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Abstract

By making use of the well-known lattice-gas interpretation, we investigated the evaporation/condensation transi-
tion through Monte Carlo simulations of the square lattice Ising model with nearest-neighbour couplings and periodic
boundary conditions. The particle density can be varied by choosing different fixed magnetisations. In the analysis
of our data we followed recent analytical work by Biskup et al. [Europhys. Lett. 60 (2002) 21], who also used the
Ising model to study liquid-vapour systems at a fixed excess δN of particles above the ambient gas density in the
limit of large system sizes. By identifying a dimensionless parameter Δ(δN), they showed that for Δ < Δc all excess
is absorbed in background fluctuations (“evaporated” system), while for Δ > Δc a single large droplet of the dense
phase occurs (“condensed” system). Besides the threshold value Δc also the fraction λ of excess particles forming the
droplet is given explicitly.

To test the applicability of these asymptotic results to practically accessible system sizes, we measured the volume
of the largest minority droplet, corresponding to a fluid drop, for various L × L lattices with L = 40, . . . , 640. Using
analytic values for the spontaneous magnetisationm0, the susceptibility χ and the Wulff interfacial free-energy density
τW for the infinite system, we were able to determine Δc and λ numerically in very good agreement with the theoretical
prediction. We also discuss the associated free-energy barrier and its implication for multimagnetical simulations, and
put these findings into context with the related droplet/strip transition respectively barrier.

Keywords: lattice gas, droplet condensation, Ising model, Monte Carlo simulations

1. Introduction

One still very challenging problem in the equilibrium statistical physics of first-order phase transitions is the
“birth” of droplets containing the “wrong phase” and the reverse evaporation process. Being one of the classical
problems of statistical physics, this evaporation/condensation phenomenon has been studied over the years by many
authors. Early contributions are the seminal analytical work by Fisher [1] and first numerical studies by Binder,
Kalos and Furukawa [2, 3]. Recently this problem has been reconsidered by Hager and one of the authors [4] with
emphasis on implications of the associated nucleation barrier for the performance of computer simulation studies. This
stimulated further new theoretical [5, 6, 7] and numerical [8] work. In particular the theoretical framework of Biskup
et al. [5, 6] provides a proper equilibrium theory which does not need to explicitly involve subtle correction effects a
la Gibbs-Thomson or Tolman [9], as discussed in many earlier papers [10]. Here we follow their formulation which
leads to model independent scaling predictions for the evaporation/condensation transition in the infinite-volume limit.

One purpose of our study was to investigate by how much these asymptotic predictions are affected by finite-size
effects. The second goal was to test the degree of universality suggested by the analytical treatment. After first de-
scribing in Sect. 2 the physical picture of the evaporation/condensation and the related droplet/strip transitions in some
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Figure 1: Probability density of the magnetisation in an Ising model below the Curie temperature Tc. The marked box indicates the region where
the evaporation/condensation transition takes place. The crossover to the flat bottom at around m|| = ±0.35 is often referred to as the droplet/strip
transition.

detail and explaining its implications for the efficiency of numerical simulations, in particular in the multicanonical
ensemble, the analytical predictions of Biskup et al. [5, 6] are summarized in Sect. 3. In Sect. 4 we discuss the results
of our quite extensive simulations, and in Sect. 5 the paper closes with a few concluding remarks.

2. Physical picture

The paradigm for the evaporation/condensation phenomenon is the decay or growth of a fluid droplet in the gas
phase, but there are also many other systems for which the basic physical mechanism is similar. Here, we will focus
on the lattice-gas interpretation of the standard nearest-neighbour Ising model with Hamiltonian

H = −J
∑

〈i, j〉
σiσ j , σi = ±1 , J = 1 , (1)

where the central object is a “−” Ising droplet in the bulk phase of “+” spins (or vice versa). For a large but finite
system of V spins in zero magnetic field at a given temperature T below the Curie temperature Tc, the equilibrium
probability distribution of the magnetisation per spin,m =

∑
i σi/V , exhibits the typical double-peak structure depicted

in Fig. 1. The marked box highlights the region we are mainly interested in. The peak is located close to the infinite-
volume equilibrium magnetisation m0. Since m < 1 for any non-zero temperature, the corresponding spin configura-
tions must contain in equilibrium on average a certain fraction n− of overturned spins: M = Vm = n+ − n− = V − 2n−,
where V = n+ + n−, i.e., n−/V = (1 − m)/2. In the lattice-gas interpretation, this determines the equilibrium particle
density ρ ≡ n−/V at a given temperature T , with a small magnetisation m corresponding to a high density ρ and vice
versa.

Equilibrium fluctuations in finite systems can thus drive the magnetisation away from m ≈ m0, respectively the
particle density away from ρ ≈ ρ0. Note that while the magnetic Ising system is handled in the canonical formalism,
this corresponds in the lattice-gas picture to a grand-canonical ensemble in which the particle number is allowed to
vary. For m < m0 more spins are overturned and some small bubbles of the “wrong” phase start to grow. When m
decreases further, their number and size increases and, at a fixed magnetisation (or particle density in the lattice-gas
interpretation), it is the balance between interaction energy and entropy which decides how a typical spin configuration
looks like. A gas of many relatively small and well separated bubbles has a high entropy but costs a lot of energy
since many bonds are broken. It may be thus favorable to combine several of these small bubbles to a relatively
large droplet where less bonds are broken. On the other hand, configurations with such a condensed nucleus of
the “wrong” phase plus only a few small bubbles have of course a smaller translational entropy since less objects
can be moved around. Which of the two scenarios finally wins depends, at a given temperature, crucially on the
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Figure 2: Two snapshots of a L = 50 system for T = 1.5 at the evaporation/condensation magnetisation mc. Left: Evaporated system with a large
number of very small bubbles (1 to 3 spins). Right: Condensed system with a single large droplet that has absorbed nearly all small bubbles.
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Figure 3: Probability density of the magnetisation around the right peak of Fig. 1 for different system sizes L on a linear-log scale. The cusp
indicates the evaporation/condensation transition region. On the right side of the cusp (evaporated system) a Gaussian peak is clearly visible, while
on the left side (condensed system) a stretched exponential behaviour can be seen. The two arrows on the x-axis indicate for L = 640 the range of
data points used later in Fig. 11.

magnetisation (particle density). If the magnetisation m is larger than some critical value mc (low particle density),
then the evaporated phase with many small bubbles is stable, and if m is smaller than mc (high particle density), the
condensed phase consisting of one large droplet plus a few small bubbles wins. The decisive magnetisation mc is
the celebrated evaporation/condensation point. Varying m (the particle density) across mc, the system experiences a
first-order like transition with a typical double-peak structure in the droplet-size distribution right at mc, indicating
phase coexistence between the evaporated and condensed phase. This physical picture is illustrated in Fig. 2 where for
a relatively small lattice two configurations found in simulations at the transition point mc are shown. Note that even
though the plots show configurations that actually occurred during the simulation, they give a slightly biased picture
since for the condensed system we have picked an extreme case as far as the size of the largest droplet is concerned. In
the magnetisation distribution of Fig. 1, the evaporation/condensation transition is signalised by a cusp at mc, which is
roughly located at the point where the peak around m0 ceases to display a Gaussian shape. This can be be seen more
clearly in Fig. 3, where only the marked region around the right peak of Fig. 1 is shown for various lattice sizes.

With further decreasing magnetisation (increasing particle density), the droplet grows and absorbs more and more
of the small bubbles until a typical configuration consists of a single more or less spherical droplet of “wrong” mag-
netisation m ≈ −m0 in the +m0 background. The dominant feature is now the interface free energy of the droplet
which leads to the stretched exponential behaviour of P(m) for m < mc in Figs. 1 and 3. Decreasing m further, the
single large droplet of the “wrong” “−” phase continues growing until at another critical magnetisationm|| it percolates
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Figure 4: Optimal transition path from the spherical droplet via two circular arcs to the strip configuration at fixed magnetisation (particle density).
The free-energy barrier in between scales with the lattice size L as ΔF ≈ 0.1348 × 2σL.

the finite system in the droplet/strip transition. The latter transition is much more pronounced and clearly indicated in
Fig. 1 by the beginning of the flat region around m = 0.

Assuming an isotropic interface tension σ and hence an approximately spherical droplet the location of m|| can be
easily explained as follows. For a configuration containing one large droplet of radius R (and “wrong” magnetisation
density −m0), the total magnetisation is Mdroplet = m0(L2 − 2πR2) and the free energy becomes Fdroplet = F0 + 2πRσ,
where we have assumed a two-dimensional system and F0 is the bulk contribution to the free energy. For a percolating
strip of magnetisation −m0 of width w one finds similarly Mstrip = m0(L2 − 2wL) and Fstrip = F0 + 2Lσ, where we
have ignored interactions between the two (on average) straight interfaces. Notice that in this approximation Fstrip
does not depend on the width w and hence the magnetisation Mstrip, which explains the flat region in the magnetisation
distribution of Fig. 1. As usual the stable configuration is the one with the smaller free energy. By equating Fdroplet =
Fstrip, one easily finds the critical droplet radius Rc = L/π. Inserting this into the expression for Mdroplet, we finally
arrive at the critical magnetisation M|| ≡ Mdroplet = (L2 − 2L2/π)m0 or

m|| = (1 − 2/π)m0 ≈ 0.3634m0 . (2)

For magnetisations smaller thanm||, it is for the system hence statistically preferable to be in the strip configuration.
Note, however, that the critical droplet radius at m|| is Rc = L/π and hence its diameter 2Rc = 2L/π ≈ 0.6366L < L is
much too small to percolate the lattice. At fixed magnetisationm||, the droplet must hence somehow deform its shape to
reach the preferable strip configuration. Such a deformation, however, can only proceed by climbing some free-energy
barrier. The optimal “transition path” across this free-energy barrier was found already a while ago by Leung and Zia
[11] who showed that the minimal-cost deformation of a droplet of fixed size (i.e., fixed magnetisation) consists of
two circular arcs, cf. Fig. 4. At the point where the long axis of this deformed droplet approaches the lattice size L,
the angle θ with the straight interface is given by the transcendental equation θ = ((2/π) sin θ + cos θ) sin θ ≈ 0.8601,
and the maximal free-energy barrier reads

ΔF = (θ/ sin θ − 1)2σL ≈ 0.1348 × 2σL . (3)

This barrier plays an important role for the understanding of the dynamics of simulations in the multicanonical
ensemble or, in this context, more precisely multimagnetical simulations [12]. The main ingredient of this method
are iteratively determined auxiliary weight factorsW(m) which, when multiplied with the usual canonical Boltzmann
factor, produce a flat distribution of the magnetisation between the two peaks of the canonical distribution. While
canonically the probability in the region around m = 0 is suppressed by a factor exp(−2βσLD−1) relative to the
two peaks, in the multimagnetical ensemble all states are equally probable. For the canonical ensemble this implies a
dramatic slowing down with an exponentially growing autocorrelation time τ ∝ exp(2βσLD−1). In the multimagnetical
simulations, on the other hand, one would naively expect a random walk behaviour of the Monte Carlo dynamics and
hence only a power-law scaling of τ with the lattice size L [13]. Equation (3) teaches us, however, that this cannot
be true at all since the system cannot easily pass through the point m ≈ m||. Rather, it first has to overcome the
free-energy barrier (3) in a direction “orthogonal” to the magnetisation which leads in two dimensions to a slowing
down of the form τ ∝ exp(0.1348 × 2βσL). This is much weaker than the canonical slowing down ∝ exp(2βσL), but
still exponentially bad. As Fig. 5 clearly demonstrates, such a slowing down due to a “hidden” free-energy barrier is
indeed observed in multimagnetical simulations.
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Figure 5: Time evolution of a multimagnetical Ising model simulation on a 40× 40 square lattice at T = 1.5 and close to the droplet/strip transition
point m||. One sees clearly that the system’s path through the state space is usually reflected at m ≈ m|| and only rarely the droplet/strip barrier (3)
is overcome.
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Figure 6: Similar plot to Fig. 5, again at T = 1.5, but here for a much bigger 160 × 160 square lattice close to the evaporation/condensation point
mc.

Having understood this, in the following we will concentrate on the evaporation/condensation transition, which
also exhibits first-order like signatures with an associated free-energy barrier. The time series of a multimagnetical
simulation around mc in Fig. 6 shows that also this barrier has a significant impact, albeit with a much less pro-
nounced slowing-down effect. Despite this barrier the resulting multimagnetical histogram is perfectly flat. This is
demonstrated in Fig. 7, where it is also shown how the contributions from the condensed and evaporated phase add
up to produce the total histogram.

3. Theory

In the following we consider the square lattice Ising model (1) in the low-temperature phase at an inverse tem-
perature β ≡ 1/T > βc = ln

(
1 +
√
2
)
/2 and assume that it is initially in the phase with positive magnetisation. The

infinite-volume equilibrium magnetisation per site is denoted by m0 = M0/V = m0(β) > 0. For a finite system of
volume V = L × L, due to fluctuations, some (possibly disconnected) volume vL may be in the “wrong” phase with
inverted spins. The magnetisation can then be decomposed as M = m0 (V − vL) − m0vL, implying

δM ≡ M − Vm0 = −2vLm0 . (4)

As already discussed in Sect. 2, in extreme cases, this excess in magnetisation may be distributed in many small
bubbles (background fluctuations) or in one large droplet. By isoperimetric reasoning, it can be shown that no droplets
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Figure 7: Left: Flat microcanonical histogram resulting from the time evolution shown in Fig. 5. Right: Decomposition of the histogram into the
contributions from the condensed and evaporated phase.

of intermediate size can exist [6]. In the former case, large-deviation theory predicts a Gaussian distribution [14],

exp

[
−β (δM)

2

2χV

]
= exp

⎡⎢⎢⎢⎢⎣−β
2m20v

2
L

χV

⎤⎥⎥⎥⎥⎦ , (5)

where χ = χ(β) = βV
[
〈m2〉 − 〈m〉2

]
is the susceptibility in the thermodynamic limit, while in the second case, the

probability depends on the interface free energy τW(β) per unit volume of an optimally shaped large Wulff droplet
[15, 16, 17],

exp
[
−βτW √vL

]
. (6)

In the general case, only a fraction vd = λvL will condense forming the large droplet and the rest vf = vL − vd =
(1 − λ)vL will contribute to the small bubble fluctuations. The probability distribution is hence in general given by an
interpolation between eqs. (5) (λ = 0) and (6) (λ = 1),

exp

⎡⎢⎢⎢⎢⎣−β
2m20(1 − λ)2v2L

χV
− βτW

√
λvL

⎤⎥⎥⎥⎥⎦ = exp
[
−βτW √vLΦΔ(λ)

]
, (7)

where
ΦΔ(λ) =

√
λ + Δ(1 − λ)2 , (8)

with

Δ =
2m20v

2
L

χVτW
√
vL
=
2m20
χτW

v3/2L
V

(9)

being a scaling parameter which depends on the model specific parameters m0, χ, and τW, the volume V = L2 and via
eq. (4) on the magnetisation m,

1 − m/m0 = 2
(
χτW/2m

2
0

)2/3
(Δ/L)2/3 . (10)

The most probable situation at fixed Δ, i.e, constant magnetisation respectively particle density, is obtained by
minimising ΦΔ(λ) as a function of the fraction λ = vd/vL. Depending on the parameter Δ, the solution behaves like at
a first-order phase transition: for Δ < Δc = (1/2)(3/2)3/2 ≈ 0.9186, the global minimum is reached for λ = 0, while
for Δ > Δc a nontrivial solution λ = λ(Δ) > 0 is found. At Δ = Δc, the solution jumps to a value λc = 2/3, cf. Figs. 8
and 9. At Δc, the large droplet thus starts to form in an abrupt, first-order transition like nucleation process. In a sense,
this is a model-independent, universal result (model-dependent parameters are, however, collected in the definition
(9) of the scaling parameter Δ).
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Figure 8: The function ΦΔ(λ) for three characteristic values of the parameter Δ defined in eq. (9). At Δc = (1/2)(3/2)3/2 ≈ 0.9186 the absolute
minimum at λ = 0 for Δ < Δc jumps to a non-trivial value λ ≥ 2/3 (dashed vertical line) for Δ > Δc.
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Figure 9: Analytic solution λ = λ(Δ) obtained by minimization of eq. (8).

In Fig. 8 we observe for Δ = Δc a free-energy barrier which takes its maximum at λmax = (2 −
√
3)/3 where

ΔF = Fmax − Fmin = τWv1/2L 3(2 − √3)/4√2. Using eq. (9) to express vL in terms of Δc, we arrive at

ΔF =

⎛⎜⎜⎜⎜⎝
81(26

√
3 − 45)

1024

χτ4WV

2m20

⎞⎟⎟⎟⎟⎠
1/3

≈ 0.1381τW
⎛⎜⎜⎜⎜⎝
χτW

2m20

⎞⎟⎟⎟⎟⎠
1/3

L2/3 . (11)

Inserting the parameters for the square lattice Ising model at T = 1.5 (see Table 1 below), one obtains the explicit
result ΔF ≈ 0.2283 L2/3. Due to the smaller power of the lattice size L, this barrier is less severe than the droplet/strip
barrier (3), but it is still clearly detectable, as is demonstrated in Fig. 6.

4. Numerical results

One aim of our Monte Carlo study [18, 19] was to investigate how fast the numerical results for finite systems
approach the asymptotic theoretical predictions in the thermodynamic limit. All results reported below are from
simulations at T = 1.5 ≈ 0.66Tc on square lattices of linear size L = 40, 80, . . . , 640. The simulation temperature was
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Table 1: Numerical values for the infinite-volume equilibrium magnetisation m0, susceptibility χ and Wulff interface free energy per unit volume
τW of the square lattice Ising model at the simulation temperature T = 1.5, entering the parameter Δ = Δ(vL,m0, χ, τW) defined in eq. (9).

T Tc m0 χ τW 2m20/χτW
1.500 2.269 0.9865 0.02708 4.245 16.93

chosen as a good compromise between simulation speed (freezing of the spin-flip dynamics at too low temperatures)
and compactness of the droplet (see the r.h.s. of Fig. 2 for a typical configuration).

The main observable is the fraction of excess magnetisation in the largest droplet, λ = vd/vL, as a function of
the total volume vL of the “wrong” phase. The total volume vL can be tuned, via eq. (4), by the magnetisation and
determines the scaling variable Δ = Δ(vL,m0, χ, τW) defined in eq. (9). For the square lattice Ising model (1), two of
the parameters entering here (m0, τW) are known exactly and the third one (χ) can be computed with extremely high
precision. The spontaneous magnetisation m0 is given by the famous Onsager-Yang solution [20, 21]

m0(β) =
(
1 − sinh−4 (2β)

)1/8
, (12)

which evaluates at T = 1.5 to m0 = 0.9865 . . .. The susceptibility is still not known exactly, but an extremely long
series expansion [22],

χ(β) = β
323∑

i=0

ciu
2i with u =

1
2 sinh(2β)

(13)

and c = {0, 0, 4, 16, 104, 416, 2224, 8896, 43840, 175296, 825648, 3300480, 15101920, ...} gives the basically exact
result of χ = 0.02708 (the last term in eq. (13) contributes at T = 1.5 only ≈ 0.28 × 10−158). Finally, for the free
energy ΣW of the Wulff droplet, Leung and Zia [11] were able to derive the analytic expression ΣW = 2

√
WΣ. Here,

Σ is the volume of the droplet and

W =
4
β2

∫ βσ0
0

dx cosh−1
[
cosh2(2β)
sinh(2β)

− cosh(x)
]

(14)

is the volume bounded by the Wulff plot, with σ0 = 2 + ln[tanh(β)]/β being the interface tension of an (1,0) surface
(i.e., in direction of the lattice axis) [23, 24, 25]. Putting Σ = 1 gives the interfacial free energy per unit volume,

τW(β) = 2
√
W , (15)

and from a numerical integration of (14) we obtain τW = 4.245 413 . . . at T = 1.5. Note that by assuming an isotropic
interface tension σ0 and hence a circular Wulff shape, one finds τW ≈ 2

√
πσ0 = 4.219, which deviates from the exact

result by only 0.6%. Using heuristically an average between σ0 and the also exactly known interface tension along the
diagonals, σdiag =

√
2 ln sinh(2β)/β [25], this even improves to 4.245 667 (0.006% deviation). All relevant parameters

are collected in Table 1.
In a first step we determined the relevant region of the magnetisation. This was done by performing multimagnetic

simulations and inspecting the distribution of the magnetisation as shown above in Fig. 3 visually. The distribution
exhibits for larger lattice sizes a clear cusp around mc which divides the evaporated and condensed region. Within the
evaporated region it has a Gaussian form according to eq. (5), while in the condensed region the stretched exponential
behaviour is visible, cf. eq. (6).

Next, we performed for each lattice size 38 simulations at fixed values of Δi = {0.00, 0.10, ...}, i.e., at constant
magnetisation, with an emphasis on the vicinity of Δc. The corresponding values of the total magnetisation M (cf.
eq. (10)) must be rounded to the next allowed integer value and then the true Δi are calculated backwards. The
constraint of a constant magnetisation (“micromagnetic ensemble”) was enforced by utilising aMetropolis update with
Kawasaki dynamics exchanging pairs of unaligned spins. Every simulation ran 20 000 sweeps for the thermalisation
and 200 000 sweeps for measurements. To obtain the statistical error bars reliably, 10 independent simulations were
run for each data point. After every sweep a cluster decomposition was performed using the Hoshen-Kopelman
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Figure 10: Sketch of a large droplet containing overturned spins in its interior (left), which must be counted when measuring its volume vd. This is
achieved by a so-called “flood-fill” algorithm (right).
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Figure 11: Fraction of excess magnetisation λ = vd/vL in the largest droplet of the square lattice Ising model with nearest-neighbour interactions
and periodic boundary conditions for lattice sizes L = 40, 80, . . . , 640 at the temperature T = 1.5 ≈ 0.66Tc. The error bars are not plotted since
their size is much smaller than that of the data symbols. The solid line shows the analytic solution in the limit L→ ∞.

[26] algorithm and the volume vd of the largest droplet was measured yielding the desired fraction λ. It should be
noted that the range of magnetisations was chosen to guarantee that the droplet was always the second largest cluster
(the background is the largest cluster). Also note that, in the present context, the volume or size of the cluster does
include overturned spins within the cluster (in contrast to percolation studies or improved estimators in cluster-update
simulations [27]), cf. Fig. 10. Our simulations are so sensitive that the proper counting of the cluster size turned out
to be indeed crucial. Technically, this was handled by a so-called “flood-fill” routine [28] that ran after the Hoshen-
Kopelman algorithm. In essence, it starts from an inside spin and stops when a spin that belongs to the background
is reached. Very rarely ambiguous cases can occur which can be detected automatically and were taken care of by
inspection.

Our main result, the fraction λ = λ(Δ) for various lattice sizes, is shown in Fig. 11. The solid line represents the
analytical curve obtained by the minimization of φΔ(λ) in eq. (8). We observe rather strong finite-size effects but for
the larger lattice sizes the results of the simulations clearly approach the theoretical curve. The jump from λ ≈ 0 to
λ ≈ 2/3 at Δc ≈ 0.9186 confirms the theoretical prediction that at the evaporation/condensation transition 2/3 of the
excess of the magnetisation goes into the large droplet while the rest remains in the background fluctuations. The
apparent increase of λ for Δ → 0 can be explained by the fact that the minimal cluster size is 1 and not an arbitrarily
small fraction. In contrast, the excess that can be fixed analytically using eq. (9) can be much smaller than 1.
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Figure 12: Size distribution of the largest droplet close to the evaporation/condensation transition on a 160×160 square lattice at T = 1.5, exhibiting
a clear two-phase signal.

The size distribution of the largest droplet close to Δc respectively mc is shown in Fig. 12 for a 160 × 160 lattice.
One observes a clear two-phase signal: the system is either in the evaporated bubble phase with vd ≈ 10 or in the
condensed phase consisting of one large droplet of size vd ≈ 90 taking up about 2/3 of the excess magnetisation. The
remaining 1/3 of the excess goes into additional small bubbles not directly visible in this figure.

5. Concluding remarks

Our Monte Carlo results for the two-dimensional square lattice Ising model clearly confirm the theoretical consid-
erations of Biskup et al. [5, 6] and extend their exact analysis for asymptotically large systems to practically accessible
system sizes. The observed finite-size scaling behaviour matches perfectly with the predictions in the infinite-volume
limit. All simulations were performed in thermal equilibrium and the suppression of droplets of intermediate size
could be unambiguously confirmed. The double-peak structure of the size distribution of the largest droplet at the
evaporation/condensation transition reveals a “hidden” free-energy barrier, which is shown to be also reflected by a
slowing down of the performance of multimagnetical simulations.

We have also performed similar simulation studies for the standard two-dimensional Ising model on triangular
lattices and with additional next-nearest neighbour interactions on square lattices [29]. While on physical grounds the
results of Biskup et al. are of course expected to carry over to these cases as well, strictly speaking their analytical
treatment in Refs. [5, 6] is confined to square lattices with nearest-neighbour couplings. Our results for these further
models confirm this expectation and thus in particular provide evidence for the implied universal aspects of the theory.
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