.e.,

band red-shifted by ;800 cm�1 from the B0 band position

(35). The authors assigned it to a metal (dp)/porphyrin

(p*) charge-transfer transition. It is essentially electronically
forbidden, but a small amount of dipole-strength can be as-

sumed to be admixed, owing to the deviation of the sym-

metry from ideal D4h. This explains why the band is only

detectable in the ECD spectrum. The Kuhn anisotropy spec-

trum in Fig. 6 indicates a g-value of 3 3 10�4, which is

higher than the g-values of the B-band transition but too low

for a pure magnetic dipole transition (34,35).

Q-band region

Fig. 7 shows the ECD and absorption spectra of the ferri-

state of the investigated cytochrome c molecules. The Kuhn

anisotropy spectrum of horse heart cytochrome c is dis-

played in Fig. 8. It covers only the region between 17 and 22

kK, because the signal to noise is low for the remaining part

of the spectral region depicted in Fig. 7. A broad positive

band is observed between 18 and 19 kK, which is composed

of at least two bands at 18.25 and 18.96 kK. It is likely that

the former is assignable to the 0/0 transition into the

FIGURE 4 ECD (a) and absorption (b) spectra of the B-band region of

ferro-horse heart (—), bovine (– –), chicken (� � �), and yeast (– � � –) and
Y67F mutant (— —) cytochromes c.

FIGURE 5 Simulation of the B-band ECD spectrum of horse heart (solid

line) and yeast (dashed line) ferrocytochrome c based on the superposition of

a positive Cotton band and a B0 couplet as described in the text. The

corresponding horse heart (shaded solid line) and yeast (shaded dashed line)

experimental spectra are also shown.
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Q-states, whereas the latter reflects some vibronic contribu-

tion. The large bandwidth associated with the individual

transitions exclude the identification of individual vibronic

transitions. Interestingly, the ECD displays an additional,

very pronounced band at 20.34 kK, which displays a

moderate anisotropy. Some somewhat smaller bands appear

at 15.7 and 16.6 kK, which have an even higher anisotropy.

None of these bands are assignable to classical heme/iron

or iron/heme charge-transfer transitions. The two low-

wavenumber bands exhibit a high Kuhn anisotropy of

;10�3, which is indicative of a magnetically allowed

transition (Fig. 8). A comparison with the work of Addison

and Stephanos (35) on nitrosyl compounds of myoglobin and

hemoglobin suggests that they might be assignable to tran-

sitions from A1u, A2u (15.7 and 16.6 kK), and dxy orbitals

(20.34 kK) into unoccupied orbitals of the sixth ligand.

Fig. 9 exhibits the ferro-state Q-band ECD and absorption

spectra of the investigated cytochromes c (including Y67F).

The Kuhn anisotropy spectrum of horse heart is depicted in

Fig. 10 for the 17–20 kK region of the spectrum. In the Qv-

band region, the spectra nicely resolve the recently inves-

tigated vibronic structure of the Qv-band. Normally, the

FIGURE 7 ECD (a) and absorption (b) spectra of the Q-band spectrum of

ferri-horse heart (—), bovine (– –), chicken (� � �), and yeast (– � � –)
cytochromes c.

FIGURE 8 Kuhn anisotropy Q-band spectrum of horse heart ferricyto-

chrome c.

FIGURE 6 Kuhn anisotropy B-band spectrum of horse heart ferrocyto-

chrome c.

FIGURE 9 ECD (a) and absorption (b) spectra of the Q-band region of

ferro-horse heart (—), bovine (– –), chicken (� � �), and yeast (– � � –), and
Y67F mutant (— —) cytochromes c.
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obtained resolution can only be achieved by low temperature

absorption spectroscopy. All transitions (0/0 and 0/1)

seem to exhibit a positive Cotton effect, but a closer

inspection reveals for all cytochromes c that the Q0-band

signal appears ;100 cm�1 red-shifted from the Q0-position,

which indicates that it is assignable to the Qx-component.

The y-component has much less optical activity. It is possible

that Dey is in fact negative but overlapped by positive con-

tributions of the adjacent positive component of a vibronic

transition. Three positive peaks are discernable in the Qv-

band region, which for horse heart correspond to frequency

shifts of 323, 890, and 1473 cm�1. From our earlier decom-

position of the Qv band (8,29), we assign the second and

third value to the A2g-modes n22 and n19, respectively. The
low frequency band is difficult to assign, but we tentatively

attribute it to the previously undetected A2g vibration n26, for
which normal mode calculations of Ni-octaethylporphyrin

predict a wavenumber of 243 cm�1.

The ECD spectra reveal a hierarchy horse heart . bovine

. chicken � yeast with respect to the displayed rotational

strength. Interestingly, the Q0 signal of chicken cytochrome c
is more reduced than those of the vibronic side bands. The

effect is even more pronounced for yeast, for which the Q0

signal is even slightly less intense than that of the vibronic

side band assignable to n19.
All these observations can be explained if one assumes

that all the different contributions to the Q-band are in fact

asymmetric couplets with a weaker negative part over-

lapping with the positive part of the adjacent couplet. We

illustrate this by means of a simulation based on the results of

our previous analysis of the Q-band absorption (8). Adopting
the approach of Schweitzer-Stenner and Bigman (28), the

rotational strength of a split Q-band can be described by

R
Q

0l;0 ¼ R
Q0

0l;0 1 Im +
G

d
G

QlBk

E0

Q � E0

B

 !2

~mmgB0k
� m~gB0k

" #
; (2)

where RQ
0l;0 is the rotational strength of the transition into the

unperturbed Q-states (l ¼ x,y) of the 50:50 states of

Gouterman’s four-orbital model (32). This is supposedly

very weak. The second term describes the admixture of

rotational strength to theQ-states by electronic interstate cou-
pling dGQlBk

between Ql and Bk (k ¼ x,y) assignable to pertur-

bation of symmetry G, where G refers to the irreducible

representations A1g, B1g, B2g, and A2g of the D4h point group.

E0
Q and E0

B are the eigenenergies of the unperturbed Q0 and

B0. ~mmgB0k
and m~gB

0k
are the electronic and magnetic dipole

moments for the transition from the heme ground state into

the excited state Bk. Generally, the latter is zero in a nonchiral

environment, but can be induced by electronic coupling be-

tween electronic transition dipole moments of the heme and

the protein environment. (20,25).

The Qv-band receives most of its intensity by vibronic

mixing between Q1 and B0, B2 states of several heme oscil-

lators, predominantly of A2g-symmetry,

RQ

0l;1ð jÞ ¼ Im +
G‘

0
cG

0
QlBk

ð jÞ
 !2

1

EQl
� EBk

1V
Q

j

 "

1

ffiffiffi
2

p

EQl
� EBk

1V
Q

j � 2V
B

j

!2

~mmg0Bk
� m~g0Bk

#
; (3)

where cG
0

QlBK
ð jÞ is the vibronic coupling operator of the jth

normal mode. VQ
j is the frequency of the jth normal mode of

Qj in the excited state, Q. For an unperturbed heme sym-

metry, G9 is one of the gerade representations A1g, of sym-

metry G, where G refers to the irreducible representations

A1g, B1g, B2g, and A2g; in a lower symmetry, it reads as a sum

of these symmetries (8). The first energy term reflects the

coupling with the vibrational ground state of the electron-

ically perturbed state Bk, the second term the interaction with

the second excited vibrational state of Bk. The values EQl
and

EBk
are the energies of the electronically perturbed states, Ql

and Bk. For the sake of simplicity, we neglected intrastate

Franck-Condon and Jahn-Teller coupling in Eq. 3.

We constructed a very heuristic model for simulating the

Q-band region in Fig. 7 by using

jRQ

0x;ij
jRQ

0y;ij
¼ ~mmgQx

ðiÞ
~mmgQy

ðiÞ

 !2

; (4)

where the left-hand term is the ratio of the electronic tran-

sition dipole moments associated with the x- and y-polarized
transition for the jth oscillator, where j ¼ 0 reflects the 0/0

transition. These ratios have been determined for horse heart

and yeast cytochrome c by Levantino et al. (8). The square

reflects the fact that the admixture of dipole strength from the

B-state transitions is the same for the electronic and magnetic

dipole moment. It is assumed that the natural lifetimes of the

x- and y-component are identical, in agreement with reso-

nance Raman experiments (27).

We thus simulated the Q-band ECD spectra of horse heart

and yeast cytochrome c (Fig. 11) by employing the above-

introduced rotational strength ratios, the band splittings, and

FIGURE 10 Kuhn anisotropy Q-band spectrum of horse heart ferrocyto-

chrome c.
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relative band positions reported in Levantino et al. (8) and

free parameters for the prefactors of the product ~mmgBk
m~gBk

.

Starting with horse heart cytochrome c, the latter were ad-

justed to approximately reproduce the experimentally observed

positive peak values in the ECD spectrum. We assumed a

symmetric positive couplet for each transition, which is cer-

tainly an oversimplification, but we are not aiming at a total

quantitative reproduction of the spectra. Moreover, we as-

sumed that the splitting and Stokes shift parameters observed

at 20 K are approximately valid at room temperature. Despite

these simplifications, the simulated ECD spectrum of horse

heart ferrocytochrome c in Fig. 11 accounts well for the

observed spectral features, thus demonstrating that the latter

can indeed be rationalized as a superposition of couplets

rather than of pure positive Cotton effect signals. For the

simulation of yeast cytochrome c, we solely changed the

splitting and jRQ
0x;ij=jRQ

0y;ij values in line with the results

reported by Levantino et al. (8). Thus, we observed a clear

decrease of the Q0 signal, whereas the signal of the dominant

vibronic n22 side band appears only slightly reduced. This is

exactly what we observed experimentally, demonstrating

that the differences between the ECD spectra of yeast and

horse heart are predominantly due to the different electronic

perturbations to which the heme groups of these two proteins

are subjected. In turn, our result reveals that ECD spectros-

copy is a good tool for the analysis of Q-band splitting even

at room temperature.

The above interpretations imply that the Q-band splitting

should reflect the experimentally observed order of the dis-

played rotational strength, i.e., horse heart � bovine .
chicken � yeast. This is indeed the case. Manas et al. (15)

observed low temperature Q0-band splittings of 115 cm�1

and 107 cm�1, which are just in between the values of horse

heart (116 cm�1) and yeast (77 cm�1).

CT-band at 690 nm

Fig. 12 shows the ECD, the absorption spectrum, and the

Kuhn anisotropy spectrum for the region between 13.3

and 15.6 kK of horse heart and yeast ferricytochrome c,
which displays the well-known absorption band at 14.492

kK (695 nm). This band was previously assigned by Eaton

and Hochstrasser to a z-polarized A2uðhemeÞ/d2z ðFe31)
charge-transfer transitions (14), but a comparison with the

results of a more recent MCD study on low-spin ferric cyto-

chrome P450 led McKnight et al. (33) to suggest that it results

from a ligand-to-iron charge-transfer transition. Its existence

depends on the axial M80 ligand of the heme iron (16–18).

To further characterize the CT band, we performed a

baseline subtraction for the hh and yc ECD and absorption

bands. To this end, we took the overlapping Q0-band profile

FIGURE 11 Simulation of theQ-band ECD spectrum of horse heart (solid
line) and yeast (dashed line) ferrocytochrome c based on the superposition of

couplets assignable to Q0 and vibronic Qv-side bands as described in the

text. The corresponding horse heart (shaded solid line) and yeast (shaded

dashed line) experimental spectra are also shown.

FIGURE 12 ECD (a), optical absorption (b), and Kuhn anisotropy spectra

(c) of horse heart (—) and yeast (—) ferricytochromes c in the region

between 13.3 and 15.6 kK.
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into consideration. This was followed by a band decompo-

sition into all Gaussian bands by our spectral analysis program

MULTIFIT (33). Lorentzian contributions to the profile have

been found to be negligible and were therefore omitted. For

a reliable fitting, the ECD and absorption spectra were self-

consistently decomposed into bands with identical parameters

(i.e.: same band positions and band widths).

For horse heart cytochrome c, a minimal model for a

simultaneous fit of the absorption and CD profile comprised

three subbands at 14.02 (S2), and 14.36 (S3), and 14.70 kK

(S4) (Fig. 13). The respective Gaussian half-widths are

comparable. Two additional bands at 13.65 (S1) and 15.29

kK (S5) had to be added to the low energy and high-energy

side, respectively, to fit the absorption spectrum. The Kuhn

anisotropy spectrum in the lower panel of Fig. 12 does not

exactly coincide with the position and band shape of the ab-

sorption spectrum. This indicates that the different subbands

have different anisotropy values. A comparison of the maxima

of the respective subbands indeed reveals slightly different

g-values, namely�1.563 10�4,�2.223 10�4, and�1.183
10�4 for S2, S3, and S4, respectively. All these values are in-

dicative of electronically allowed transitions (34). S1 and S5

do not show any detectable rotation strength.

A similar band-decomposition for yc was also performed

using analogous parameters (Fig. 14). Thus, we obtained again

a three-band fit, with bands at 14.02 (S2), 14.36 (S3), and

14.70 kK (S4) for the absorption and CT spectra, with two

additional bands at 13.70 (S1) and 15.29 kK (S5) for the

absorption spectrum. With the exception of S2, which shows

a narrower bandwidth (0.15 kK) for yc than for hh (0.21 kK),

all subbands have the same Gaussian bandwidth and peak

positions as the corresponding hh subbands. The Kuhn aniso-

tropy values are�1.293 10�4 (S2),�1.933 10�4 (S3), and

�9.34310�5 (S4). The respective absorption intensity ratios

ehw/elw (hw, high wavenumber; lw, low wavenumber) are

10.1 (S2/S1) and 24.9 (S3/S1), 8.5 (S4/S1), and 5.0 (S5/S1)

for hh and 6.9 (S2/S1) and 31.3 (S3/S1), 9.5 (S4/S1), and

10.1 (S5/S1) for yc. These reflect a significant difference be-

tween the intensity distributions of the CT bands of hh and yc.

Eaton and Hochstrasser have attributed the 695-nm band

to an A2uðhemeÞ/A1gðd2z Þ transition (14). This assignment

does not really explain why the band disappears when the

sixth ligand is exchanged without altering the iron’s spin

state (30–32). This observation is, however, consistent with

the proposal of McKnight et al. (33), who attributed this

band to a p(S)/dp(Fe
31) transition where S is the sulfur

atom of the methionine ligand. The authors discussed four

scenarios. If the dp hole is predominantly dxz, the possible

transitions are px/dxz and pz/dxz with z and x polariza-

tion, respectively. A predominant dxy character of dp brings

FIGURE 13 Decomposition of the charge-transfer band of horse heart cyto-

chrome c at 14 kK as described in the text. The band parameters are listed on

the figure.

FIGURE 14 Decomposition of the charge-transfer band of yeast cyto-

chrome c at 14 kK as described in the text. The band parameters are listed on

the figure.
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about the x- and y-polarized transitions py/dxy and

px/dxy. The third possibility is that dp is mainly dyz, the
respective transitions are py/dyz and pz/dyz with z and y
polarization. The fourth possibility would involve a mixture

of all three cases. However, the polarized absorption mea-

surements of Eaton and Hochstrasser suggest a z polarization
with some x or y admixture which is consistent with dp being

predominantly dxz or dyz (14). In the presence of dp-splitting
due to the rhombic deformations revealed by resonance

Raman and absorption data (8,10,29), one expects dyz to be

the highest lying occupied d-orbital. McKnight et al. (33)

arrived at the same conclusion for the CT band in the spec-

trum of cytochrome P-450 Bacillus megaterium.
This interpretation seems to suggest that the observed sub-

bands of the CT band are assignable to different p(S)/
dp(Fe

31) transitions, but some observations are at variance

with this conclusion. First of all, the MCD data reported

by McKnight et al. (33) suggest a wavenumber difference

of nearly 1 kK between, e.g., py/dyz and pz/dyz. The
wavenumber differences between the CT-subbands are much

smaller. Second, a pure electronic nature of the observed

subbands could hardly explain the spectral differences be-

tween yeast and horse heart cytochrome c. Third, if at least
some of the subbands were due to transitions of orthogonal

polarization, one would expect a couplet rather than a

continuously negative Cotton effect. We therefore suggest

that the observed band structure reflects predominantly con-

formational heterogeneity, i.e., the coexistence of confor-

mational substates, which give rise to a distribution of

wavenumbers for the investigated transition. Hence, we

tentatively assign the subbands S2-S4 to the same py/dyz
transition in different taxonomic substates, whereas the small

but always reproducible sideband at 13.65 kK (hh) and 13.70

kK (yc) might be assignable to the pz/dyz transition. This
interpretation resembles observations made for the classical

band III of deoxymyoglobin and hemoglobin (34–35).

The spectral differences between horse heart and yeast

cytochrome c would thus reflect different conformational

distributions, which most likely reflect different methionine

orientations. The existence of conformational substates have

earlier been inferred from spectral hole burning experiments

and molecular dynamics calculations by Köhler et al. (4) and

Laberge et al. (36). They identified two spectroscopically

discernable taxonomic substates for horse heart Zn-cyto-

chrome c, whereas only one of them could be identified for

the respective yeast protein. It has to be emphasized that our

band decomposition might be based on an oversimplified

model in that we assume that each taxonomic substate is

describable by a symmetric Gaussian line. In reality, a more

asymmetric distribution reflecting further heterogeneity on a

lower tier might be a more appropriate model (37). A final

clarification of the issue, however, has to await additional

experiments (e.g., investigation of the temperature and pH

dependence of the CT band’s substructure) which are cur-

rently underway in our laboratory.
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