
Discrete Applied Mathematics 6 (1983) 173-191

North-Holland

173

BIN PACKING AND MULTIPROCESSOR SCHEDULING

PROBLEMS WITH SIDE CONSTRAINT ON JOB TYPES

I. MORIHARA

Yokosuka Electrical Communication Laboratory, N. T. T., Yokosuka-shi, Japan

T. IBARAKI* and T. HASEGAWA

Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University,
Kyoto, Japan

Received 6 August 1980

Revised 3 May 1982

This paper deals with the bin packing problem and the multiprocessor scheduling problem both

with an additional constraint specifying the maximum number of jobs in each type to be pro-

cessed on a processor. Since these problems are NP-complete, various approximation algorithms

are proposed by generalizing those algorithms known for the ordinary bin packing and

multiprocessor scheduling problems. The worst-case performance of the proposed algorithms are

analyzed, and some computational results are reported to indicate their average case behavior.

1. Introduction

This paper studies the multiprocessor scheduling problem and the bin packing

problem, which have a side constraint concerning the number of jobs of the same

type to be processed on each processor. This problem arises in various production

situations, typically in the following problem setting.

Let n types of machines Mi, MI, . . . , M,, be used to produce n types of goods

I,,&, ***, Z, respectively. A machine M, produces a unit of good 1, a day, requiring

Ui workers. The number of available machines of type M, is mi for i= 1,2, . . . , n.

Our goal is to produce bi units of 1, within a certain time span. Then, the following

two problems can be considered.

Problem 1. Assuming that the number of workers usable in a day is at most P,

minimize the number of days needed to produce all the required goods.

Problem 2. Assuming that the number of days spent to produce all the required

goods is limited to T, minimize the maximum number of workers needed a day.

All the numbers r P, ai, bi and mi are assumed to be positive integers. The con-

*Currently with Dept. of Information and Computer Sciences, Toyohashi Univ. of Technology,

Toyohashi, Japan.

0166-218X/83/$3.00 0 1983, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82751034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

174 I. Morihara et al.

ditions ai~P in Problem 1 and rbi/mil 5 T in Problem 2 must hold for

i=l,2,..., n in order that the problems are feasible.’

If we remove from Problems 1 and 2 the constraint that at most mi machines can

be used in a day (we call this the machine constraint), we obtain the standard bin

packing problem and multiprocessor scheduling problem, respectively. These pro-

blems are known to be NP-complete, implying that it is most unlikely to have effi-

cient algorithms to obtain exact optimal solutions [3,4,5,7,8]. Hence we consider

approximation algorithms based on heuristics for Problems 1 and 2 in the subse-

quent discussion.

Heuristics such as first fit (FF), best fit (BF), first fit decreasing (FFD) and best
fit decreasing (BFD) are known [6] for the bin packing problem. Also heuristics

largest processing time (LPT) and multifit (MF) have been studied [l, 41 for the

multiprocessor scheduling problem.

In this paper, we extend these approximation algorithms to our problems by tak-

ing into account the machine constraint. We investigate their worst case behavior

theoretically and also their average case behavior by computational experiment.

In Sections 2-6, approximation algorithms (some of which are direct adaptations

of the previously known algorithms, and others are new) are introduced and their

worst case behavior is examined. For Problem 1, the approximate values obtained

by each algorithm don’t exceed the optimal values by more than 100%. For Problem

2, the approximate values obtained by LPT algorithm don’t exceed the optimal

values by more than 33.3%. It is also shown that these are the best possible bounds.

Finally in Section 7, the average case behavior of these approximation algorithms

is examined by the computational experiment. Test problems are randomly

generated. In all cases, if we adopt an appropriate approximation algorithm, we can

obtain approximate solutions whose average errors from the optimal values are

within about 16%.

2. Approximation algorithms for Problem 1

Ifb;=mi=l holdsforalli=l,2,..., n in Problem 1 (i.e., the machine constraint

vanishes), it is the so-called bin packing problem.

Bin Packing Problem. Given a list A = { ai, a2, . . . , a,} of positive integers represent-

ing the sizes of n elements and an arbitrary number of bins with capacity P, place

all the n elements into a minimum number of bins such that the level of each bin

does not exceed P, where the level of a bin is the total size of the elements placed

in it.

Then Problem 1 can be described as the bin packing problem with an additional

’ For a real number A, [Al (LA]) denotes the least (largest) integer value not less (not more) than A.

Bin packing and multiprocessor scheduling problems 175

constraint: Given three lists A={a,,az ,..., a,}, B={bl,bz ,..., b,} and

M={ml,m2,..., m,} of positive integers, indicating that there are bi number of

elements Ai with size ai, and an arbitrary number of bins with capacity P, denoted

BIN,,BIN,,..., place all Ai’S (i= 1,2, n) into a minimum number of bins such

that the level of each bin does not exceed P and the number of Ai’s placed in a bin

does not exceed m;.
In the following we propose some algorithms for Problem 1 by generalizing the

known approximation algorithms for the bin packing problem.

First Fit (FF) Algorithm. Each Ai (recall that there are bi Ai’s) is placed one at a

time into BINi with the least j among those having the level sP- ai and having at

most Wli - 1 Ai’S. This placement is executed in the order of i = 1,2, . . . , n.

Best Fit (BF) Algorithm. Each Ai is placed one at a time into BIN, with the maxi-

mum level among those having the level IP- ai and having at most mj - 1 Ai’S (the

least j is selected if the tie occurs). This placement is executed in the order of

i-l,2 ,..., n.

FDA Algorithm (BDA Algorithm). Arrange indices i in the nonincreasing order of

ai and apply FF (BF) algorithm in the resulting order of i.

FDC Algorithm (BDC Algorithm). The parameters

ci= rbi/mil for i= 1,2,n (I)

represent the number of bins needed to place bi Ai’S only. Each ci may represent

the strength of the machine constraint. Thus arrange indices i in the nonincreasing

order of Ci (if C, = Cj and ai> aj (i#j), let i be ahead of j) and apply FF (BF)

algorithm in the resulting order of i.

FFC Algorithm. Note that TLow = max{ r Ii aibi/PJ , max,(c;)} is a lower bound

of the number of the required bins. Partition the elements into three sets as follows.

S,=(A;(ai>+P},

Then execute the following steps.

Step 1. Place all the elements A;ES~ (there are bi Al’s) into the bins according

to FDA algorithm.

Step 2. For each Ai E Sz, partition bi Ai’S into C groups, where C=maxi(c,),

such that the number of Ai’s in group j, denoted by b,, satisfies

mi, llj~Ci_1

b,= bi-mi(ci- l), j=C;

0, j>c;.

176 I. Morihara et al.

If Sz contains elements Ai,, Ai,, . . . , Ai,, place b,j of Ai, into bins in the order of

I= 1,2, k according to FDA algorithm, and repeat it for j = 1,2, . . . , C.

Step 3. In the same way as Step 2, place all elements Ai E S3 into bins.

3. Approximation algorithms for Problem 2

Recall the following problem.

Multiprocessor Scheduling Problem. Given n nonpreemptive (i.e., cannot be

divided) independent jobs and T identical processors, minimize the total timespan

required to process all the jobs.

Problem 2 can be considered as the multiprocessor scheduling problem with an

additional constraint. We state it in the context of the bin packing problem. Given

three lists A ={ar,a2 ,..., a,}, B={br,bz, b,) and M={mr,m, ,..., m,> of

positive integers, and T bins BIN,, BIN,, . . . , BINr, place bj Ai’S (i = 1,2, . . . , n) into

these bins under the restriction that the number of Ai’s placed in a bin is at most mi

for i=l,2,..., n, so that the maximum level of the bins is minimized.

Largest processing time (LPT) algorithm and the multifit algorithm known as

approximation algorithms for the multiprocessor scheduling problem can be

generalized as follows.

LPT Algorithm. Arrange the indices i in the nonincreasing order of ai. Each Ai

(recall that there are pi Ai’s) is placed one at a time into BINj with the least j

among those currently having the minimum level and having at most mi - 1 Ai’S.

This placement is executed in the order of i = 1,2, . . . , n.

Multifit Algorithms. Tentatively we give a capacity P to the bins and apply a bin

packing algorithm of Problem 1. Let T,(P) denote the number of necessary bins

when Algorithm X (such as FF, FDA and FDC) is applied to a given P. If

T,(P)5 T, reduce the value P; otherwise increase the value P. Then repeat the

same procedure. After testing an appropriate number of P’s in the above manner,

the smallest P satisfying the constraint is output as an approximate value. The

search of P is usually done by binary search method.

We call the above multifit algorithms MFFF, MFFDA and MFFDC depending

upon X= FF, FDA and FDC respectively. It is shown in [8] that a feasible value P

can be found by MFFDC algorithm between PLOW and 2Prow, where

P ,ow=maxjr~a,bi/Tl,max(oi)j.

For MFFF and MFFDA algorithms, the same lower bound and a trivial upper

bound T x PLOW - T+ 1 are used [8]. The P’s are then searched in these intervals

by binary search.

Bin packing and multiprocessor scheduling problems 171

Finally, it is also possible to consider a multifit algorithm for Problem 1 in the
dual manner by repeatedly using the LPT algorithm for Problem 2. The resulting
algorithm is called MFLPT. A feasible value of T can be obtained in the interval

ITLOW, 2TLow], where

4. Worst case behavior of the algorithms for Problem 1

The worst case behavior of approximation algorithms for the bin packing pro-
blem has been analyzed by many researchers. The known worst case bounds for FF,
BF, BDA, FDC and BDC algorithms against the optimum value ToPT are as
follows:

GF (TBFI~ZTOPT +2 and %A (TBDA, TFDC, TBDC)~$%T+ 4,

where TX denotes the number of necessary bins by algorithm X.
However, if the machine constraint is imposed, these bounds ae no longer valid

as shown in the following examples.

Example 1. Let PL 1 be a given integer and let A = { 1, l}, B = {P(P- l), P},

M={P, l}. Then TopT= P and TFF = TBF = TFDA = TBDA = 2P - 1 hold as illustrated
in Fig. 1.

Example 2. (i) Pc~. Let A ={l, l}, B={P2,P} andM={P, l}. Then TopT=P+ 1
andT,oc = TBDC = 2P hold as easily proved.

(ii) P23. Let A={l,l), B={(P-1)2,P-l} andM={P,l} (i.e., c,=c2). Then
T OPT = P - 1 and T,,, = TBDC = 2P - 3 hold as illustrated in Fig. 2.

2 T
._
a

% f

3 P-l
.r
:

!
1 I

F-P k-- P-1 t-y

number of bins

(a) Optimal placement (b) Placement by FF, BF, FDA and BDA

Fig. 1. Worst case example of FF, BF, FDA and BDA algorithms for Problem 1.

T -

178 I. Morihara et al.

Furthermore, we show by the following theorem that these examples exhibit the

worst cases for the proposed algorithms.

Theorem 1. For any instance of Problem 1,

holds, where P is the capacity of bins. Furthermore these bounds are best possible.

Proof. We consider only algorithm FF since others can be similarly treated. If

a,>+P for all i= 1,2, n, TFF= To,, is obvious. Otherwise, let h be the maximum

index of the bin which contains an element Ak with the size a,l+P and let A, be

the element with the minimum size among those satisfying a;> +P and placed in

BIN, with h<jl TFF by algorithm FF. Then each BINj with h<jl TFF contains

exactly one element, and

(the level of BINI) z P - a, + 1 (2)

holds for 1 I 1 I h. Since the number of Ai with the size ai> +P obviously must not

be more than TOPT, we have

hz TFF- TopT. (3)

Now let the number of bins BINj with j < h which have mk Ak’s be ck, where Ak

satisfies ak I +P and is placed in BIN, according to algorithm FF. Each BIN, with

1515 h - 1, which does not contain mk Ak’s, satisfies

(the level of BINJ 2 P - ak + 1. (4)

p P-2 -+-- P-l 1

number of bins

(a) Optimal placement (b) Placement by FDC and BDC

Fig. 2. Worst case example of FDC and BDC algorithms for Problem 1.

Bin packing and multiprocessor scheduling problems 119

By cks TopT and c,r &+ 1 (see (1) for the definition of ck), we also obtain

$5 TopT- 1. (5)

Then the following inequality holds.
Case (i): h = TFF. Then we have

P TopT~(P-ak+l)(TpF-~k-l)+mkakCk+ak (by (4))

r(P-a,+ l)Tpp-(P-2ak+ l)(Zk+ 1) (by ~2 1)

r(P-a,+ l)Tpp-(P-2ak+ l)To& (by (5)).

This is equal to

1

P-a,+ 1 >
TOPT,

implying by a,s+P (i.e. (P-a,+ l)>O) that

Case (ii): h 5 TFF - 1 and ak2P-a,+ 1.

PToPT~a,(TF,-h)+(P-ak+l)(h-i;k-l)+mkak~k+ak

za,(Tp,-h)+(P-ak+ l)(h-r,- l)+ak(Ck+ 1)

=a,Tpp+(P-a,-ak+ l)h-(P-2a,+ l)(ck+ 1).

By P-a,-ak+ 110, hs TpF- 1, a,s+P and Ck+ 1~ TopT, we obtain

PTopTZa,TpF+(P-a,-ak+l)(TFF-1)-(P-2ak+l)TOpT,

which is equal to

’
P-a,+1

This implies

Case (iii): h I TFF - 1 and ak I P - a, + 1. By using relations (2) and (4), we have

PTopT?a,(T,,-h)+(P-ak+ l)(h-ck- l)+(P-a,+ l)(&+ 1)

=a,TFp+(P-a,-ak+l)h-(a,-ak)(~kkl)

rarTpp+(P-ar-ak+ ~)(TFF- TopT)-(a,-ak)TopT

(by (3) and (5)).

180 I. Morihara et al.

Then,

implying

1

P-a,+ 1 >
Tom 3

The second half of the theorem statement is obvious from Example 1. 0

Theorem 2. For any instance of Problem 1,

GDC (GDc)(

(z- &)Tor~ (Pz3)9

(2-&)TOPT (f'52)

holds, where P is the capacity of bins. Furthermore, these bounds are best possible.

Proof. The proof is similar to that of Theorem 1, but more involved. The details

are given in [8]. 0

Theorem 1 can also be applied to FFC algorithm showing TFFC I (2 - l/P)TopT.
But this bound does not seem to be best possible. We have not been able to find an

example satisfying TFFC r $ To,, . Also, a bound for MFLPT algorithm, TMFLPT5

2 TO~T - 1 is known [8]. In this case again, we have not found an example satisfying

5. Worst case behavior of the LPT algorithm for Problem 2

The LPT algorithm for Problem 2 with bj = mj = 1 (the multiprocessor schedul-

ing problem) is known to have the best possible bound PL,,/POPT< 0 - 1/3T,

where T is the number of bins [4]. This can be extended to general Problem 2.

Theorem 3. For any problem instance of Problem 2, we obtain

PLIJT 4 1
-I-----,

Pow 3 3T

where PoPT is the maximum level of the bins obtained by an optimal placement,
P LpT is the one obtained by LPT algorithm, and T is the number of bins. This
bound is best possible.

We give some lemmas before proving this theorem.

Bin packing and multiprocessor scheduling problems 181

Lemma 1. Without loss of generality, we can assume mi = 1 for i = 1, 2, ., . , n in
proving Theorem 3.

Proof. If m,z2, decompose the b; Ai’s into mi groups, Ai,, Aizr . . . , Aim;, and
define b, and mti by

bi,=bi,=... = bik = rbi/mil (5 T),

bi,k+l= *** = bi,, = Lbi/mi J a (6)

mi,=mi2=...=mim=1,

where k = bi - (Lbi/mi J)mi. Obviously I:! I b, = bi and CyY I mij = mi.
Now, if mi Ai’s are placed in a bin by LPT algorithm in the original setting, we

consider that exactly one of them belongs to each of the mi groups. By the nature
of LPT algorithms, it is not difficult to see that such placement also results when
LPT algorithm is applied to the newly grouped list. The same argument also applied
to the case in which less than mi Ai’s are placed in a bin.

Next it is easy to prove that the original and modified problems have the same
POP-,.. Therefore, the ratio PLp, /POPT obtained for a general problem does not
exceed the maximum of PLPT/POPT obtained for problems with restriction mi = 1
(i=1,2 ,..., n). q

By this lemma, we assume mi = 1 for all i = 1,2, . . . , n in the subsequent
discussion.

Let Pj,i denote the level of BINj when the placement of all Ai’S has been just
completed by the LPT algorithm.

Lemma 2. For any two bins, BIN, and BIN, (rcs), we have

Ips,impr,il ~mdPs,i-l -P,i-Il,ail.

Proof. Assume without loss of generality that Ps,i_, <P,,i_,. Then, Ai is placed
either in BIN, only or in both BIN, and BIN,. The above inequality is an im-
mediate consequence of this observation. 0

Lemma 3.

Proof. Obvious from Lemma 2. 0

Lemma 4. Zf max{Pj,nlj=l,2 ,..., T}-min{Pj,n[j=1,2 ,..., T}lfPoPT, then

PLPT 4 1 -s---_.
POPT 3 3T

182 I. Morihara et al.

Proof. Since PLPT = maX{Pj,n (j = 1,2, . . . , T}, we obtain

P~PT+(T-l)(P~P~-~PO~T)IPL~~+(T-l)min{Pj,~)j=1,2,...,T)

I i a;biITPo,,.
i=l

This implies

PLPT 4 1 -<----_ 0
POPT 3 3T

Lemma 5. Consider the time when we have placed Ai’s satisfying ai > +POPT accord-
ing to the LPT rule. For simplicity assume that Pj,[satisfy P,,i 5 Pz,i I ... I P,,i by
rearranging bins if necessary. Then, for any h(1~ h 5 T), C,?, Pj,i 5 C,?=, Pi i holds
for the levels Pi i obtained by any placement of A, ‘s, A2 ‘s, . . . , Ai’S, where Pi i are
also arranged in the order of P;,is P;,i 5 **a I Pb,. In particular, this implies

pj, i s POPT-

Proof. Let pj,i denote the level of BINj for the placement of the same set of
elements, which minimizes C,?=, pj, i, where i-j,, i I & i I --a I P, i I PopT is assumed.
The number of elements placed in a bin is no more than two, because each element
has the size greater than +POPT. Then, for notational simplicity, we consider that
exactly two elements are placed in each bin, by assigning fictitious elements of size
zero to the bins containing less than two elements. The lemma is proved by showing
the equality I,?=, pj,i = C,r=, Pj,i by induction on T.

For T= 1, this equality is obvious.
Assuming C,‘, ,, pj* i = C,?= h Pj, i for TI k, we show x:2, ~j, i = Cjzi Pj,i for

T=k+ 1.
NOW assume Cr_‘i ~j,i< C)zi Pj,i, i.e. there exists a pair r and s with 1 IT<SI

k+ 1 such that the elements in BIN, and BIN, assigned by optimal placement are
not consistent with the LPT rule (otherwise the optimal placement must be equal
to the LPT placement). Let elements Ad and A, be placed in BIN,, and elements
Af and A, be placed in BIN,, where d>e and f >g, i.e., ad<& and af ‘a, (see Fig.
3). Thus

pr,i=ad+a, and p,i=af+a,. (7)

Furthermore,

either ad 5 a, < af 5 ag of ad<af’a,<a,Aeff (8)

holds, since in all other cases the elements in BIN, and BIN, are consistent with the
LPT rule, as easily checked. (For example, ad< af < a,< ag is not consistent with
the LPT rule; Af must be placed in BIN, by the LPT rule because BIN, has a
higher level than BIN, when A, is placed.) We consider the following six cases
separately.

Bin packing and multiprocessor scheduling problems 183

(I) r<h-1, h<s. (II) r=h-1, h<s.

(III) r<h-1, s=h. (IV) r=h-1, s=h.

(V) r<ssh-1. (VI) hsr<s.

Case (I). Consider the new placement by switching Ad and Af, i.e. p,; = a, + af,
ps,; = ad + ag, where ~j,; denotes the level of BINj by this new placement (the index

j of ~j,; and ~j, i refers to the same bin; Pj,J;i are not rearranged in the nondecreasing

order of 13JLi). Obviously ~~,;<~l;i<~s,i and Pr,i<Fs,i<Ps,i hold by (7) and (8)

(and P,,, = Pj,i for j # r, s hold).

The following four cases are possible.

Now rearrange the bins in the nonincreasing order of Fj,i, and denote the resulting

order by B,,iI~~iI...I~~+,,i.

Case (1.1). By PS,i>FS,i, we have

k+l kfl k+l

C pj,i> jFh pj,i- (ps,i-ps,i> = jJIh pj,i.
j=h

But this contradicts the assumption that the initial placement minimizes 1::; Pj,i.

Case (1.2). By Ps,i>Fr,i, we obtain a contradiction in a manner similar to Case

(1.1).

Case (1.3). By the assumption h<s, we have Ph-i,i~Fh,i~P~,i. If Ph_rl,i<PS,i,

it holds that

k+l k+l k+l k+l

C p,i>,~h~j,i-(l',i-ph-*,i)=,=~_~~~i= C fii.
j=h j=h

j+s

(9)

T
P

r,i

r s

Fig. 3. BIN, and BIN, in the proof of Lemma 5.

184 I. Morihara et al.

This is again a contradiction to the minimality of Cr,‘f ~j,i. On the other hand, if
ph _ i, i = P,,, i = p, i, we regard the new placement with ~j, i as the optimum Pj, i, and
repeat the argument given so far. The new placement however, satisfies p$, i <ps,; =

phh,i and pr,i<ps,i = ph,i. If the number of bins with the level ph,i is (Y, therefore,
this argument repeats at most a times.

Case (1.4). By the assumption r<h, we have ~~,il~~,i. If I’,,iC~h,i, it holds
that

k+l k+l k+l k+l

contradicting the minimality of Cy,+i Fj,i. On the other hand, if Pr,i=Ph,i, it can
be treated similarly to the second case of (1.3).

Cases (II)-(We also consider the new placement ~j,i defined in Case (I).
Then, the following eight cases are possible.

(II. 1)
(11.2)
(11.3)

(III. 1)
(111.2)

(IV-l) ph-2 i<Pr iIPs i<P
(IV 2) p _ ,<p.._p’.<phii,i’ h 2.1 S,I < r, r h+l,i*

Applying an argument similar to Case (I), we obtain a contradiction in each of the
above cases.

Case (V). We construct the new placement with level ~j,i from the placement
with level ~j,i by switching the elements in BINj with 11jl h - 1 SO that BINj’s for
1 rjr h - 1 are consistent with the LPT rule.

Arrange all the bins in the nonincreasing order of ~j,i, and denote the resulting ^ ^
order by P,,ilP2,il... I Fk + 1, i. Then we have Cjkzi Pj, i = Cik_+L ~j, i = Cik_+l Fj, i 3

because

by the optimality of LPT algorithm for T= h - 1 I k. Therefore, we consider the
new placement with ~j, i as an optimum iSj,i and repeat the same argument.

Case (VI). Similar to Case (V), we consider the new placement by switching the
elements in BINj’S for h sjl k + 1 according to the LPT rule and repeat the argu-
ment given so far.

Consequently, we can assume that there exists no pair of bins which are not con-
sistent with the LPT rule. So we obtain CJJi ~j,i = Cjk_+i Pj,i for any h, proving the
lemma statement. 0

Proof of Theorem 3. Place all the elements Ai’S with ai>+PopT by the LPT
algorithm, and assume that P,,JI P2,15 ... I P,, holds by rearranging bins if

Bin packing and multiprocessor scheduling problems 185

necessary, where Z is the maximum index i of the element with ai > fPoPT (recall
that al 2 az.*. >a, is assumed).

Then, we classify the bins into the following three sets.

Sz= {BIN, 1 ~PoPT<P~,,--P~,~I~PoPT}, (11)

S~={BINJ I3POPT<Pj,,--P1,IIPOPT}.

(By Lemma 5, we have P,,I PopT .)

We then place bi Ai’s for each i=Z+ 1, . . . , n according to the LPT algorithm.
During this process, construct three other sets Sk, S; and St, where Si = S; = S;= 0
holds initially (i.e., when the placement of Al’s is completed). We move some
elements in S,, S3 or S; to S;, S; or S; respectively by the following rule, when the
placement of bi Ai’s is completed for i=Z+ 1, . . . , n.

(1) For BIN, E Sz, if there exists BINj E Si US; satisfying Pr,; (Pj,;, move BIN,
to s;.

(2) For BIN, E S3, if there exists BINj E S, U S; satisfying PS, i I Pj, ;, move BIN,
to s;.

(3) For BIN, ES; U S3, if there exists BINj E Si US; satisfying P,; 5 Pj,;, move
BIN, to S;.

Let Si,; denote the set Si when the placement of Ai’s is completed. We similarly
define S2,;, Si, ;, Ss,;, Si,; and S&.

Then the following three cases are considered separately.
Case (i): Ss, n # 0. Consider the placement in BIN, E Si, n U Si, ,, U Sz, n, BIN, E Si, n

and BIN, E S; n. If one Ai (I+ 1 I is n) is placed in BIN, E &, the same Ai is also
placed in BIN, because Pr,; > Pq,; has been maintained for all i= Z+ 1, . . . , n by the
LPT rule (otherwise BIN, has been moved to S; or S;). So, the Ai in BIN, can not
be moved to bins in Si, ,, U Si, n U S,, ,, by condition mi = 1.

We define P& for BIN, E S;, n as follows.

P:,, = PS,, - (the sum of ai’s (I+ 1 I is n) which are placed in
BIN, but not placed in BIN, E Si, n U S;, n U Sz, .). (12)

Assume that BIN, has been moved from S3 to S; when the placement of Al’s is
completed. Then, any Ai with Z+ 1 sill placed in BIN, are also placed in BIN,,
and Ak with I + 1 I kl n placed in BIN, E Sf,n are also placed in BIN, and in
BIN,ES;,, because Ps,i>P4,; for Zlill-1 and Pr,k>Ps,k for Iskrn.

Both BIN,E?& and BIN,E& are initially included in S3,1, and hence
IPr,,-PS,,J I fPopT by definition of Ss. Applying Lemma 2 for i = Z+ 1, . . . , n, we
obtain Pr,, - PS,, 5 fPoPT (Pr,, > PS,, because BIN, E S3,, and BIN, E S;, ,). Since any
Ak with I+ 15 kin placed in BIN, is also placed in BIN, and BIN,, and P,,,>

PS,, 1 P& is obvious by BIN, E Ss,, , we obtain Pr,n -P:, I P,,, - PS,, s +POPT, i.e.

PLPT - P& 5 +POPT

since one of the BIN, E Ss,, satisfies PLPT = Pr,n.

(13)

186 I. Morihara et al.

For BIN, E S; n, we define Ptn in the same way as Pzn of (12). Then, applying

the same argument as above,

&T - P& 5 +pom

also follows.

(14)

By Lemma 5, the LPT algorithm minimizes C,‘= Tea+, Pj,~, where (Y is the number

of bins included in Ss,, U S;, US;:, (i.e., the sum is taken over the set of bins in

SVJJS&JS;:.).
Now assume that some number of elements Ai’s (for some i with Z+ 1 I is n) are

placed in bins in S,, n U Si, n U S{, and cannot be moved to BIN, ES,,.US~,.US~,~

by condition mj = 1 (i.e., Ai’s are already placed in all bins in S,,, U Si,, US,,,). The

condition on A; then implies that at least the same number of Ai’s are placed in

bins in S,,, U S;,, US;, in the optimal placement. These observations lead to the

following inequality.

From (1% (14), Property &r = P,.n for some BIN, E S3,n, and property

PLPT - Pr, n 5 ~POPT for all BIN, E Ss, ,, , we obtain

PLPT+@- lwLPT-+POpT)--(aPopT,

I 1

T(k-1) j j

P-------T
number of bins

I’ v T-1 ----I

(a) Optimal placement (b) Placement by MFFF and MFFDA

Fig. 4. Worst case example of MFFF and MFFDA algorithms for Problem 2.

Bin packing and multiprocessor scheduling problems

which is equal to

187

P,,, 4 1 4 1
-~_-_.__I-__

PoPT 3 3a 3 3T
(by as T).

. .
Case (11): & = 0 and ,!& U S;.#O. Consider the placement in BIN, E Si,,,

BIN,G,,W;,n, BIN, E Si,, and BIN, E Sl n. Treating BIN, in the same manner as

in Case (i), we can obtain

P LPT 4 1 -s----_
POPT 3 3T

Case (iii): S3,n = 0 and Sz, n U S;, = 0. For any BINj (1 $ I T), we have,

P LPT-Pj,nn~p~~~* Therefore, we obtain by Lemma 4 that

PLPT 4 1 -s----_
POPT 3 3T

Finally, this bound is best possible since it is the best possible bound for the

multiprocessor scheduling problem (i.e., Problem 2 with b, = mi = 1) [4]. 0

6. Worst case behavior of the multifit algorithms for Problem 2

The worst case bound of MFFDA algorithm known for the case of bi = mi = 1 [l]

*O is PMFFDA/POPTsi7. But, if b, #mj, the worst case bounds for various multifit type

algorithms become much worse as shown below.

number of bins

(a) Optimal placement

or I

T -

(b) Placement by MFFDC

Fig. 5. Worst case example of MFFDC algorithm for Problem 2.

188 I. Morihara et al.

PMFFF U’MFFDA) 5 TJ’OPT - T+ 1

I (2 - &)Po,, CT odd),

PMFFDC 5

2POPT - $ (T even)

where T is the number of bins. The proofs for these results are found in [8]. Further-
more, these bounds are best possible as shown below.

Example 3. Let A = (1, l}, B= { T(k- l), T} (k is a positive integer),
M={T(k-l),l} and T21. ThenPoPT= k and PMFFF = PMFFDA = T(k - 1) + 1 hold
as illustrated in Fig. 4.

Example 4. If T is odd, let A ={ 1, l}, B={ Tk-+(T+ l),+(T+ l)} and M=

{ L2Tk/‘(T+ I)- 11, I} (k is a positive integer). Then ToPT = k and TMFFDC =

L(2 - 2/(T+ l))k] hold as illustrated in Fig. 5. On the other hand, if T is even, let
A={l,l}, B={Tk-+T-l,+T+l} andM={L2k-4/T-11,1} (kisapositivein-
teger). Then ToPT = k and TMFFDC = L2k- 4/T] hold as illustrated in Fig. 5.

a
max = 5o

mi=rbixrJ

MFLPT

1.0 I r
.l .2 .3 .4 .5 .6 .7 .8 .9 1.0

Fig. 6. Computational results for Problem 1.

Bin packing and multiprocessor scheduling problems 189

Table 1

Computational time for Problem 1 in milli-seconds

n FF

10 0.65

20 1.45

30 2.92

BF FDA

1.82 0.77

5.73 2.11

11.99 4.13

BDA FDC

2.29 0.98

7.68 2.56

16.13 4.15

BDC MFLPT FFC

2.27 10.21 0.93

6.99 43.40 2.27

14.19 97.83 3.90

7. Computational results

The average performance of the proposed approximation algorithms are in-
vestigated by computational experiment. The program is written in FORTRAN and
run on FACOM M-200 (which is roughly equivalent to IBM 3033). In each case,
approximation algorithms are applied to 100 problem instances which are randomly
generated. Since exact optimal solutions for the generated problems are not known,
the ratios of the approximate values against its lower bounds

px’pLow ’
1.2-

1.1 -

n = 10

mi=pixrJ

(15)

1.0 1)r

.1 .2 .3 .4 .5 .6 .7 .a .9 1.0

Fig. 7. Computational results for Problem 2.

190 I. Morihara et al.

for Problem 1, and

PLow=max[[$laibi/Tl Ymaxaij (16)

for Problem 2, are used, thus resulting in an overestimation of the errors. The effec-
tiveness of the algorithms are compared on the basis of the average value of the
ratios for the generated 100 problems.

Average behavior of approximation algorithms for Problem 1

Instances of Problem 1 are generated as follows: P= 100, n = 10, ai’s and bi’S are
randomly taken from the intervals [1, amax] and [l, 201 respectively, and mi’s are set
to rbixrl or rb,xRVxrl for i=l,2,..., n, where RV is randomly taken from

(0, II, and amax and r are the parameters specifying the type of problems.
In order to investigate how approximate values change according to parameters

P and mi, we set a,, to 100, 50, 25, 20 and r to O.LO.2, . . . ,1 .O, respectively.
As a typical example, the results for the case of amax = 50 and mi = rbi x r-1

(i= 1,2, . . . ,n) are shown for r=0.1,0.2, 1.0 in Fig. 6. From this as well as other
results we may conclude as follows. When the machine constraint is not strong (i.e.,
r is not small) or P is small, FFC algorithm is most recommended; otherwise,
MFLPT algorithm is recommended. Note that if bi = mi (i.e., r= l.O), FDA, FDC
and FFC algorithms coincide. This may explain why these algorithms exhibit similar
performance for large values of r.

The computation time for each algorithm is shown in Table 1 for a,,, = 50 and
mi=rbixO.ll for i=l,2 ,..., n. It may be seen that very large problems can be
practically solved by these approximation algorithms.

Average behavior of approximation algorithms for Problem 2

Instances of Problem 2 are generated as follows: T= 20, II = 10, ai’s and hi’s are
randomly taken from the intervals [I, 501 and [I, 201 respectively, and ml’s are set
to rbi x rl or rbi x RI/x r-1, where R V is randomly taken from (0, 11. The results
formi=rbixrl andr=0.1,0.2 ,,,., 1.0 are shown in Fig. 7. Similar results are also
obtained for other cases of experiment.

Table 2

Computational time for Problem 2 in milli-seconds

n LPT MFFF MFFDA MFFDC

10 2.09 4.14 4.49 3.66

20 4.87 8.52 9.65 8.02

30 7.31 13.09 14.86 12.92

Bin packing and multiprocessor scheduling problems 191

If the machine constraint is strong (i.e., r is small), LPT algorithm is better than

others, while if r is not small, MFFDC and MFFDA algorithms seem to be the best

ones. These results conform to the results obtained in the previous sections by the

worst case analysis.

Table 2 is the computation time for each algorithm when mj = rbi x 0.11 is used.

There is not much difference between algorithms, and the computation time is

always very short.

Acknowledgement

The authors wish to thank Dr. H. Kise of Kyoto Institute of Technology, for his

helpful comments.

References

[I] E.G. Coffman Jr., M.R. Carey and D.S. Johnson, An application of bin-packing to multiprocessor

scheduling, SIAM J. Comput. 7 (1978) I-17.

[2] M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under resource

constaints, SIAM J. Comput. 4 (1975) 397-411.

[3] M.R. Carey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-

Completeness (Freeman, San Francisco, 1979).

[4] R.L. Graham, Bounds on the performance of multiprocessor scheduling algorithms, Chapter 5, in:

E.G. Coffman, ed., Computer and Job/Shop Scheduling Theory (Wiley, New York, 1976).

[5] D.S. Johnson, Fast algorithms for bin packing, Proc. 13th. Annual IEEE Symp. Switching and

Automata Theory (1972) 144-154.

[6] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and R.L. Graham, Worst-case performance

bounds for simple one-dimensional packing algorithms, SIAM J. Comput. 3 (1974) 299-326.

[7] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,

Complexity of Computer Computations (Plenum Press, New York, 1972) 85-104.

[8] I. Morihara, Approximation algorithms for bin packing and related problems with some side con-

straints, Master Thesis, Department of Applied Mathematics and Physics, Kyoto University, Japan

(1980).

