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We show that the number of maximal sum-free subsets of
{1, 2, . . . , n} is at most 23n/8+o(n). We also show that 20.406n+o(n) is
an upper bound on the number of maximal product-free subsets of
any group of order n.
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1. Introduction

A subset S of [n] = {1, 2, . . . , n} is sum-free if for every y, z ∈ S, we have y + z 6∈ S. We say
that S is maximal sum-free if it is sum-free and is properly contained in no other sum-free subset of
[n]. Define f (n) to be the number of sum-free subsets of [n] and fmax(n) to be the number of maximal
sum-free subsets of [n]. It is known that f (n) = Θ(2n/2) [3]. Cameron and Erdös [2] showed that
fmax(n) ≥ 2bn/4c and asked whether or not fmax(n) = f (n)/2εn for some constant ε > 0. Luczak and
Schoen [5] answered that question affirmatively, proving that fmax(n) ≤ 2n/2−2

−28n, provided that n is
sufficiently large. In this paper we prove the following, improved upper bound on fmax(n).

Theorem 1.1. fmax(n) ≤ 23n/8+o(n).
If (G, ·) is a group and S ⊆ G, we say that S is product-free if for every y, z ∈ S, we have y · z 6∈ S. S
is maximal product-free if it is not strictly contained in any other product-free subset of G. Denote
by f (G) and fmax(G) the numbers of product-free subsets and maximal product-free subsets of G,
respectively. From Alon [1], it is known that for every group G of order n, f (G) ≤ 2n/2+o(n) and
that there exists a group G of order n for which f (G) ≥ 2n/2+Ω(ln n). From [5,1] it follows that for a
sufficiently large n, ifG is a group of order n then fmax(G) ≤ 2n/2−2

−28n+o(n). Our second result improves
the best known upper bound on the number of maximal product-free subsets in a group G of order n.

Theorem 1.2. For any group G of order n, fmax(G) ≤ 20.406n+o(n).

1.1. Overview

The following fact is the starting point of the proof of Theorem 1.2.
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Fact 1.3. LetΩ be an arbitrary set, letΩ ′ ⊆ Ω and letD be a distribution overΩ . Then PrD(x) ≤ 1/|Ω ′|
for some x ∈ Ω ′.

In light of Fact 1.3, in order to give an upper bound on the size of a setΩ ′ ⊆ Ω , it is enough to define
a distributionD over the setΩ and then lower bound the probability PrD(x) for every x ∈ Ω ′. If we
are able to show that for all x ∈ Ω ′, PrD(x) ≥ p, it will then follow by Fact 1.3 that |Ω ′| ≤ 1/p. To
use this idea in the proof of Theorem 1.2 we define for every fixed subset A of G, a distribution over
the set of product-free subsets of A. Our distribution is defined by means of a randomized, greedy
process: We start with an empty product-free set R and with a uniformly random permutation of A.
Then, according to the order implied by the permutation, we take each element in A and add it to R
with probability ε, unless its addition creates a set R which is not product-free. Trivially, for every
ε ∈ (0, 1), such a process induces a distribution over the set of all product-free subsets of A. We
then, essentially, give a lower bound on the probability that the above process produces a maximal
product-free subset of G (that is contained in A). Doing this by Fact 1.3 gives an upper bound on the
number ofmaximal product-free subsets ofG that are contained in A. This upper bound on the number
of maximal product-free subsets of G that are contained in a fixed subset A of G is combined together
with a covering lemma for independent sets in regular graphs andwith an appropriate, small family, of
Cayley graphs defined on G, to obtain the proof of Theorem 1.2. The covering lemma for independent
sets in regular graphs follows from Sapozhenko [6] and is stated next.

Lemma 1.4 (Sapozhenko). For n ∈ N, let G = (V , E) be a k-regular, n-vertex graph, with k ≥
√
n. Then

there exists a family F = {A1, A2, . . . , Am} of subsets of V such that:

1. m = 2O(n
3/4 ln n);

2. For all Ai ∈ F , |Ai| ≤ n/2+ O(n3/4 ln n);
3. For every independent set I of G there exists Ai ∈ F such that I ⊆ Ai.

The proof of Theorem 1.1, given in Section 3 is based on a covering lemma for sum-free subsets of
[n]. Such a covering lemma was proved by Green [3].

Lemma 1.5 (Green). There exists a family F = {A1, A2, . . . , Am} of subsets of [n] such that:

1. m = 2o(n);
2. For all Ai ∈ F , |Ai| ≤ n/2+ o(n);
3. For every sum-free subset S of [n] there exists Ai ∈ F such that S ⊆ Ai.

From Lemma 1.5 it follows that an upper bound on the number of maximal sum-free subsets of
[n] which are contained in an arbitrary set A ⊆ [n] of size n/2 + o(n), translates immediately to an
upper bound on fmax(n), up to a multiplicative factor of 2o(n). So, in order to prove Theorem 1.1, we
fix an arbitrary subset A of [n] of size n/2+ o(n) and show that it cannot contain more than 23n/8+o(n)
maximal sum-free subsets of [n]. This last task is achieved by a reduction to the problem of estimating
the number of maximal (by inclusion) independent sets in triangle-free graphs, a problem which is
completely solved by Hujter and Tuza [4]. For our purposes, the following upper bound of Hujter and
Tuza will suffice.

Theorem 1.6 (Hujter–Tuza). For n ≥ 4, the number of maximal (by inclusion) independent sets in an
n-vertex, triangle-free graph is at most 2n/2.

2. The number of maximal product-free subsets of groups

In this section we prove Theorem 1.2. Let (G, ·) be a group of order n. We are interested in
estimating fmax(G) from above. For a product-free subset Q of G, let H = H(G,Q ) be the Cayley graph
associated as usualwithG andQ ; that is,H is a graphwith vertex setG and edge set E, where (u, v) ∈ E
if and only if there exists s ∈ Q for which u · s = v or v · s = u. It is not hard to see that H is k-regular,
with k = |Q ∪ Q−1| and that any product-free subset S of G for which Q ⊆ S, is an independent set
of H(G,Q ).
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For brevity, let us call a maximal product-free subset of G a good subset. Clearly there are at most
2o(n) good subsets having size less than d

√
ne. So in order to prove Theorem 1.2, it is enough to count

only good subsets having size at least d
√
ne. Each such good subset, given the discussion above, is an

independent set in at least one of the graphs H(G,Q ), where Q ranges over all product-free subsets of
G of size d

√
ne. Since there are at most

(
n
d
√
ne

)
= 2o(n) graphs H(G,Q ), with Q ⊆ G being a product-

free set of size d
√
ne, it would suffice for our purpose to fix a product-free subset Q ⊆ G of size

d
√
ne and upper bound the number of independent sets S inH(G,Q ) that correspond to good subsets,

that is to maximal product-free subsets of G. Therefore, proving the following lemma would imply
Theorem 1.2.

Lemma 2.1. Let G be a group of order n. Let Q ⊆ G be product-free with |Q | = d
√
ne. Then the number

of independent sets S in H(G,Q ) that are also maximal product-free subsets of G is at most 20.406n+o(n).

2.1. Proof of Lemma 2.1

Throughout the proof, we assume that n is sufficiently large. The starting point of the proof is
Lemma 1.4, the covering lemma for independent sets in regular graphs. For a product-free subset
Q of G of size d

√
ne, we want to count the number of independent sets S in H(G,Q ) that are also

maximal product-free subsets of G. Since H(G,Q ) is k-regular with k ≥
√
n, by Lemma 1.4 there

exists a family F consisting of 2O(n
3/4 ln n) subsets of G, each of size at most n/2 + O(n3/4 ln n), which

cover all independent sets in H(G,Q ). In particular, this family covers all independent sets in H(G,Q )
which are also maximal product-free subsets of G. Hence, since the size of F is 2o(n), in order to
prove Lemma 2.1 it is enough to fix a set A ∈ F and show that the number fmax(G, A) of maximal
product-free subsets of G that are contained in A is at most 20.406n+o(n). Moreover, since any set A
in F has size at most n/2 + O(n3/4 ln n), it is enough to fix an arbitrary subset A of G for which
n/2+

√
n ≤ |A| ≤ n/2+ O(n3/4 ln n) holds, and show that for such a set A, fmax(G, A) ≤ 20.406n+o(n).

This is exactly what we do; so let us fix for the rest of this section a subset A ⊆ G satisfying the above
size constraints. We shall assume for simplicity that G is not the trivial group, so that any maximal
product-free subset of G has size at least 1.
Say that an element x ∈ G is forced by {y, z} ⊆ G, if {x, y, z} is not product-free. We consider the

following randomized process. The process is given the cardinality n of G, a bijection π : [n] → G, the
subset A of G and a real ε ∈ (0, 1), and returns a subset of A.

P(n, π, A, ε):
Let R← ∅.
For i = 1 to n do the following:
If π(i) ∈ A and π(i) is not forced by any {y, z} ⊆ R then let R← R ∪ {π(i)}with probability ε.

Return R.

For the rest of this section,we let S be amaximal product-free subset ofG that is contained in A. Denote
by p(ε, S) the probability that S = P(n, π, A, ε), given a uniformly random bijection π : [n] → G. For
x ∈ A \ S, let Fx be the set of all {y, z} ⊆ S that force x. Observe that from the assumption that S is a
maximal product-free subset of G, for x ∈ A \ S we have |Fx| ≥ 1 whereas for x ∈ S, there does not
exist any {y, z} ⊆ S that forces x. For a uniformly random bijection π : [n] → G and for x ∈ A \ S,
define

Bx =
{
1 π−1(y) < π−1(x) and π−1(z) < π−1(x), for some {y, z} ∈ Fx,
0 Otherwise,

and let B =
∑
x Bx, where the sum ranges over all x ∈ A \ S.

In the analysis of the above randomized process, we make use of the following simple fact.

Proposition 2.2. Let X be a random variable taking its values from {0, 1, . . . , t}. Furthermore, assume
that E(X) ≥ c ≥ 1. Then:

Pr(X ≥ c − 1) ≥
1

t − c + 1
.
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Proof. Write p = Pr(X ≥ c − 1). Then we can upper bound E(X) as follows.

E(X) ≤ Pr(X < c − 1)(c − 1)+ Pr(X ≥ c − 1)t
= (1− p)(c − 1)+ pt.

Taking p < 1
t−c+1 , we obtain E(X) < c which is a contradiction to the assumption in the proposition.

Hence p ≥ 1
t−c+1 . �

Lemma 2.3. p(ε, S) ≥ n−1(1− ε)|A\S|−E(B)+1ε|S|.

Proof. Observe first that B ≤ |A \ S| ≤ n. We also have that |S| ≤ n/2. (Indeed, if we fix x ∈ S and
take any two distinct y, z ∈ S, we have x · y 6= x · z and x · y, x · z 6∈ S. This implies |S| ≤ n− |S| and
so |S| ≤ n/2.) Hence |A \ S| ≥

√
n; since for all x ∈ A \ S we have Pr(Bx = 1) ≥ 1/3, this implies that

E(B) ≥
√
n/3 ≥ 1 for n sufficiently large. From these bounds on B and E(B), using Proposition 2.2 we

conclude that Pr(B ≥ E(B) − 1) ≥ n−1. Let Ci be the event that on the ith iteration of P(n, π, A, ε)
we have that π(i) ∈ S if and only if π(i) ∈ R, where R is the set defined during the process. Let
C =

⋂n
i=1 Ci. Clearly p(ε, S) ≥ n

−1 Pr(C |B ≥ E(B)− 1). We next lower bound Pr(C |B ≥ E(B)− 1).
Since for every x ∈ S there does not exist any {y, z} ⊆ S that forces x, we have

Pr
(
Ci|π(i) ∈ S,

⋂
j<i

Cj
)
= ε. (1)

Also, from the definition of the randomized process we have that

Pr
(
Ci|π(i) ∈ A \ S, Bπ(i) = 0,

⋂
j<i

Cj
)
= 1− ε, (2)

while

Pr
(
Ci|π(i) ∈ A \ S, Bπ(i) = 1,

⋂
j<i

Cj
)
= 1. (3)

Lastly, it is easily verified given the definition of the randomized process that the following holds:

Pr
(
Ci|π(i) ∈ G \ A,

⋂
j<i

Cj
)
= 1. (4)

From (1)–(4) we get that

Pr(C |B ≥ E(B)− 1) ≥ (1− ε)|A\S|−E(B)+1ε|S|.

Since p(ε, S) ≥ n−1 Pr(C |B ≥ E(B)− 1), the assertion in the lemma is now proved. �

Recall that we need to give an upper bound on fmax(G, A), the number of maximal product-free
subsets of G that are contained in A. Let fmax(G, A, γ ) denote the number of maximal product-free
subsets of G of size γ n that are contained in A. Clearly, fmax(G, A, 1/2) ≤ 2o(n). Also, since G is not the
trivial group, any maximal product-free subset of G has at least one element. From these two facts,
since |S| ≤ n/2 and since there are at most n possible choices for γ such that γ n is an integer, we
have

fmax(G, A) ≤ 2o(n) + n ·max
γ
fmax(G, A, γ ), (5)

where maxγ denotes the maximum over all γ ∈ [1/n, 1/2 − 1/(2n)]. Thus, it remains to upper
bound maxγ fmax(G, A, γ ). We do that next using Lemma 2.3. Let us write |S| = γ n and assume
γ ∈ [1/n, 1/2− 1/(2n)]. Define

f (ε) = (1− ε)(1/2−γ )2n/3εγ n.
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For every x ∈ A \ S, it holds that Pr(Bx = 1) ≥ 1/3 and so E(B) ≥ |A \ S|/3. Therefore, since
|A| ≤ n/2+O(n3/4 ln n), we get that |A\S|−E(B)+1 ≤ 2|A\S|/3+1 = (1/2−γ )2n/3+O(n3/4 ln n).
Hence, from Lemma 2.3 it follows that for every ε ∈ (0, 1), p(ε, S) ≥ n−1(1− ε)O(n

3/4 ln n)f (ε). It then
follows, by Fact 1.3, that for every ε ∈ (0, 1),

fmax(G, A, γ ) ≤ n(1− ε)−O(n
3/4 ln n)/f (ε). (6)

Define

εγ =
γ

(1/2− γ )2/3+ γ
,

and observe that for γ ∈ [1/n, 1/2 − 1/(2n)], εγ ∈ (0, 1 − O(1/n)). Hence, for every γ ∈
[1/n, 1/2− 1/(2n)], (1− εγ )−O(n

3/4 ln n)
= 2o(n). This implies, using (6), that

max
γ
fmax(G, A, γ ) ≤ 2o(n) ·max

γ
1/f (εγ ). (7)

Define g(γ ) = f (εγ ). Then by (5) and (7), in order to give an upper bound on fmax(G, A) up to a
subexponential factor, it remains to upper boundmaxγ 1/g(γ ). To do this, define h(γ ) = ln g(γ ) and
take the derivative of h(γ ), which is

h′(γ ) = −
2
3
· ln

(1/2− γ )2/3
(1/2− γ )2/3+ γ

− ln
(1/2− γ )2/3+ γ

γ
.

It is easy to see that 1/g(γ ) is concave down on [1/n, 1/2−1/(2n)] and that its maximum is achieved
for γ satisfying 1/n < γ < 1/2−1/(2n). Hence, if γ ∗ is the solution to h′(γ ) = 0, then fmax(G, A) is up
to a subexponential factor at most 1/g(γ ∗). Solving h′(γ ) = 0 reduces to solving the cubic equation

23γ 3 + 3γ − 1 = 0. (8)

The only real solution to (8) is γ ∗ = w − 1/(23w) = 0.234 . . ., where w satisfies w3 = 1/46 +√
1/462 + 1/233. Using this, we can deduce 1/g(γ ∗) ≤ 20.406n. We thus conclude from the discussion
above that fmax(G, A) ≤ 20.406n+o(n). This gives us the validity of Lemma 2.1 and in turn, the validity of
Theorem 1.2.
Using essentially the same arguments presented in this section, we could have proved that

fmax(n) ≤ 20.406n+o(n). However, as we show in the next section, we can do much better than this.

3. The number of maximal sum-free subsets of [n]

In this section we prove Theorem 1.1. Let n be a sufficiently large integer and let l = dn/2e. For a
sum-free subset R ⊆ [l] and forW ⊆ [n] \ [l], let E(R,W ) be the family of all extensions S ⊆ W of R
to maximal sum-free subsets of [n]; In other words, E(R,W ) is the family of all subsets S ofW such
that R ∪ S is a maximal sum-free subset of [n].

Lemma 3.1. For any sum-free subset R ⊆ [l], and for any W ⊆ [n] \ [l], we have |E(R,W )| ≤ 2|W |/2.

Proof. Let R be an arbitrary sum-free subset of [l] and letW be an arbitrary subset of [n]\[l]. As usual,
for X ⊆ N, let 2X = {a+ b : a, b ∈ X}. If S is a subset ofW such that R ∪ S is sum-free then for every
x ∈ 2R, we have x 6∈ S. Hence, E(R,W ) = E(R,W \ 2R). Defining V = W \ 2R, it thus suffices to give
an upper bound on the cardinality of E(R, V ). We do that next.
Let H = (V , E) be the graph over the vertex set V and with the edge set E, where (y, z) ∈ E if and

only if for some x ∈ R, |y− z| = x.

Claim 3.2. Let I ⊆ V . Then I is an independent set in H if and only if R ∪ I is a sum-free subset of [n].
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Proof. First assume that for I ⊆ V , R ∪ I is not sum-free. Then there exists a non-sum-free set
{x, y, z} ⊆ R ∪ I with x ≤ y ≤ z. Since (i) V = W \ 2R, (ii) R is sum-free, and (iii) I ⊆ V ⊆ [n] \ [l],
it follows that x ∈ R, y, z ∈ I and z − y = x. This implies, by the definition of H , that I is not an
independent set in H . Next assume that for I ⊆ V , I is not an independent set in H . Then by definition,
there are y, z ∈ I such that z − y = x ∈ R. Hence R ∪ I is not sum-free. �

Suppose that S ⊆ V and that R ∪ S is a maximal sum-free subset of [n]. By Claim 3.2, S is an
independent set in H . More than that, we claim that S is a maximal independent set in H . Indeed,
assume that S is not a maximal independent set and let S ′ be an independent set in H which strictly
contains S. Then by Claim 3.2, R ∪ S ′ is a sum-free subset of [n], contradicting the fact that R ∪ S is a
maximal sum-free subset of [n]. Thus, if S ⊆ V and R ∪ S is a maximal sum-free subset of [n] then S
is a maximal independent set in H . It then follows that |E(R, V )| is at most the number of maximal
independent sets in H .
Now, note that H is triangle-free. For otherwise, there are x, y, z ∈ V such that z − y = a ∈

R, y− x = b ∈ R and z − x = c ∈ R. But then a+ b = z − x = c , which contradicts the fact that R is
sum-free. By Theorem 1.6, the number of maximal independent sets in a triangle-free graph of order
|V | is at most 2|V |/2, and so

|E(R,W )| = |E(R, V )| ≤ 2|V |/2 ≤ 2|W |/2,

as required. �

To prove Theorem 1.1, we make use of Lemma 1.5, Green’s covering lemma for sum-free subsets
of [n]. Fix an arbitrary subset A of [n] such that |A| = n/2+ o(n). With Lemma 1.5 in hand, fmax(n) is
at most, up to a multiplicative factor of 2o(n), the number of subsets of A that are also maximal sum-
free subsets of [n]. Now, from Lemma 3.1 and since the number of sum-free subsets of [l] is at most
2l/2+O(1), it follows that the number of subsets of A that are maximal sum-free subsets of [n] cannot
be larger than

min
{
2|A∩[l]|, 2l/2+O(1)

}
· 2(|A|−|A∩[l]|)/2.

This last quantity is, since |A| = n/2 + o(n), at most 23n/8+o(n). With that we complete the proof of
Theorem 1.1.
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