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Abstract

The group Steiner tree problem consists of, given a graph G, a collection R of subsets of V (G) and a cost c(e) for each edge of G,
finding a minimum-cost subtree that connects at least one vertex from each R ∈ R. It is a generalization of the well-known Steiner
tree problem that arises naturally in the design of VLSI chips. In this paper, we study a polyhedron associated with this problem
and some extended formulations. We give facet defining inequalities and explore the relationship between the group Steiner tree
problem and other combinatorial optimization problems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Perhaps one of the most studied NP-hard problems is the Steiner tree problem (STP), which consists of given a
graph G = (V , E), a cost function c: E → R+ and a subset Z of V, find a minimum-cost subtree of G spanning the
vertices in Z.

The STP is largely used in the routing phase of VLSI design, when one needs to connect several components together
by wires. However, after a component’s location has been determined on the circuit, the component itself can still be
rotated and flipped. These operations will change the location of the component’s pin. Therefore, it seems reasonable
not to determine the rotations and flippings arbitrarily, but to find the set of rotations and flippings that will give us the
minimum-cost network connecting all components together. For that purpose, Reich and Widmayer [8] proposed the
group Steiner tree problem (GST): given a graph G= (V , E), a cost function c: E → R+ and a collection R of subsets
of V, find a minimum-cost subtree of G that spans at least one vertex from each R ∈ R.

We call the sets in R groups. A vertex that belongs to a group is said to be a group vertex. Any other vertex of G is a
non-terminal or Steiner vertex.

Since the STP is a special case of the GSTP, the later is also NP-hard. There are, however, stronger complexity
results than the last one concerning the GST. Ihler [7] considered several restrictions of the problem and proved that it
is NP-hard even in stars with unit costs or trees with pairwise disjoint groups. Some approximation algorithms have
been proposed for the GST. The better one to date is due to Garg et al. [6].
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Rohe and Zachariasen treat in [9] the rectilinear case of the GSTP. They propose reduction methods and describe the
implementation of an exact algorithm for the problem. In [4] a simple reduction from the GST to the STP is studied
and the efficiency of its use is analyzed.

Salazar [10] investigated the GST from a polyhedral point of view. He presented an integer programming formulation
for the problem and used lifting techniques that allows facets of the spanning tree polytope to be used in the group
Steiner tree polytope. In [12] another integer programming model is proposed and lagrangean relaxation is used to
provide a lower bound.

In this paper, we investigate the dominant of a polytope associated with the GST. We present results on facet inducing
inequalities and provide extended formulations for the problem.

2. The polyhedron and its facets

In this section we describe the polyhedron we study, we give a first integer programming formulation for it and we
investigate some of its facets. From now on, we follow the notation of [11].

2.1. The polyhedron and a first formulation

Let G = (V , E) be a graph and R be a group collection, i.e., a collection of subsets of V. We assume henceforth that
no vertex is in the intersection of all groups. An R-tree of G is a subtree of G containing at least one vertex from each
group. Consider the polytope

P(G,R) := conv.hull{�E(T ): T an R-tree of G}. (1)

In this paper, we study the dominant of P(G,R). More precisely, the object of our study is the polyhedron

P ↑(G,R) := P(G,R) + RE+. (2)

Where there is no risk of ambiguity, we may write P and P ↑ instead of P(G,R) and P ↑(G,R), respectively.
We say that a partition S = (V1, . . . , Vk) of V is an R-partition if for every i = 1, . . . , k there is a group Ri ∈ R

such that Ri ∩Vi =∅. If S is an R-partition, we denote by �(S) the set of edges of G with endpoints in different parts
of S. Obviously, if S is an R-partition then the inequality

x(�(S))�1 (3)

is valid for P ↑, where x(�(S)) = ∑
e∈�(S)x(e), as usual. We call such inequalities R-partition inequalities. Let

P1(G,R) denote the set of all vectors x ∈ RE+ satisfying (3) for each R-partition S.

Proposition 1. We have that P ↑ = (P1)I , where (P1)I is the integer hull of P1.

Proof. Let x ∈ P1. We claim that there is an R-tree T such that E(T ) ⊆ supp x. In fact, let V1, . . . , Vk be the vertex
sets of the components of (V , supp x) and suppose no Vi , i = 1, . . . , k, contains at least one vertex from each group.
Then S = (V1, . . . , Vk) is an R-partition and x(�(S)) = 0, a contradiction. Hence, the claim is proved. The result
follows directly from this claim. �

One could also notice that the collectionT of all minimalR-trees forms a clutter and that the collection of all minimal
R-partitions forms the blocking clutter of T. Proposition 1 would then follow from this observation. Moreover, this
shows that if we remove from our formulation any inequality corresponding to a minimal R-partition then we do not
have anymore an integer programming formulation for P ↑.

We now consider the separation problem for the R-partition inequalities. If there is a unitary group or if there are at
most two groups, then the separation problem can be solved by a sequence of minimum-cut computations. If the graph
is a tree, then the separation problem can be solved by a simple dynamic programming algorithm. In general, however,
the separation problem for the R-partition inequalities is NP-hard, as we will show now.
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To show this, we consider the decision version of the separation problem:

Given a graph G = (V , E), a group collection R and a vector x ∈ RE+, is there an R-partition S such that

x(�(S)) < 1? (4)

The problem we shall reduce to problem (4) is the decision version of the minimum multicut problem:

Given a graph G = (V , E), a cost function c: E → R+, a subset Z of V and a number B > 0, is there a set

E′ ⊆ E such that no component of G − E′ contains more than one vertex of Z and c(E′) < B? (5)

Dahlhaus et al. [3] have shown that problem (5) is NP-complete even when |Z| = 3. We have the following:

Theorem 2. Problem (4) is NP-complete.

Proof. Let G, c, Z and B be as in (5). Consider the group collection R :=
(

Z
|Z|−1

)
and the vector x ∈ RE+, x := B−1c.

We claim that there is a set E′ such that no component of G − E′ contains more than one vertex of Z and c(E′) < B if
and only if there is an R-partition S such that x(�(S)) < 1.

In fact, suppose there is such a set E′. Let V1, . . . , Vk be the vertex sets of the components of G − E′. Notice that
for each Vi , i = 1, . . . , k, there is a group Ri such that Vi ∩ Ri = ∅. Therefore, S := (V1, . . . , Vk) is an R-partition.
Now x(�(S))�x(E′) = B−1c(E′) < 1.

Suppose now that there is an R-partition S such that x(�(S)) < 1 and let E′ := �(S). By the construction of our
group collection, and since S is an R-partition, no component of G − E′ may contain more than one vertex from Z.
Moreover, c(E′) = Bx(E′) = Bx(�(S)) < B, proving the claim.

Now, since all computations can be carried out in polynomial time, the theorem follows. �

Notice that, in our reduction, the size of the group collection is exactly |Z| and each group has exactly |Z|−1 vertices.
Notice moreover that the groups have intersections. A simple technique can be used to remove such intersections. It is
similar to the technique described in [6] to remove group intersections in the GST; we shall not describe it here. Since
problem (5) is NP-complete even when |Z| = 3, it follows that:

Corollary 3. Problem (4) is NP-complete even when there are exactly three pairwise disjoint groups with exactly
two vertices each.

It then follows that the separation problem for the R-partition inequalities isNP-hard even under such assumptions.

2.2. Facets of P ↑

In this section we investigate some facet inducing inequalities for P ↑. Again, we have a graph G = (V , E) and a
group collection R. We assume that no vertex belongs to every group. Notice that, since P ↑ is of blocking type, it is
fully dimensional.

We begin with the R-partition inequalities. We say that an R-partition S is minimal if there is no R-partition S′
such that �(S′) is a proper subset of �(S). We say that a set V ′ ⊆ V covers R if V ′ contains at least one vertex from
each group in R. A subgraph H of G covers R if V(H) covers R. It is easy to see that an R-partition S= (V1, . . . , Vk)

is minimal if and only if every edge uv ∈ �(S) with u ∈ Vi and v ∈ Vj connects components of G[Vi] and G[Vj ]
which together cover R, where G[Vi] denotes the subgraph of G induced by Vi .

Theorem 4. Let S = (V1, . . . , Vk) be an R-partition. Inequality

x(�(S))�1 (6)

induces a facet of P ↑ if and only if S is minimal.

Proof. We first show necessity. If S is not minimal, then there is an R-partition S′ such that �(S′) is a proper subset
of �(S). But then (6) is a sum of the non-trivial valid inequalities x(�(S′))�1 and x(�(S)\�(S′))�0, and hence
not a facet inducing inequality.
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To see sufficiency, let aTx�� be a facet inducing inequality of P ↑ such that

{x ∈ P ↑: x(�(S)) = 1} ⊆ {x ∈ P ↑: aTx = �}. (7)

We claim that aTx�� is a non-negative multiple of (6). To see that, let F := E(V1) ∪ · · · ∪ E(Vk). Let f ∈ �(S)

and x0 := �F∪{f }. Since S is minimal, x0 ∈ P ↑. Since P ↑ is of blocking type, for any edge e /∈ �(S) we have that
x0 + �e ∈ P ↑. But since both x0 and x0 + �e satisfy (6) with equality, we have that aTx0 = � = aT(x0 + �e). It follows
that a(e) = 0 for any e /∈ �(S).

Now let e, f ∈ �(S), x1 := �F∪{e} and x2 := �F∪{f }. Both x1 and x2 are in P ↑ and satisfy (6) with equality, hence
aTx1 = � = aTx2. It follows that a(e) = a(f ). Since e and f are arbitrary, there is a number � such that a(e) = � for
every e ∈ �(S), and the claim is proved. Since P ↑ is fully dimensional, (6) induces a facet of P ↑. �

The following result will allow us to derive facet inducing inequalities for P ↑ from facet inducing inequalities for
the Steiner tree polyhedron. It is analogous to a result stated in Chopra and Rao [2]. To introduce it, consider an edge
e = uv of G. We denote by G/e the graph obtained from G by contracting edge e. After the contraction we do not
remove neither loops nor parallel edges. Suppose w is the vertex of G/e resulting from the contraction of e and let
R ∈ R. Then

R/e :=
{

R if u, v /∈ R,

(R\{u, v}) ∪ {w} otherwise.
(8)

Now let R/e := {R/e: R ∈ R}. We have the following result:

Theorem 5. Let G = (V , E) be a graph and R a collection of groups. Let e be an edge of G and suppose inequality

aTx�� (9)

induces a facet of P ↑(G/e,R/e). Let ā ∈ RE be such that ā(f ) := a(f ) if f ∈ E(G/e) and ā(e) := 0. Then āTx��
induces a facet of P ↑(G,R).

Proof. First let x0 ∈ P ↑(G,R) be the incidence vector of some R-tree and let x̄0 be the restriction of x0 to the
components in E(G/e). It is easy to see that x̄0 ∈ P ↑(G/e,R/e) and hence aTx̄0 ��. But then it follows that
āTx0 = aTx̄0 �� and āTx�� is valid for P ↑(G,R).

Now let t := dim P ↑(G/e,R/e). Then dim P ↑(G,R) = t + 1. Since (9) induces a facet of P ↑(G/e,R/e), there
are affinely independent vectors x1, . . . , xt ∈ P ↑(G/e,R/e) satisfying (9) with equality. For i = 1, . . . , t , let x̄i ∈ RE+
be such that x̄i (f ) := xi(f ) if f ∈ E(G/e) and x̄i (e) := 1. It is easy to see that x̄1, . . . , x̄t ∈ P ↑(G,R) and that
they are affinely independent. Let x̄t+1 := x̄1 + �e. Since P ↑(G,R) is of blocking type, x̄t+1 ∈ P ↑(G,R). But then
x̄1, . . . , x̄t+1are t + 1 affinely independent vectors in P ↑(G,R) satisfying āTx�� with equality, and the theorem
follows. �

Suppose now we have a graph G = (V , E) and a collection R of groups. Suppose also that by contracting a certain
set E′ of edges of G, every group in R/E′ is unitary. Notice that, in this case, P ↑(G/E′,R/E′) is the dominant of
the Steiner tree polytope for graph G and the terminal set composed of all vertices belonging to groups in R/E′.
By Theorem 5, any facet inducing inequality of P ↑(G/E′,R/E′) is also a facet inducing inequality of P ↑(G,R).
In this way, any facet inducing inequality for the Steiner tree polyhedron can also be used for the group Steiner tree
polyhedron.

Another interesting application of Theorem 5 explores the relation between the minimum set-covering problem and
the GST. Consider a finite set A and a collection J of subsets of A. We say that J′ ⊆ J covers A if every element of
A belongs to some set in J′. The minimum set-covering problem is as follows: given a set A, a collection J of subsets
of A and a cost function c:J → R+, find a minimum-cost set J′ ⊆ J that covers A.

Given a set A and a collection J of subsets of A, let

C↑(A,J) := conv.hull{�J′
:J′ ⊆ J and J′ covers A} + R

J
+ , (10)
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that is, C↑(A,J) is the dominant of the set-covering polytope. Now consider the graph T and the collection U of
groups such that

(i) T has a vertex r and a vertex vJ for each J ∈ J;
(ii) for each J ∈ J, T has an edge rvJ ;

(iii) for each a ∈ A there is a group Ua ∈ U given by Ua := {vJ ∈ V (T ): a ∈ J }.

Notice that there is an obvious correspondence between U-trees and covers of A. In fact, there is an obvious relation
between facets of P ↑(T ,U) and facets of C↑(A,J). This relation can be used together with Theorem 5 to find facet
inducing inequalities for P ↑(G,R) when G is a tree.

In fact, suppose G is a tree. Let r be any vertex of G that is a non-terminal. We can contract some edges of G in
such a way as to obtain a star with root r. Such a star, together with the contracted group collection, corresponds to a
set-covering problem. But then, any facet inducing inequality for the polyhedron of this set-covering problem is also a
facet inducing inequality for P ↑(G,R).

There is a wealth of information on facet inducing inequalities for the set-covering polyhedron, see [1] for a quick
survey and references.

3. Extended formulations

Polyhedron P1 provides an integer programming formulation for P ↑, though we know that optimizing over P1 is
NP-hard. In this section we present some extended formulations for P ↑ over which we can optimize in polynomial
time and we analyze their relative quality with respect to P1.

Again, let G = (V , E) be a graph and R a collection of groups. Fix a group R0 ∈ R, which will be called the root
group. Let P2(G,R) denote the set of all vectors (x, y) ∈ RE+ × R

R0+ satisfying

x(�(S))�y(S ∩ R0) for all S ⊆ V not covering R,

y(R0)�1. (11)

Let P E
2 denote the projection of P2 into RE .

Proposition 6. We have that P ↑ = (P E
2 )I .

Unlike the separation problem for P1, the separation problem for P2 can be solved in polynomial time. To see that,
suppose we are given a vector (x0, y0) ∈ RE+ × R

R0+ such that y0(R0)�1. Fix a group R ∈ R, R 	= R0. Construct a
directed graph D = (V ′, A) in the following way:

(i) V ′ := V ∪ {s};
(ii) D has, for each edge e = uv of G, arcs uv and vu;

(iiii) D has an arc rs for each r ∈ R.

Consider now a capacity function w: A → R+ such that w(uv) := x0(uv), w(vu) := x0(uv) for each edge uv of G
and w(rs) := ∞ for each r ∈ R. Consider also a demand function b: V ′ → R such that b(r) := −y0(r) for each
r ∈ R0, b(s) := y0(R0) and b(v) := 0 for all other v ∈ V ′.

Theorem 7. There is a set S ⊆ V such that R ∩ S = ∅ and x0(�(S)) < y0(S ∩ R0) if and only if there is no feasible
flow on D with capacities given by w and demands given by b.

Proof. Suppose first there is such a set S. Then w(�out(S)) = x0(�(S)) < y0(S ∩ R0) = −b(S), hence it follows from
Gale’s characterization of feasible flows on networks [5] that there is no feasible flow on D.

Assume now there is no feasible flow on D. But then there must be a set S ⊆ V ′ such that w(�out(S)) < − b(S).
Since b(s) = y0(R0), we cannot have s ∈ S. But then, since all arcs leaving vertices of R have infinite capacity, we
must have S ∩ R = ∅. It follows that x0(�(S)) = w(�out(S)) < − b(S) = y0(S ∩ R0), and we are done. �
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Since we can decide whether there is a feasible flow in a network in polynomial time and, if there is no such flow, we
can find a set S with the above properties also in polynomial time, we can solve the separation problem for inequalities
x(�(S))�y(S ∩ R0) such that S ∩ R = ∅ in polynomial time. Therefore, one can solve the separation problem for P2
by solving |R| − 1 flow feasibility problems.

It is not in general true that P E
2 ⊆ P1. However, as the following result shows, the optimal value of P2 approximates

the optimal value of P1.

Proposition 8. Let c: E → R+. Then min{cTx: x ∈ P E
2 }�(1/2) min{cTx: x ∈ P1}.

Proof. Let x0 ∈ P E
2 and let y0 be such that (x0, y0) ∈ P2. Consider an R-partition S = (V1, . . . , Vk). Since S

is an R-partition, for each i = 1, . . . , k there is an Ri ∈ R such that Ri ∩ Vi = ∅. But then, since (x0, y0) ∈ P2,
x0(�(Vi))�y0(Vi ∩ R0) for each i = 1, . . . , k. Hence

y(R0) =
k∑

i=1

y0(Vi ∩ R0)

�
k∑

i=1

x0(�(Vi))

= 2x0(�(S)). (12)

Now, since y0(R0)�1, x0(�(S))� 1
2 . It follows that, for any R-partition S, x0(�(S))� 1

2 , and the result follows
immediately. �

We now turn ourselves to the problem of finding a system of inequalities defining P E
2 . To this end, denote by P(R0)

the collection of all subsets of R0 and let C′(R0) be the polyhedron consisting of all vectors z ∈ R
P(R0)+ satisfying

∑
X�r

z(X)�1 (13)

for each r ∈ R0.
Each vector in C′(R0) represents a fractional cover of R0. Let C(R0) be the set of vertices of C′(R0).
We say that a function F:P(R0) → P(V ) is R0-complete if X ⊆ F(X) and F(X) does not cover R for each

X ⊆ R0. We have the following result:

Theorem 9. Polyhedron P E
2 is the set of all vectors x ∈ RE+ satisfying

∑
X⊆R0

z(X)x(�(F(X)))�1 (14)

for each z ∈ C(R0) and each R0-complete function F.

Proof. First, let x0 ∈ P E
2 and y0 ∈ R

R0+ be such that (x0, y0) ∈ P2. Let z ∈ C(R0) and let F be an R0-complete
function. We have that∑

X⊆R0

z(X)x0(�(F(X)))�
∑

X⊆R0

z(X)y0(X)

=
∑
r∈R0

∑
X�r

z(X)y0(r)

�y0(R0)

�1, (15)

and x0 satisfies all inequalities (14).
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Now suppose x0 ∈ RE+ satisfies each inequality (14). For each X ⊆ R0, define

�(X) := min{x0(�(S)): X ⊆ S and S does not cover R}. (16)

Consider the following linear programming problem:

maximize y(R0)

subject to y(X)��(X) for each X ⊆ R0,

y�0.

(17)

Of course, since �(X)�0 for all X ⊆ R0, problem (17) is feasible. We claim that there is a solution y0 of (17) such
that y0(R0)�1. In fact, suppose there is no such solution. Then, the optimal value of (17) is less than 1. Consider the
dual of (17):

minimize
∑

X⊆R0

z(X)�(X)

subject to
∑
X�r

z(X)�1 for each r ∈ R0,

z�0.

(18)

Let z∗ be a basic optimal solution to (18). Notice that z∗ ∈ C(R0). For each X ⊆ R0, let SX ⊆ V be a set attaining the
minimum in (16) and consider the function F:P(R0) → P(V ) defined as F(X) := SX. Notice F is R0-complete.
But then∑

X⊆R0

z∗(X)x0(�(F(X))) =
∑

X⊆R0

z∗(X)x0(�(SX))

=
∑

X⊆R0

z∗(X)�(X)

< 1, (19)

a contradiction since x0 satisfies all inequalities (14). Hence, the claim is proved.
Now let y0 be a solution to (17) such that y0(R0)�1. It is easy to verify that (x0, y0) ∈ P2, hence x0 ∈ P E

2 . �

The next formulation we describe is stronger than both P1 and P2. However, it may require many more variables,
more exactly, it require for each edge of our graph |R0| + 1 variables and one variable for each vertex of |R0|. In other
words, let P3 be the set of vectors (x, f, y) ∈ RE+ × R

R0×E
+ × R

R0+ satisfying

fr(�(S))�y(r) for each S ⊆ V not covering R, r ∈ S, r ∈ R0,

x(e) =
∑
r∈R0

fr(e) for each e ∈ E,

y(R0)�1.

Let P E
3 denote the projection of P3 into RE .

Proposition 10. We have that P ↑ = (P E
3 )I .

It is clear that the separation problem over P3 can be solved in polynomial time by a sequence of at most |R0|(|R|−1)

maximum flow problems. Therefore we can optimize over P3 in polynomial time.
As we said before, P3 is stronger than both P1 and P2, as the following result shows.

Proposition 11. We have that P E
3 ⊆ P1 and P E

3 ⊆ P E
2 .

Proof. We prove that P E
3 ⊆ P1; the proof of the second assertion is analogous.

To this end, let x̄ ∈ P E
3 . There must be vectors f̄ ∈ R

R0×E
+ and ȳ ∈ R

R0+ such that (x̄, f̄ , ȳ) ∈ P3. Now let
S := (V1, . . . , Vp) be an R-partition. Recall that no Vi covers R and that, of course, each vertex of R0 belongs to
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exactly one set Vi . Then

x̄(�(S)) =
∑
r∈R0

f̄r (�(S))

�
p∑

i=1

∑
r∈Vi∩R0

f̄r (�(Vi))

�
p∑

i=1

ȳ(Vi ∩ R0)

= ȳ(R0)

�1, (20)

and we are done. �

Polyhedron P3 has another interesting property. To introduce it, consider r ∈ R0 and let R[r] denote the collection
of groups obtained from R by replacing group R0 by {r}. We have then the following easy result:

Proposition 12. Let c: E → R+ be a cost function. Then min{cTx: x ∈ P E
3 } = minr∈R0 min{cTx: x ∈ P1(G,R[r])}.

4. Conclusion

The GSTP arises naturally in the design of VLSI chips. We study the dominant of the group Steiner tree polytope
and present some of its facet inducing inequalities. We also show how to explore the relation between the GSTP for
trees and the set-covering problem.

We present a first formulation for the problem over which optimization is NP-hard. We also present two extended
formulations, one of which can be weaker than the first, more natural formulation presented. However, the second
extended formulation is stronger than the two others, though it can possibly contain many more variables than the first
two.

Our results can be used to derive lower bounds for the GSTP. Since our formulations take into account specific
structural information of the groups, these bounds are better than the bounds obtained by reducing the GSTP to the
STP as done in [4,9], in which new vertices are added, one for each group, connected to the vertices on the group it
represents by edges with large costs.

We still need to investigate possible directed formulations for the GSTP. As is the case with the STP [2], these
directed formulations can be stronger than the undirected ones we present.
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