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By appropriate scaling of coupling constants a one-parameter family of ensembles of two-dimensional 
geometries is obtained, which interpolates between the ensembles of (generalized) causal dynamical 
triangulations and ordinary dynamical triangulations. We study the fractal properties of the associated 
continuum geometries and identify both global and local Hausdorff dimensions.
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1. Introduction

In dynamical triangulations (DT) the path integral of two-
dimensional Euclidean quantum gravity is discretized by sum-
ming over equilateral triangulations. If the topology of the two-
dimensional manifold is kept fixed, the Einstein curvature term in 
the action is trivial (being a topological invariant) and can be safely 
ignored. In that case the DT path integral takes the form

Z =
∑
T ∈T

1

CT
e−μNT , (1)

where the sum is over all combinatorial triangulations of the de-
sired topology, CT is the order of its automorphism group, NT

its number of triangles, and μ is a coupling constant. The matrix 
model representation of Eq. (1) is

Z =
∫

dφ e−N tr( 1
2 φ2− κdt

3 φ3), Z = logZ, κdt = e−μ, (2)

where the integration is over the Hermitian N × N matrices φ. The 
partition function Z allows for an expansion in 1/N2 and the Feyn-
man diagrams contributing to the coefficient of Nχ are precisely 
the cubic graphs dual to triangulations of Euler characteristic χ
appearing in (1). In this paper we will only deal with the lead-
ing term in the 1/N expansion, i.e. cubic graphs with spherical 
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topology (or, in cases where a boundary is present, the topology of 
the disk).

The lattice action has a critical point at κdt → (κdt)c and the 
corresponding continuum limit can be identified with quantum Li-
ouville field theory with central charge cLiouville = 26. Universality 
of the scaling limit ensures that one obtains the same continuum 
limit for any potential

V (φ) = 1

g

(
1

2
φ2 −

∑
n

κnφ
n
)

, (3)

instead of the cubic potential used in (2), provided1 the κn ≥ 0
and at least one κn > 0 for n ≥ 3. Thus one can replace the set 
of triangulations T in (1) (or rather the dual cubic graphs) with 
a much larger class of graphs if desired [1]. Independent of the 
precise class of graphs and as long as one keeps the couplings in 
the potential fixed as N → ∞, the geometry of a randomly sam-
pled very large graph has a number of universal properties, one 
of these being that its fractal dimension is dh = 4 rather than the 
naively expected dh = 2 [2–5]. In the following we will refer to this 
universal continuum limit, which in the mathematical literature is 
known as the Brownian map [6], as the DT continuum limit.

However, it is possible to define a different scaling limit for 
which dh = 2 by scaling the coupling g in (3) non-trivially as func-
tion of N . Scaling g → 0 as g = Ga3 while keeping the continuum 
volume ∝ Na2 fixed, where a may be interpreted as the length of 
a link in the graph, leads to a scaling limit known as generalized 
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Fig. 1. Left: a typical graph generated by the action (4). Right: summing over the trees one obtains a cubic “skeleton” graph.
causal dynamical triangulations (GCDT) [7]. It generalizes the orig-
inal model of CDT in the continuum [8], which arises as the G → 0
limit of GCDT and is different from Liouville quantum gravity.2

In [10] the GCDT was shown to arise explicitly as a scaling limit 
of random quadrangulations with a fixed number of local maxima 
of the distance function to a distinguished vertex. These quadran-
gulations were shown to be in bijection with general planar graphs 
with a fixed number of faces has been given, of which the contin-
uum limit is therefore also described by GCDT.

The purpose of the present article is to investigate scalings that 
interpolate between the two “extremes” mentioned above, DT and 
GCDT. For that purpose we will restrict our attention to a simple 
potential (3) of the form

V 0(φ) = 1

g

(
−κφ + 1

2
φ2 − κ

3
φ3

)
. (4)

2. The scaling limit

The disk amplitude for a general potential (3) has the form:

w(z) = 1

2

(
V ′(z) − A(z)

√
(z − c)(z − d)

)
, (5)

where V (z) is the potential (3) with the matrix φ replaced by the 
complex number z, and V ′(z) denotes the derivative with respect 
to z. The polynomial A(z) and the numbers b, c, d (with c ≥ d) 
are uniquely determined by the requirement that w(z) → 1/z for 
|z| → ∞. For the potential (4) we write

w(z) = 1

2g

(−κ + z − κz2 + κ(z − b)
√

(z − c)(z − d)
)
, (6)

where z = eλB , λB having the interpretation as a boundary cosmo-
logical constant associated with the disk-boundary for positive z.

For a fixed g the critical point κc is determined by the condi-
tion that b(κc) = c(κc), where b(κ), c(κ) and d(κ) are determined 
by the required asymptotics of w(z), as mentioned. The solution 
can be written as follows (denoting b(κc) by bc etc.):

bc = cc, (bc − dc)
3 = 32g

κc
, κcbc = 1

2
+ 1

2

(
4κ2

c g
)1/3

(7)

(
1 − 4κ2

c

)3/2 = 33/2 4κ2
c g. (8)

2 Instead, continuum CDT was shown to correspond to two-dimensional Hořava–
Lifshitz gravity [9].
From these equations one observes that if we scale g to 0 as 
g = G a3 one obtains to lowest order

κ2
c = 1

4
− 3

4
G2/3a2, bc = 1

2
+ 3

4
G1/3a,

bc − dc = 4G1/3a, (9)

as discussed in [7].
We will now show how to understand this scaling limit in a 

simple way which also allows us to define more general scaling 
limits.

Consider the partition function (2) with the potential V 0(φ) de-
fined by Eq. (4). Expanding the exponential in powers of κ and 
performing the Gaussian integrals can be viewed as generating a 
certain set of graphs. We can view these graphs as φ3 graphs dec-
orated with tadpoles coming from the linear φ term, see Fig. 1. 
The shift in integration variables by

φ = ϕ + α(κ), α(κ) = 1 − √
1 − 4κ2

2κ
(10)

eliminates the tadpole term:

V 1(ϕ) = V 0
(
ϕ + α(κ)

)

= 1

g

(√
1 − 4κ2

2
ϕ2 − κ

3
ϕ3

)
+ const. (11)

The constant will play no role when we calculate expectation val-
ues of observables. In terms of graphs it means that we are intro-
ducing a “dressed” propagator by first summing over all tadpole 
terms. This is illustrated in Fig. 1 and in more detail in Fig. 2. 
We call the graph left after summing over the tadpole terms for 
the skeleton graph.

The constant α(κ) is precisely the summation over all con-
nected planar, rooted tree diagrams, where each line has weight 
g and each vertex weight κ/g , as dictated by the action V 0(φ). 
This summation is shown in the upper part of Fig. 2. Next, the 
lines remaining in the skeleton graph have the weight gβ(κ) as 
illustrated in the lower part of Fig. 2, where

β(κ) = 1 + [
2κα(κ)

] + [
2κα(κ)

]2 + · · · = 1√
1 − 4κ2

. (12)

This explains the form of V 1(ϕ) from the point of view of graph 
re-summation. Both for a graph G generated from V 0(φ) or for its 
corresponding skeleton graph generated from V 1(ϕ), the power of 
g associated with the graph is
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Fig. 2. Top figure: the graphic equation defining the summation over all rooted trees. Bottom figure: the graphic equation for the dressed propagator which appears in Fig. 1
after summing over all tree-outgrows.
g F (G)−2, F (G) = number of faces of G. (13)

Thus it is clear that when we take g → 0 we will suppress the 
number of faces of the graph.

Finally we can perform a rescaling

ϕ =
√

g√
1 − 4κ2

Φ, (14)

such that

V 1(ϕ) = V 2(Φ) = 1

2
Φ2 − κdt

3
Φ3, κdt =

√
gκ

(1 − 4κ2)3/4
. (15)

In a graph G this change of variables corresponds to absorbing the 
weight g/

√
1 − 4κ2 given to each link by V 1(ϕ) into the two ver-

tices associated with the link. Thus the weight of each link is 1, 
but the coupling constant associated with a vertex is changed from 
κ/g to κdt. Again, this rescaling will not affect expectation values 
of observables. The potential V 2(Φ) is the standard potential used 
to represent dynamical triangulations using matrix models, and the 
critical coupling is known to be (κdt)c = 31/4/6. Using Eq. (8) we 
can write:

κdt

(κdt)c
= κ

κc

(
1 − 4κ2

c

1 − 4κ2

)3/4

. (16)

This formula captures the different ways one can take the scal-
ing limit for the model given by V 0(φ). The tree sub-graphs shown 
in the left part of Fig. 1 and in the top part of Fig. 2 have the parti-
tion function α(κ) given in (10), and become critical for κ2 → 1/4. 
The average number of vertices in a tree is

〈n〉κ = κ

α

dα

dκ
∼ 1√

1 − 4κ2
. (17)

Similarly, the average number of vertices 〈nprop〉κ associated with 
trees attached to the dressed “propagator” shown in Fig. 2 diverges 
when κ2 → 1/4. The partition function for the number of such 
vertices is β(κ) defined in (12), and

〈nprop〉κ = κ dβ ∼ 1
2
. (18)
β dκ 1 − 4κ
Thus the total average number of trees attached to a dressed prop-
agator is proportional to 1/

√
1 − 4κ2. Since κ ≤ κc we conclude 

from Eq. (8) that if we keep g > 0 fixed when taking the scaling 
limit κ → κc the trees will not be critical since κ2

c < 1/4. Thus the 
trees can basically be ignored in the scaling limit κ → κc . Eq. (16)
captures this: for g > 0 it tells us that

κdt

(κdt)c
= κ

κc

(
1 + O

(
(κc − κ)2)). (19)

The critical behavior is thus the standard one of DT and the graphs 
responsible for this are the standard φ3 graphs. In this scaling limit 
we write
κ

κc
= 1 − a2Λ + o

(
a2), (20)

where Λ may be interpreted as the cosmological constant.
Clearly, to obtain a different scaling limit we have to scale g

to zero when a → 0. The GCDT limit was obtained by the scaling 
g = G a3, and using (9) we obtain from (16)

κdt

(κdt)c
= κ

κc

(
3G2/3

3G2/3 + 2Λ

)3/4

. (21)

This shows that κdt does not become critical as κ → κc . Thus there 
is only a finite average number of vertices and links and faces in 
the skeleton graph. The critical behavior for κ → κc is entirely de-
termined by the trees.

In order to obtain a new limit, let us consider the scaling

g = Gαaα, 0 < α < 3, (22)

while maintaining (20), which states that we view the total num-
ber of vertices as proportional with the continuum area of the 
graph. With this scaling of g we obtain from (9) and (16)

κdt

(κdt)c
=

(
1 − Λ

2G2/3
α

a2−2α/3 + o
(
a2−2α/3)). (23)

By a scaling like (22) we thus obtain that both the trees and the 
skeleton graphs are critical. The average number of graph vertices 
per link in the skeleton graph is

〈nprop〉κ ∼ 1
2

∼ 1
2α/3

, (24)

1 − 4κ a
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while the average number of skeleton vertices3 will be

〈nskel〉κ ∼ 1

a2−2α/3
, (25)

implying that the total number vertices in a typical graph scales as 
a−2, in accordance with (20). Notice also that the average length 
of a skeleton link scales as 1/

√
1 − 4κ2 ∼ a−α/3.

In order to study the fractal properties of this ensemble of 
graphs one may calculated the so-called two-point function [4,5], 
i.e. the partition function with two distinguished vertices separated 
by a given link distance r. It can be calculated using the methods 
in [10] or [4,5]. For small g , κ close to κc and r � g−1/3 one finds 
(up to numerical constants)

Zμ(r, g) ∼ (
g2/3μ

)3/4 cosh((g2/3μ)1/4r)

sinh3((g2/3μ)1/4r)
, μ = κc − κ

κc
. (26)

Let us now take the scaling limit prescribed by Eqs. (20) and (22). 
Insisting on keeping Gα and Λ fixed and eliminating the scaling 
parameter a in favor of μ leads to

Zμ(r) ∼ (
Kμ1/dH

)3 cosh(Kμ1/dH r)

sinh3(Kμ1/dH r)
, K =

(
G

Λα/2

)1/6

, (27)

which holds for r � μ−α/6 and where4

dH = 4

1 + α/3
. (28)

Since (1 −μ) is a generating variable for the number N of vertices 
in the graph, we find that the (canonical) two-point function Z N (r)
for fixed N is of the form,

Z N(r) ∼ F
(
r/N1/dH

)
for r � Nα/6 (29)

where F (R) is some function that goes to zero fast for R � 1. 
In particular, this implies that the average distance 〈r〉 between 
arbitrary vertices is of the order N1/dH . For this reason one may 
call the exponent dH the “global” Hausdorff dimension [4,5].

The dimension dH should be contrasted with the “local” Haus-
dorff dimension dh , which is associated with the growth V (R) ∼
Rdh for small R of the expected volume V (R) of a disk as func-
tion of its radius R within a fixed continuous geometry. In order 
to associate a well-defined Hausdorff dimension dh to our ensem-
ble of graphs, one first has to specify how to scale the distance r
in the continuum limit. If one defines the continuum distance R as 
R = ra2/dH Eq. (27) reduces to

Zμ(r) ∼ cosh(Λ1/4G1/6
α R)

sinh3(Λ1/4G1/6
α R)

, (30)

which, up to the factor G1/6
α is precisely the DT two-point function 

and therefore dh = 4. If, on the other hand, we scale R = raα/3, 
the skeleton edges will maintain a finite length in the continuum, 
meaning that the local Hausdorff dimension is determined by that 
of the trees, i.e. dh = 2.

These observations can be summarized by looking at the “scale-
dependent” Hausdorff dimension

dh(N; r) := d log〈N(r)〉
d log(r)

(31)

for a fixed large N , where 〈N(r)〉 is the expected number of ver-
tices within graph distance r from a randomly chosen vertex. 

3 For a planar φ3 graph we have 3V = 2L and 3F − L = 6, where V , L and F
denotes the number of vertices, links and faces in the graph.

4 A similar scaling was anticipated in [11], Section 6.
Fig. 3. The scale-dependent Hausdorff dimension for 0 < α < 3.

A qualitative plot of dh(N; r) as function of log(r)/ log(N) for some 
0 < α < 3 is shown in Fig. 3. The local Hausdorff dimensions, 
dh = 2 and dh = 4, appear as plateaus, while the global Hausdorff 
dimension corresponds to the scale at which dh(r) drops to zero.

3. Discussion

The partition function

Z =
∫

dφ e− N
g tr[−κφ+ 1

2 φ2− κ
3 φ3] (32)

generates a statistical ensemble of graphs of the kind shown in 
Fig. 1. The coupling constant g in the action (4) can be viewed as 
the temperature kT of this statistical system. Thus a scaling limit 
where g > 0 corresponds to a finite temperature, and this finite 
temperature limit can be identified with the standard scaling limit 
of 2d Euclidean quantum gravity: i.e. the typical geometry of the 
ensemble is fractal with Hausdorff dimension dh = 4.

The scaling limit g → 0 has certain analogues with the anneal-
ing, quenching and tempering of alloys and metals, in the sense 
that the precise way we take this zero temperature limit decides 
the smoothness of a typical geometry dominating at zero tem-
perature. The parameter controlling this is the exponent α when 
writing g = Gαaα , 0 ≤ α ≤ 3, which tells us how “fast” we cool to 
zero temperature. The so-called global Hausdorff dimension dH of 
a typical graph in such an α-ensemble is given by

dH = 4

1 + α/3
, (33)

while, depending on the chosen scaling of the geodesic distance, 
the local Hausdorff dimension is either dh = 4 or dh = 2.

Here we have only considered the simplest situation, that of 
spherical (or disk) topology of the graphs and the associated ge-
ometries. It remains to be seen if there exists a complete pertur-
bative expansion in topology and in number of boundaries for an 
arbitrary value of α, as is the case in the two limits α = 0 and 
α = 3.
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