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SUMMARY

Genetic differences between humans and in vivo
model systems, including mice and nonhuman pri-
mates, make it difficult to predict the efficacy
of immunoglobulin G (IgG) activity in humans and
understand the molecular and cellular mechanisms
underlying that activity. To bridge this gap, we estab-
lished a small-animal model system that allowed us
to study human IgG effector functions in the context
of an intact human immune system without the
interference of murine Fcg receptors expressed on
mouse innate immune effector cells in vivo. Using a
model of B cell depletion with different human IgG
variants that recognize CD20, we show that this hu-
manized mouse model can provide unique insights
into the mechanism of human IgG activity in vivo.
Importantly, these studies identify the bone marrow
as a niche with low therapeutic IgG activity.
INTRODUCTION

The therapeutic success of immunoglobulin G (IgG) antibodies

such as rituximab (a chimeric CD20-specific IgG1 antibody)

and herceptin (a her2/neu-specific IgG1 antibody) in the treat-

ment of human cancer and autoimmune disease has fueled in-

terest in the widespread development of IgG-based biologicals

(Carter, 2006; St Clair, 2009; Waldmann, 2003; Weiner et al.,

2010). Animal model systems frequently used for the preclinical

evaluation of IgG activity and safety include mice, rats, and a

variety of nonhuman primate species. Because they provide

the possibility to delete genes of choice, mouse in vivo model

systems are widely used, and many of our current models of

IgG activity stem from data obtained in mice. Indeed, such

studies have provided valuable insights into the mechanism

of IgG activity, such as the importance of cellular Fcg receptors

(FcgR) for IgG activity and the role of individual FcgRs in IgG

subclass activity in vivo (Beers et al., 2008; Hogarth, 2002;
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Nimmerjahn and Ravetch, 2008; Takai, 2002). The relevance

of these basic studies to the human system is supported by

data showing that cancer patients respond better to anticancer

antibodies if they express allelic variants of FcgRs that confer

enhanced binding to the IgG subclass of the therapeutic anti-

body (Cartron et al., 2002; Musolino et al., 2008; Weng et al.,

2004; Weng and Levy, 2003). Despite the similarities between

mice and humans, however, there are several important differ-

ences, such as the cell-type-specific expression pattern of

certain FcgRs and the capacity of some mouse FcgRs to

interact with other Ig isotypes, which are not reflected in

humans (Hirano et al., 2007; Lux and Nimmerjahn, 2013;

Mancardi et al., 2008; Nimmerjahn et al., 2010; Biburger and

Nimmerjahn, 2012). As mentioned in previous studies, allelic

variants of the low-affinity FcgRs FcgRIIB, FcgRIIA, and

FcgRIIIA are present in the human population that can impact

either the affinity or functionality of these receptors (Baeren-

waldt et al., 2011; Bruhns et al., 2009; Lux et al., 2013; Smith

and Clatworthy, 2010). Moreover, certain human FcgRs, such

as the neutrophil-specific FcgRIIIB, are not present in mice at

all. Thus, several factors that potentially influence IgG activity

in humans are not recapitulated in any of the currently available

animal models, including nonhuman primates. To combine the

advantages of a small-animal model with the possibility to

study the human immune system in vivo, we used the Rag2/

Il2rg-deficient mouse strain (Rag2/gc�/�), in which a functional

human immune system can develop upon injection with purified

human hematopoietic stem cells (HSCs) due to the absence of

mouse B cells, T cells, and functional natural killer (NK) cells

(Legrand et al., 2008; Shultz et al., 2012;Traggiai et al., 2004;

Legrand et al., 2009). Although these mice are an excellent

model system for studying the development of the human im-

mune system, they may not be the optimal system for studying

human IgG activity in vivo. This is due to the presence of mouse

monocytes, macrophages, and neutrophils expressing high

levels of mouse activating FcgRs, which have the capacity

to interact with human IgG1 antibodies (Lux and Nimmerjahn,

2013). Further complicating the situation, the absence of

mouse B cells and mouse serum antibodies will result in a

high capacity of the mouse high-affinity FcgRI, which is usually
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Figure 1. Generation and Characterization

of Rag2/gc/FcRg Knockout Mice

(A and B) Residual platelet counts in the peripheral

blood of FcRg-, C57BL/6, FcgRI�/�, and

FcgRIV�/�mice (A) or Rag2/gc�/� and Rag2/gc/

FcRg�/�mice (B) upon injection of the humanized

antiplatelet 6A6-hIgG1 antibody.

(C) Analysis of PBMCs in C57BL/6, Rag2/gc�/�,

and Rag2/gc/FcRg�/� mice by flow cytometry,

identifying mouse T (TCRb), B (B220), neutrophil

(CD11B+ and Ly6G+), and Ly6C+ and Ly6C�
(GR-1) monocyte subsets.

(D) Expression of the indicated murine FcgRs on

CD11b+ PBMCs of Rag2/gc�/� and Rag2/gc/

FcRg�/�mice. Bar graphs indicate mean residual

platelet counts ± SD of at least two independent

experiments with three to five mice each. Statisti-

cal analysis was performed byMann-Whitney test.

Asterisks indicate values with a significant differ-

ence; *p < 0.05.
occupied with mouse serum IgG2a, to interact with human

IgG1, thereby artificially skewing antibody effector functions

toward this receptor.

Thus, we set out to generate an immunodeficient mouse

model that would accept human HSC grafts without expressing

mouse activating FcgRs. We show that this mouse strain effi-

ciently accepts human HSC grafts, which develop into a human

immune system containing all the major hematopoietic cell line-

ages. By using human CD20-specificmonoclonal antibodies, we

demonstrate that human IgG subclasses have a differential ac-

tivity in vivo and depend critically on the IgG constant fragment.

Moreover, this model system allowed us to identify physiological

niches, such as the bone marrow, in which human IgG activity

might be less effective.
Cell Reports 7, 236–2
RESULTS

Generation and Characterization of
Rag2/gc/FcRg�/� Mice
Although Rag2/gc�/�mice have allowed

unique insights into human immune sys-

tem development and function to be

obtained, studying human IgG activity in

this and other immunodeficient mouse

strains transplanted with human periph-

eral blood mononuclear cells (PBMCs)

are hampered by the fact that many

human IgGsubclasses, andespecially hu-

man IgG1,which is themost abundant IgG

subclass used in human therapy, can bind

to mouse activating FcgRI and FcgRIV

(Lux and Nimmerjahn, 2013). To test

whether human IgG1 can indeed mediate

its activity via one of these mouse FcgRs

in vivo, we generated a humanized IgG1

variant of the mouse platelet-specific

antibody 6A6 (Nimmerjahn et al., 2005;

Nimmerjahn and Ravetch, 2005). Indeed,
6A6-hIgG1 efficiently depleted platelets in C57BL/6 and FcgRI-

deficientmice, but was not able to remove platelets in FcRg-defi-

cient mice lacking all activating FcgRs and in FcgRIV-deficient

animals, consistent with previous studies that demonstrated an

important role for thismouse activating FcgR in IgGactivity in vivo

(Figures 1A and 1B; Nimmerjahn et al., 2005, 2010; Seeling et al.,

2013; Biburger et al., 2011; Mancardi et al., 2011; Otten et al.,

2008; Kasperkiewicz et al., 2012; Syed et al., 2009; Baudino

et al., 2008; Kaneko et al., 2006; Hamaguchi et al., 2006). These

results emphasize that studying human IgG activity in currently

available immunodeficient mouse strains transplanted with hu-

man immunecellswill not allow us to distinguish between effector

functionsmediated bymouse and human innate immune effector

cells unless we can discover transplantation conditions that
48, April 10, 2014 ª2014 The Authors 237
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Figure 2. Characterization of Human

Immune System Development in Rag2/gc/

FcRg�/� Mice

(A) Identification of human B cells (CD19), T cells

(CD3), monocytes (CD33+CD11c+), dendritic cells

(CD33�CD11c+), and NK cells (CD33�CD56+) in

the blood, spleen, and bone marrow of humanized

Rag2/gc/FcRg�/� mice within the hCD45+ cell

population.

(B) Identification of different B cell developmental

stages in the bone marrow, spleen, and blood of

humanized Rag2/gc/FcRg�/�mice.

(C) Percentage of pro-, pre-, immature, and

mature B cell subpopulations in the bone marrow

of humanized Rag2/gc/FcRg�/� mice within the

human B cell population (hCD45+CD19+).

(D) Quantification of serum IgM and IgG levels

in humanized Rag2/gc/FcRg�/� mice 16 weeks

posttransplantation.

(E) Presence of cell-surface-associated IgG on

human B cells (CD19+) and human monocytes

(CD33+) in the blood of humanized Rag2/gc/

FcRg�/� mice as detected by flow cytometry.

(F) Presence of the human complement compo-

nent C3 in human serum and in the serum of

humanized Rag2/gc/FcRg�/� andC57BL/6mice.

All experiments were done with animals at 12–

16 weeks posttransplantation with human HSCs

and at least nine animals per group. Bar graphs

indicate the mean value ± SD. Horizontal lines

indicate the statistical mean.

See also Figure S1 and Table S1.
completely eradicate all mouse hematopoietic cells. Therefore, to

generate an immunodeficient mouse strain that does not express

mouse activating FcgRs, we crossed the Rag2/gc�/� mouse

strain, which is known to efficiently accept human hematopoietic

cells, with the FcRg-deficient mouse, thereby creating Rag2/gc/

FcRg�/� mice. As shown in Figures 1C and 1D, these animals

lack mouse B and T cells, and do not express mouse activating

FcgRs on innate immune effector cells, such as neutrophils and

monocytes, resulting in abrogated activity of the 6A6-hIgG1 anti-

body (Figure 1B). Thus, upon reconstitution of Rag2/gc/FcRg�/�
mice with a human immune system, only human innate immune

effector cells will express human activating FcgRs,which allowed

us to exclude the contribution of residual mouse innate immune

effector cells beyond any doubt.

Reconstitution of a Human Immune System in
Rag2/gc/FcRg�/� Mice
Next, we established the experimental conditions for reconstitu-

tion of Rag2/gc/FcRg�/�mice with human HSCs. Irradiation of
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newborn mice with 6 Gy resulted in the

highest level of reconstitution with human

hematopoietic cells in the peripheral

blood of individual mice 12 weeks after

transplantation (Figure S1A). As previ-

ously described for other immunodefi-

cient mouse strains, in addition to the

blood, human cells were abundantly pre-
sent in the spleen and bone marrow of the reconstituted animals

(Figure S1B; Table S1; Shultz et al., 2012; Tanaka et al., 2012;

Traggiai et al., 2004). Moreover, the level of reconstitution did

not impact the cell lineages present in these animals, as B

cells, T cells, monocytes, and NK cells could be found at com-

parable levels in mice with a low or high reconstitution level

(Figures S1C and S1D). A more detailed analysis of human cell

types present in the blood, spleen, and bone marrow of trans-

planted animals identified T cells, monocytes, NK cells, and

dendritic cells, as well as B cells in early and late differentia-

tion stages, including pro- (CD34+CD19+CD10+IgM�), pre-

(CD34�CD19+CD10+IgM�), immature (IgM+CD19+CD10+),

and mature (IgM+CD19+CD10�) B cells (Figures 2A–2C), in

line with previous reports (Blom and Spits, 2006; Ghia et al.,

1998; Tanaka et al., 2012; Traggiai et al., 2004). Consistent

with the presence of B cells, serum IgM and IgG were present

in the serum of mice, albeit at much lower levels than in human

serum (Figure 2D). However, this amount seemed sufficient to

result in binding to CD33+ myeloid cells, most likely via the
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Figure 3. Presence of Human Macrophage and Neutrophil Populations in Humanized Mice

(A) Immunofluorescence analysis of spleen sections of humans, humanized mice, and nonhumanized mice stained with CD68 to identify macrophages and

CD66c in combination with CD16B to identify neutrophils. CD45 was used to identify human hematopoietic cells.

(B) Cultures of human PBMCs or bone marrow cells of humanized mice in the presence of M-CSF and RANKL to initiate osteoclast development. The purple

staining identifies the osteoclast-associated enzyme TRAP.

(legend continued on next page)
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high-affinity FcgRI expressed on this cell type (Figures 2E and

4A). In contrast to the presence of all essential cell types impor-

tant for IgG-dependent effector functions, these mice did not

produce significant levels of human complement, consistent

with the important role of nonhematopoietic tissues, such as

the liver, for the generation of complement proteins (Figure 2F).

Furthermore, CD66c/CD16B+ neutrophils and CD68+ macro-

phages were abundantly present in the spleen of humanized

mice, as demonstrated previously in other humanized immuno-

deficient mouse strains (Figure 3A; Tanaka et al., 2012). Since

others have demonstrated that these human macrophages are

functional with respect to cytokine secretion and phagocytic

function (Tanaka et al., 2012), we turned our attention to another

bone resident macrophage population, namely, osteoclasts,

which had not previously been investigated in humanized

mice. First, we cultured bone marrow of humanized mice and

human PBMCs with macrophage colony-stimulating factor

(M-CSF) and receptor activator of NF-kB ligand (RANKL), which

drives monocyte precursors into the osteoclast lineage (Naka-

shima et al., 2012). As shown in Figure 3B, this indeed resulted

in the generation of mature osteoclasts, identified by large

multinucleated cells expressing the osteoclast marker tartrate-

resistant acid phosphatase (TRAP). More importantly, these os-

teoclasts were fully functional, as demonstrated by their capacity

to resorb bone matrix (Figure 3C). In contrast to the presence of

human macrophages in the spleen, no CD68-expressing cells

were detectable in the bonemarrow and blood of the humanized

mice and humans (Figure 3D).

A prerequisite for studying human IgG-dependent effector

functions in humanized mice is the presence of human FcgRs

on innate immune effector cells. In humans, FcgRIIIA is the

only activating FcgR expressed onNK cells, whereasmonocytes

and macrophages express a broader repertoire of activating

FcgRs (Hogarth, 2002; Ravetch and Nimmerjahn, 2008). As

shown in Figure 4A, NK cells expressing FcgRIIIA and mono-

cytes positive for FcgRIA, FcgRIIA, FcgRIIB, and FcgRIIIA

were present in the blood, spleen, and bone marrow of these

animals. In combination with FcgRIIIB expression on human

neutrophils (Figure 3A), this suggests that all relevant human

FcgRs are expressed on innate immune effector cells. This

cell-type-specific pattern of FcgR expression was consistent

with the presence of these receptors on CD33+ monocytes in

the respective human organs (Figure 4B), suggesting that human

FcgR expression is fully recapitulated in the humanized Rag2/

gc/FcRg�/�mice. In a notable exception, there was a low level

of FcgRIIB expression on monocytes in the peripheral blood of

humanized mice, whereas their counterparts in the human blood

were mostly negative for this receptor.

Activity of Human CD20-Specific IgG Subclasses in
Humanized Mice
Because CD20 is the major target for therapeutic B cell-

depleting antibodies, we next assessed the CD20 expression
(C) Assessment of the capacity of osteoclasts generated from the bonemarrow of

RANKL to resorb bone matrix.

(D) Analysis of humanized mouse or human blood and bone marrow to detect C

posttransplantation with human HSCs and at least two animals per group. Bar g
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pattern on human B cells developing in humanized mice and

humans (Johnson and Press, 2000; Sanz and Lee, 2010). As

shown in Figure 5A, CD20 was highly expressed on all IgM+ B

cell populations in the blood, spleen, and bone marrow of

humanizedmice. In contrast, pro- and pre-B cell populations ex-

pressed only very small amounts of CD20, whereas the majority

of immature B cells were strongly positive for this marker. Of

note, mouse CD20 has been demonstrated to be absent from

pro-B and the vast majority of pre-B cells, and to be expressed

only starting from the very late pre-B to immature B cell stage.

Interestingly, this mouse-specific expression pattern was reca-

pitulated in transgenic mice expressing human CD20, further

emphasizing the need for humanized mouse models to fully

match the human expression pattern especially during early B

cell development (Gong et al., 2005; Uchida et al., 2004b).

As a CD20-specific therapeutic antibody, we chose the hy-

bridoma clone 1F5, which was used in early human clinical trials

to deplete B cells in its mouse IgG2a form, and generated all four

human IgG subclass switch variants of this antibody (Johnson

and Press, 2000). Upon injection of equal amounts of these

IgG switch variants into humanized mice (10 mg per mouse),

we could show that the 1F5-IgG1, 1F5-IgG2, and 1F5-IgG3 var-

iants were more efficient in reducing B cell counts compared

with 1F5-IgG4 (Figures 5B–5D). Importantly, this different level

of activity could not be explained by a different half-life of these

IgG switch variants in humanized mice in vivo (Figure S2A). In a

similar manner, the amount of human cells present in these ani-

mals did not correlate with the level of B cell depletion (Figures

S2B–S2D). Of note, although human IgG4 is widely considered

not to have any cytotoxic activity, it clearly had the capacity to

deplete B cells, which is consistent with recent in vitro studies

demonstrating that especially large IgG4 immune complexes

can indeed bind to FcgRs, such as FcgRI (Bruhns et al., 2009;

Lux and Nimmerjahn, 2011). Overall, the observed differences

in in vivo activity are in line with previous results obtained in clas-

sical mouse models, which demonstrated that the activity of IgG

subclasses in vivo correlates with their affinity for different FcgRs

(Fossati-Jimack et al., 2000; Hamaguchi et al., 2006; Nimmer-

jahn and Ravetch, 2005). With respect to the kinetics of B cell

depletion, the majority of B cells were absent from the peripheral

blood of humanized mice 24 hr after anti-CD20 injection (Fig-

ure 5C). Especially for the IgG1 and IgG2 switch variants, B

cell depletion was long lasting and B cell counts did not return

to normal levels over the observation period of the experiment

(Figure 5D). Similar results have been obtained in murine models

of B cell depletion with CD20-specific antibodies and in human

patient cohorts treated with rituximab (Figure S2E; Hamaguchi

et al., 2006; Sanz et al., 2007; Uchida et al., 2004a; Beers

et al., 2008). Of note, B cell depletion was fully dependent on

the IgG Fc fragment, as neither F(ab0)2 fragments nor deglycosy-

lated variants of the same antibody were able to induce a reduc-

tion in B cell counts (Figures 5E and 5F). These findings support

the notion that despite the capacity of antibodies against CD20
humanizedmice in the presence of M-CSF and the indicated concentrations of

D68+ macrophages. All experiments were done with animals at 12–16 weeks

raphs indicate mean value ± SD.
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Figure 4. Expression of Human FcgRs on Innate Immune Effector Cells
Expression of the indicated human FcgRs on CD33+ monocytes and CD56+ NK cells in the blood, spleen, and bone marrow of humanized Rag2/gc/FcRg�/�
mice (A) or humans (B) as determined by flow cytometry. Depicted is a representative result from nine independent animals at 12–16weeks posttransplantation or

a minimum of three independent human samples. Cells from five humanized mice were pooled for staining of FcgR expression on peripheral blood cells.
to directly inhibit B cell proliferation and induce apoptosis

without secondary crosslinking in vitro, the IgG Fc fragment is

crucial for anti-CD20-dependent B cell depletion in vivo (Bona-

vida, 2007; Shan et al., 1998).

To determine whether FcgR allelic variants represented in the

HSCs used to reconstitute the mice with a human immune sys-

tem might explain some of the differences in antibody activity

observed between the higher- and lower-responder mice, we
genotyped the donors (Table S2) and color-coded all of the

mice that carried specific FcgRIIA high/low affinity and FcgRIIIA

high/low affinity alleles. As shown in Figures 5C and 5D, this did

not show a clear correlation with the activity of antibody-medi-

ated B cell depletion. Similar results were obtained in human

lymphoma patients before and after treatment with rituximab,

suggesting that B cell depletion is not affected by differences

in FcgR allelic variants, at least at the studied antibody
Cell Reports 7, 236–248, April 10, 2014 ª2014 The Authors 241
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Figure 5. Anti-CD20 IgG-Mediated B Cell Depletion in Humanized Mice

(A) Detection of CD20 expression on pro- (CD45+CD19+CD10+CD34+IgM�), pre- (CD45+CD19+CD10+CD34�IgM�), immature (CD45+CD19+CD10+

CD34�IgM+), and mature B cells (CD45+CD19+CD10�CD34�IgM+) in the bone marrow (BM) and on mature B cells in the blood and spleen of humanized mice

and humans via flow cytometry.

(B) Representative example of the differential capacity of the CD20-specific 1F5-IgG1 and 1F5-IgG4 switch variants to deplete B cells (CD19+) in peripheral blood

of humanized mice 24 hr after antibody administration.

(C and D) Groups of humanized mice (n = 11–20) were injected with 10 mg of the indicated 1F5 IgG variant, and B cell depletion in the peripheral blood was

assessed at 1 (C) or 7 (D) days after anti-CD20 injection. The FcgRIIA-131H/R and FcgRIIIA-158F/V genotype of the donors was determined. Low-affinity donors

(legend continued on next page)
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concentration in the blood of humanized mice and humans (Fig-

ure S2E). In addition to the blood, we also investigated the ca-

pacity of the IgG1 switch variant to deplete B cells in the spleen

and bone marrow. As shown in Figures 6A–6C, a single injection

of 1, 10, and 100 mg anti-CD20 IgG1 efficiently depletedmature B

cells in the blood and spleen. In contrast, depletion of mature B

cells in the bone marrow was less efficient and required an at

least 10-fold higher antibody dose (Figure 6D). Even more strik-

ing, although the immature B cells expressed CD20 to a level

comparable to that observed in mature B cells, they never

reached a significant level of depletion. The same applied for

pro- and pre-B cells, although these B cell subsets clearly ex-

pressedmuch lower amounts of this cell-surfacemarker (Figures

5A and 6D). Again, no clear correlation with the allelic variants of

activating FcgRs was notable (Table S3). A possible explanation

for this phenomenon might be a lower availability of the thera-

peutic CD20-specific antibody in the bone marrow. To address

this question experimentally, we injected a fluorescently labeled

aglycosylated version of the CD20-specific antibody to prevent

the rapid depletion of anti-CD20-coated B cells in the blood

and spleen. As shown in Figures 6E and 6F, all mature B cell pop-

ulations were labeled by the injected antibody regardless of their

anatomical localization. In line with the comparable level of CD20

expression, immature B cells displayed the same amount of ther-

apeutic antibody binding as mature B cells. As expected, pro-

and pre-B cells were stained at a lower but still clearly detectable

level. Another reason for this reduced level of B cell depletion

may be the lack of responsible innate immune effector cells.

As shown in Figures 2A and 4A, however, NK cells and CD33+

myeloid cells were present in the bone marrow. A more detailed

analysis of the CD33+ cells in the bone marrow revealed that the

majority of these were negative for c-kit and CD34, and thus

represent more mature CD14 high- and low-monocyte subsets,

as expected (Figure 6G). In contrast to monocytes, CD68+

macrophages were present only in very low amounts in the

bone marrow or virtually absent in the blood from humanized

mice and humans (Figure 3D). To further validate this observa-

tion, we analyzed the efficacy of B cell depletion in the bone

marrow of C57BL/6 mice with an antibody specific for mouse

CD20. Again, the depletion of immature B cells required a

much higher dose, despite a similar binding of the CD20-specific

antibody compared with mature B cells, which were depleted

with a similar efficacy compared with the blood and spleen (Fig-

ure S3), in line with previous reports. In contrast to what was

observed in humans and humanized mice, pro-B and pre-B cells

in C57BL/6 mice did not express CD20, and accordingly could

not be recognized via the CD20-specific antibody (Figure S3B).

Therefore, it was not possible to assess their depletion, providing

yet another argument for the necessity of a humanized mouse

model.
(HR-FF, RR-FF, and RR-FV) are depicted in red, medium-affinity donors (HR-FV)

shown in green.

(E) Groups of humanized mice were injected with intact anti-CD20 IgG1 or an ant

injection.

(F) Peripheral blood B cell counts in humanized mice 24 hr after injection of PBS,

performed by Kruskal-Wallis test and subsequent post hoc tests. Asterisks indic

See also Figure S2 and Table S2.
DISCUSSION

Taken together, our results provide evidence that Rag2/gc/

FcRg�/� mice might be a valuable tool for studying human

IgG activity in a preclinical setting in vivo. Compared with inject-

ing human PBMCs into immunodeficient Rag2/gc�/�, NOD/

SCID, or NOD/SCID/gc�/� mice, which are frequently used as

surrogate humanized mouse models to study human IgG activ-

ity, this mouse model has several advantages (Goldman et al.,

1998; Ito et al., 2002). Most importantly, mouse innate immune

effector cells in Rag2/gc/FcRg�/� mice no longer have func-

tional activating FcgRs, which allowed us to study the interaction

of human antibodies with human target and effector cells in vivo.

Our work reveals that human IgG4 antibodies are able to deplete

target cells, and is fully consistent with recent in vitro studies

(Bruhns et al., 2009; Lux et al., 2013). Moreover, the presence

of B cells in all developmental stages expressing physiological

levels of the target antigen in all relevant organ structures and

niches is not reflected in the NOD/SCID model system reconsti-

tuted with human PBMCs in the peritoneum. Similar arguments

apply to transgenic mouse models that express human B cell

antigens, such as human CD19 and CD20, on mouse B cells

(but lack human innate immune effector cells), and to mice that

are transgenic for all human FcgRs, in which human serum anti-

bodies and the target human antigen are not present (Beers

et al., 2008; Gong et al., 2005; Yazawa et al., 2005; Smith

et al., 2012). Of note, the expression pattern of human CD20

on early mouse B cell progenitors in the bone marrow of human

CD20 transgenic mice seems to mimic the expression pattern of

mouse CD20, being virtually absent from pro-B and pre-B cell

stages (Gong et al., 2005; Uchida et al., 2004b). In contrast,

the expression of human CD20 in humanized Rag2/gc/FcRg�/�
mice fully resembled the human expression pattern. Another

attractive feature is the long-term reconstitution with human

immune cells, which may allow the activity of therapeutic anti-

bodies to be monitored over a longer observation period

compared with the transient availability of human cell subsets

in PBMC-reconstituted animals. Despite these advantages,

however, there are also obvious disadvantages, including the

variability in reconstitution and the genetic heterogeneity among

donors. This may require larger groups of animals to obtain

conclusive results, but in the end might mimic the human situa-

tion more closely. The other point to be considered is that the

human immune system in humanized mice represents a 4- to

6-month-old developmental stage and thus may not fully be

comparable to the immune system of an adult human. This

may explain at least in part some of the differences we observed

with respect to the level of FcgR expression and the overrepre-

sentation of certain cell types, primarily B cells, especially early

after reconstitution.
are shown in black, and high-affinity donors (HR-VV, HH-FV, and HH-VV) are

i-CD20 F(ab)2 fragment, and B cell counts were assessed 1 day after antibody

intact 1F5, or aglycosylated 1F5 antibody (PNGaseF). Statistical analysis was

ate values with a significant difference. *p < 0.05, **p < 0.01.
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By studying antibody-dependent B cell depletion in this model

system, we were able to show that the efficacy of target cell

depletion varied greatly depending on the anatomical site.

Thus, whereas mature B cells of the peripheral blood and the

spleen were depleted very effectively even by small antibody

doses, an at least 10-fold higher amount of antibody was

required to deplete mature B cells in the bone marrow. Although

immature B cells expressed only slightly lower levels of CD20

compared with mature B cells and were bound by the same

amount of cytotoxic antibody, they did not become depleted effi-

ciently even at high antibody doses, suggesting that the bone

marrow may represent a niche with low antibody-dependent

cell-mediated cytotoxicity (ADCC) activity. An alternative but

nonmutually exclusive explanation is that immature B cells are

somehow resistant to antibody-mediated depletion. A similar

but less pronounced effect could be observed in amodel system

of anti-CD20-mediated depletion of mouse B cells, in which a

5-fold higher dose was required to deplete immature B cells

effectively, consistent with earlier results (Hamaguchi et al.,

2005). Further along these lines, immature mouse B cells ex-

pressing human CD20 as a transgene showed a similar resis-

tance to anti-CD20-dependent depletion (Gong et al., 2005).

The higher ADCC activity toward mature mouse B cells may be

explained at least in part by themuch higher affinity of themouse

IgG2a antibody subclass for the respective murine activating

FcgRI and FcgRIV, which are responsible for B cell depletion in

the mouse (Biburger et al., 2011; Hamaguchi et al., 2006; Beers

et al., 2010). With respect to earlier B cell subsets, which were

also bound by the CD20 antibody, their much lower expression

of CD20 may explain at least in part their resistance to depletion.

As this was not the case for immature B cells, however, other ex-

planations have to be considered. Apart from antibody availabil-

ity, a lack of effector cells required for B cell killing may have the

same effect on ADCC efficacy. CD16+ NK cells, however, were

abundantly present in the bone marrow. Moreover, CD33/

CD16+ monocytes negative for the early monocyte precursor

markers CD34 and CD117 were present in the bone marrow

and have the capacity to develop into fully functional human

macrophages (Tanaka et al., 2012; Li et al., 2013). It remains

possible, however, that although monocytes express all relevant

activating FcgRs and are involved in ADCC reactions in the

blood, they may not be involved in ADCC reactions in the bone
Figure 6. Efficiency of Anti-CD20-Dependent Depletion in Different Tis

(A) Flow-cytometry analysis to identify B cell populations in blood (CD45+C

CD45+CD19+CD10+CD34+IgM�; pre B cells: CD45+CD19+CD10+CD34�Ig

CD45+CD19+CD10�CD34�IgM+) of humanized Rag2/gc/FcRg�/� mice.

(B–D) Quantification of the indicated B cell subpopulations within human CD45+ c

of anti-CD20 IgG1 or PBS in blood (B), spleen (C), and bone marrow (D) by flow

158F/V genotype of the HSCs used to reconstitute themice was determined. Low-

donors (HR-FV) are shown in black, and high-affinity donors (HR-VV and HH-VV)

analysis was performed by ANOVA. If statistical differences were detected, su

and treated (1 mg, 10 mg, 100 mg) groups. Multiple comparisons were corrected for

*p < 0.05, **p < 0.01 (according to Bonferroni correction of three comparisons).

(E and F) Binding (E) and quantification of the binding (F) of 10 mg A647-labeled ag

spleen, and bone marrow 1 day after application as compared with injection of P

(G) Flow-cytometry analysis of humanized mouse (n = 3) or human (n = 3) bone

expression was compared between CD14high- and CD14low-expressing CD33+ c

See also Figure S3 and Table S3.
marrow. Alternatively, macrophages have been implicated as

ADCC effector cells in other tissues, such as the liver (Montalvao

et al., 2013; van der Bij et al., 2010). In the bone marrow of

humanized mice and humans, only very few CD68+ cells could

be detected, which may provide an alternative explanation for

the lower ADCC activity. Since a small level of cell depletion

could be achieved at high antibody doses, it will be interesting

to investigate the capacity of ADCC-enhanced antibodies (e.g.,

lacking branching fucose residues) to efficiently deplete B cells

in the bone marrow.

Thus far, we have not observed a correlation between the

efficacy of B cell depletion in the peripheral blood and spleen

of humanized mice or humans and the presence of high- or

low-affinity FcgRIIA and IIIA alleles, which have been correlated

with a better therapeutic outcome for lymphoma or breast can-

cer patients undergoing antibody therapy (Cartron et al., 2002;

Musolino et al., 2008; Weng et al., 2004; Weng and Levy,

2003). To obtain more informative results, we may need to focus

on larger humanizedmouse colonies that exclusively carry either

the high- or low-affinity allelic variants of FcgRIIIA and FcgRIIA,

respectively, and study B cell depletion especially in the bone

marrow. Altogether, this humanized mouse model should allow

a more detailed understanding of human IgG activity on the

background of a human immune system, and may become a

valuable preclinical test system to validate IgG-based immuno-

logicals. Given the capacity of human myeloid precursor cells

to develop into human osteoclasts, this mouse model may also

be suitable for investigating autoantibody-mediated bone loss

in human serum transfer arthritis models.
EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice were bought from Janvier, and Balb/c-Rag2/gc�/� (Rag2/

gc�/�) mice were provided by Hergen Spits (AMC Amsterdam). FcgRI-defi-

cient mice (FcgRI�/�) and FcgRIV-deficient mice (FcgRIV�/�) on the

C57BL/6 background, as well as fcer1g-deficient mice (FcRg�/�) on the

Balb/c and C57BL/6 backgrounds, were provided by Jeffrey Ravetch

(Rockefeller University) and Mark Hogarth (Burnet Institute). Balb/c-Rag2/

gc/FcRg�/� (Rag2/gc/FcRg�/�) mice were generated by crossing Balb/

c-Rag2/gc�/� with Balb/c-FcRg�/� animals followed by breeding to a ho-

mozygous deletion for all three respective genes. Mice were kept in the animal

facilities of Friedrich-Alexander-University Erlangen-Nürnberg and Rockefeller
sues

D19+IgM+), spleen (CD45+CD19+IgM+), and bone marrow (pro B cells:

M�; immature B cells: CD45+CD19+CD10+CD34�IgM+; mature B cells:

ells in humanized Rag2/gc/FcRg�/� animals treatedwith the different amounts

cytometry 1 day after antibody injection. The FcgRIIA-131H/R and FcgRIIIA-

affinity donors (HR-FF, RR-FF, and RR-FV) are depicted in red, medium-affinity

are shown in green. Horizontal lines indicate the statistical median. Statistical

bsequent Mann-Whitney tests were performed to compare untreated (0 mg)

by the Bonferroni method. Asterisks indicate values with significant difference.

n.s., not significant.

lycosylated anti-CD20 IgG1 to the indicated B cell populations in vivo in blood,

BS.

marrow CD33+ cell populations within the hCD45+ population. Human FcgR

ells. Shown is one out of three representative independent experiments.
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University under specific pathogen-free conditions in individually ventilated

cages according to the guidelines of the National Institutes of Health and the

legal requirements of Germany and the United States. Immunodeficient

Rag2/gc�/� and Rag2/gc/FcRg�/� mice were supplied with acidified drink-

ing water (pH 3.0) to minimize the risk of bacterial infections in these heavily

immunocompromised mouse strains.

Generation of Humanized Mice

Newborn Rag2/gc/FcRg�/� mice were irradiated at the indicated doses and

injected intravenously with 50,000–80,000 human HSCs 4–6 hr after irradia-

tion. HSCs were purified from umbilical cord blood with the written consent

of patients and according to the ethical guidelines of the University of Erlan-

gen-Nürnberg and the KlinikumFürth. In brief, PBMCswere isolated by density

centrifugation and CD34+ HSCs were purified using the Direct CD34 Progen-

itor Cell Isolation Kit, human (Miltenyi Biotec) according to the manufacturer’s

instructions. Isolated HSCs were frozen and stored in liquid nitrogen until

further use.

In Vivo Platelet Depletion Assay

The ability of murine activating FcgR to mediate human IgG effector functions

was analyzed by intravenous injection of 10 mg of a humanized anti-platelet

(clone 6A6-hIgG1) in C57BL/6, FcRg�/�, FcgRI�/�, and FcgRIV�/� mice

(all on the C57BL/6 background), and in Rag2/gc�/� and Rag2/gc/FcRg�/�
mice. As described previously, platelet counts in the peripheral blood of

individual mice were assessed before and 4 hr after 6A6-hIgG1 injection

with the use of an Advia120 Hematology System (Siemens) (Nimmerjahn and

Ravetch, 2005).

Fluorescence-Activated Cell Sorting Analysis

Fluorescence-activated cell sorting (FACS) analysis was conducted with

PBMCs isolated from the peripheral blood of humanized mice and human

cancer patients, with their written consent and according to the ethical

guidelines of the University of Erlangen-Nürnberg, by Ficoll density gradient

centrifugation. For bone marrow and spleen, we prepared single-cell suspen-

sions before proceeding to FACS analysis. The following antibodies were

used for staining of murine PBMCs and FcgRs in C57BL/6, Rag2/gc�/�,

and Rag2/gc/Fcg�/� mice: APC-conjugated B220 (clone RA3-6B6)

PerCP-conjugated B220 (clone RA3-6B6), fluorescein isothiocyanate

(FITC)-conjugated TCRb (clone H57-597), PerCP-Cy5.5-conjugated CD11b

(clone M1/70), PE-conjugated CD16/CD32 (clone 2.4G2), biotin-conjugated

CD45.2 (clone 104), CD64 (clone X54-517.1), PE-Cy7-conjugated CD62L

(clone MEL-14), FITC-conjugated IgD (clone 11-26c.2a), APC-conjugated

GR-1 (clone RB6-8C5), FITC-conjugated Ly6G (clone 1A8), biotinylated

IgM (clone II/41), and PE-conjugated CD43 (clone Ly-48) (all purchased

from BD Pharmingen). APC-H7-conjugated CD45 (clone 30-F11) was

purchased from BioLegend. PE-conjugated CD16 (clone 275003) was pur-

chased from R&D. PE-conjugated Nkp46 (clone 29A1.4) and PE-7-conju-

gated CD19 (clone 1D3) were purchased from eBioscience. The following

antibodies (purchased from BD Pharmingen) were used for staining of human

cells and FcR in humanized Rag2/gc/Fcg�/� mice: PerCP-conjugated CD3

(clone UCHT1), FITC-conjugated CD10 (clone HI10a), PerCP-conjugated

CD14 (clone M5E2), FITC-conjugated CD16 (clone 3G8), PE-conjugated

CD16 (clone 3G8), PE-conjugated CD16B (clone CLB-gran11.5), PE-conju-

gated CD19 (clone HIB19), PE-Cy7-conjugated CD19 (clone SJ25C1),

PE-Cy7-conjugated CD33 (clone P67-6), PE-conjugated CD34 (clone

8.G12), PerCP-conjugated CD45 (clone 2D1), APC-conjugated CD45 (clone

HI30), APC-H7-conjugated CD45 (clone 2D1), PE-conjugated CD56

(clone NCAM16.2), FITC-conjugated CD64 (clone 10.1), purified CD66c

(clone B6.2/CD66), PE-conjugated CD68 (clone Y1/82A) PE-conjugated

CD117 (clone 104D2), biotinylated IgD (clone IA6-2), biotinylated IgM (clone

G20-127), and PE-conjugated IgM (clone G20-127). FITC-conjugated CD11c

(clone 3.9) was purchased from eBioscience. Alexa647-conjugated CD32

(clone FUN-2) and PerCP-conjugated CD56 (clone HCD56) were purchased

from BioLegend. PE-conjugated human IgG was purchased from Jackson

ImmunoResearch. APC-Cy7-conjugated streptavidin for detection of

biotinylated primary antibodies was purchased from BD Pharmingen. The

following antibodies were produced in our laboratory: murine Alexa647-con-
246 Cell Reports 7, 236–248, April 10, 2014 ª2014 The Authors
jugated FcgRIV (clone 9E9), human biotinylated CD32B (clone 2B6), human

FITC-conjugated CD20 (clone 1F5), and human A647-conjugated CD20

(clone 1F5). FACS staining was generally conducted in the presence of unla-

beled CD16/CD32 antibody (clone 2.4G2; Serotec) as a murine Fc blocking

reagent, except for direct analysis of murine FcgRs. To increase the cell

number of rare cell populations, such as NK cells, in the peripheral blood

of humanized mice, blood from several animals was pooled. Experiments

were acquired on a FACSCantoII (BD) and analyzed using FACSDiva or

FlowJo software.

Cloning and Production of Antibodies

Human anti-CD20 IgG (clone 1F5) switch variants were generated as previ-

ously described (Nimmerjahn and Ravetch, 2005). In brief, total RNA was iso-

lated from the 1F5 hybridoma cell line (obtained from ATCC) and subjected to

50-RACE using the 50RACE System for Rapid Amplification of cDNA ends

(Invitrogen) according to the manufacturer’s instructions. The sequences of

the specific primers were as follows: 50-gac agg gat cca gag tt-30 (IgG2a

heavy-chain gene-specific primer 1), 50-gta ctc tag agg tca agg tca ctg gct

ca-30 (IgG2a heavy-chain gene-specific primer 2), 50-cct gtt gaa gct ctt gac

a-30 (k light-chain gene-specific primer 1), and 50-gta ctc tag agg gtg aag ttg

atg tct tgt c-30 (k light-chain gene-specific primer 2). The light- and heavy-chain

variable regions were cloned in pCR-Topo-Blunt (Invitrogen) and confirmed by

sequencing. Primers for PCR amplification of variable regions and subsequent

cloning were derived from the resulting sequence information: 50-cgt aga att

cac cac cat ggg atg gag ttg tat cat c-30 (1F5 VH) and 50-cgt aga att cac cac

cat gga ttt tca agt gca gat tt-30 (1F5 VL). The heavy-chain variable region

was fused to heavy-chain constant regions of the human IgG subclasses

and cloned into the eukaryotic pBos expression vector via EcoRI and KpnI re-

striction sites. The kappa light-chain variable region was fused to the human

kappa light-chain constant region and cloned in the pCMV vector via NcoI

and XhoI restriction sites. Antibodies were produced by transient transfection

in HEK293T cells and subsequent isolation from the cell culture supernatant by

ammonium sulfate precipitation and protein G purification as previously

described (Nimmerjahn and Ravetch, 2005). The integrity of the produced

switch variants was confirmed by reducing PAGE. The F(ab)2 fragment of

the antibody was generated by digestion with pepsin for 2 hr at 37�C in a buffer

of 0.1 M sodium citrate (pH 3.5) followed by dialysis against PBS. Deglycosy-

lation of anti-CD20 IgG was achieved by digestion with 50 U/mg PNGase F

overnight at 37�C.

Anti-CD20 IgG-Induced B Cell Depletion In Vivo

Anti-CD20 IgG switch variants were intravenously injected into 12- to 16-

week-old humanized Rag2/gc/FcRg�/� mice at the indicated amounts. B

cell counts in peripheral blood were analyzed by flow cytometry before and

1 and 7 days after antibody injection. B cell counts in spleen and bone marrow

were analyzed 1 day after antibody application.

ELISA-Based Assays

Serum of humanized Rag2/gc/FcRg�/� mice was analyzed for the presence

of humanC3 protein by a sandwich ELISA using goat human antibody comple-

ment C3 F(ab)2 fragment (Cappel) as the capture antibody and peroxi-

dase-conjugated goat IgG fraction to human complement C3 (Cappel) as

the detection antibody. For comparison, human serum and C57BL/6 serum

were used as positive and negative controls, respectively. For quantification

of total serum IgM and IgG in humanized mice, the Bethyl Human IgM ELISA

Quantitation Kit and the Human IgG ELISA Quantitation Kit (Biomol) were

used according to the manufacturer’s instructions. Optical density was

measured with a VersaMax tunable microplate reader (Molecular Devices) at

450 and 650 nm.

Isolation of Genomic DNA and Genotyping

Human FcgRIIA-131H/R and FcgRIIIA-158F/V polymorphisms were deter-

mined as previously described (Baerenwaldt et al., 2011). In brief, 250 ml of

umbilical cord blood samples was taken and stored at �20�C before HSCs

were isolated. Genomic DNA was isolated with the QiaAmp DSP Blood Mini

Kit (QIAGEN) following the instructions of the distributor. To identify the



FcgRIIA-131H/R and FcgRIIIA-158F/V allelic variants, allele-specific nested

PCRs were performed as previously described (Baerenwaldt et al., 2011).

Osteoclast Differentiation

Total single-cell bone marrow preparations of humanized Rag2/gc/FcRg�/�
mice or human peripheral blood (after red blood cell lysis) were cultured

overnight with 30 ng/ml of human M-CSF. For osteoclast differentiation, the

nonadherent cells were cultured further in a-MEM supplemented with 10%

heat-inactivated fetal calf serum, glutamine, penicillin, and streptomycin (all

from Invitrogen); 30 ng/ml human M-CSF; and 50 ng/ml hRANKL (PeproTech).

After 14 days of culture, the cells were stained for TRAP by using Leukocyte

Acid Phosphatase Kit 386A (Sigma-Aldrich) to identify osteoclasts. To deter-

mine osteoclast activity, the OsteoLyse Assay Kit (Lonza) was used according

to the manufacturer’s instructions. In brief, 100,000 nonadherent cells were

seeded and after 7 days under osteoclast differentiation conditions, the

supernatant was collected. The released fluorescence in the medium was

measured using a time-resolved fluorescence fluorimeter (Wallac Victor3;

PerkinElmer).

Statistics

The statistical significance of the data was determined as indicated in the

figure legends. In brief, the Mann-Whitney test or Wilcoxon signed rank test

was applied to compare two experimental groups, and the Kruskal-Wallis

test or ANOVA (and subsequent post hoc tests or Mann-Whitney test and

Bonferroni correction) were used to determine statistical differences between

more than two groups. To indicate different levels of significance, a p value of

0.05 was assigned one asterisk, and a value smaller than 0.05 but larger than

0.001 was assigned two asterisks.
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