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Abstract

We develop a frame-covariant formulation of inflation in the slow-roll approximation by generalizing 
the inflationary attractor solution for scalar-curvature theories. Our formulation gives rise to new gener-
alized forms for the potential slow-roll parameters, which enable us to examine the effect of conformal 
transformations and inflaton reparameterizations in scalar-curvature theories. We find that cosmological 
observables, such as the power spectrum, the spectral indices and their runnings, can be expressed in a con-
cise manner in terms of the generalized potential slow-roll parameters which depend on the scalar-curvature 
coupling function, the inflaton wavefunction, and the inflaton potential. We show how the cosmological ob-
servables of inflation are frame-invariant in this generalized potential slow-roll formalism, as long as the 
end-of-inflation condition is appropriately extended to become frame-invariant as well. We then apply our 
formalism to specific scenarios, such as the induced gravity inflation, Higgs inflation and F(R) models of 
inflation, and obtain more accurate results, without making additional approximations to the potential. Our 
results are shown to be consistent to lowest order with those presented in the literature. Finally, we outline 
how our frame-covariant formalism can be naturally extended beyond the tree-level approximation, within 
the framework of the Vilkovisky–DeWitt effective action.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Inflation, which was originally proposed as a solution to the flatness and horizon problems [1,
2], has been found to be an excellent generic explanation to the origin of anisotropies observed 
in the cosmic microwave background (CMB) [3–6]. However, the large number of inflationary 
models underpinned by a variety of theoretical ideas, such as quintessence, modified gravity and 
string theory, poses a challenge in determining the physical driving mechanism for inflation. 
Furthermore, due to the complexity of the equations of motion in many inflationary models, ex-
tracting analytical predictions for cosmological observables of inflation is rapidly becoming a 
formidable task. In the simplest of inflationary models, it has been found that if the equations 
of motion for the classical perturbations of the metric and the inflaton are quantized, the ob-
served tilt of the CMB can be found in terms of solutions to the classical equations of motion. 
To analytically investigate inflationary models in the general case, the standard procedure is to 
assume that these solutions satisfy a set of constraints known collectively as the slow-roll ap-
proximation. In this paradigm, the inflaton field ϕ is assumed to slowly roll down the inflationary 
potential V (ϕ), meaning that we may neglect several terms in the equations of motion. Conse-
quently, it is possible to obtain simple analytical expressions for the tilt of the CMB and other 
inflationary observables.

As observations impose increasingly tighter constraints on inflation [7,8], it becomes difficult 
to physically motivate minimally coupled inflationary models with acceptable phenomenology 
both in the context of particle physics and cosmology. A popular alternative is to introduce a 
coupling function f (ϕ) between the scalar curvature R and the inflaton ϕ, leading to a more 
general class of gravity models, termed scalar-curvature theories. In these theories, such a cou-
pling function may also be motivated by viewing it as emerging from quantum corrections to 
the low-energy effective action, after integrating out high-energy degrees of freedom. Thus, it is 
desirable to extend the procedure for extracting observable quantities from minimally coupled 
models, in which f (ϕ) = M2

P where MP = 2.435 × 1018 GeV is the reduced Planck mass, to 
general scalar-curvature models, in which f (ϕ) is an arbitrary function of ϕ. Moreover, scalar-
curvature theories with a non-trivial scalar-curvature coupling f (ϕ), which are said to be in the 
Jordan frame, can be recast in the Einstein frame, and so be written in terms of minimally coupled 
models via a combination of conformal transformations and inflaton field reparameterizations. 
Consequently, studying models related by these transformations can help resolve the so-called 
frame problem, namely whether these models are physically equivalent or not [9–16].

The aim of the present article is to introduce frame covariance in the inflationary dynamics 
of scalar-curvature theories. This covariance manifests itself as a set of transformation rules that 
nonetheless keep cosmological observables of inflation invariant. To this end, we develop a new 
formalism for extracting predictions for observable quantities from scalar-curvature theories by 
generalizing the corresponding well-known potential slow-roll approximation used in minimally-
coupled models. Using this formalism, it is possible to study classes of scalar-curvature theories 
related to one another by conformal transformations and inflaton field reparameterizations inde-
pendently. Hence, we will show that these classes of models generate equivalent predictions for 
inflationary observables. Furthermore, the new formalism may be used as a calculational tool 
for extracting predictions in a concise and intuitive manner for a wide range of scalar-curvature 
models without the need for further approximations beyond the ones established in the slow-roll 
approximation.

The outline of this paper is as follows: after this introductory section, Section 2 introduces 
the classical action S of the scalar-curvature theories that we will be considering. In particular, 
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we specify each theory by three model functions [cf. (2.1)]: (i) the non-minimal scalar-curvature 
coupling f (ϕ), (ii) the non-canonical inflaton-dependent wavefunction k(ϕ), and (iii) the inflaton 
potential V (ϕ). We introduce conformal transformations and inflaton reparameterizations and, 
by observing that the classical action of the theory is invariant under their combined action, we 
derive the transformation properties of the three model functions mentioned above.

In Section 3, we derive the modified Einstein field equations for scalar-curvature theories by 
varying the action with respect to the metric gμν and the inflaton field ϕ. We further simplify the 
cosmological equations of motion by considering a Friedman–Robertson–Walker (FRW) metric 
with a general lapse function NL and a homogeneous inflaton. We observe that the form of the 
acceleration, Friedman, and continuity equations does not alter, as long as the energy density and 
pressure are replaced by new, modified variables given in terms of the model functions.

In Section 4, we perturb the metric to first order, which allows us to consider separately 
scalar, vector, and tensor perturbations. We then introduce the comoving curvature perturbation 
as the primordial origin of scalar perturbation modes and the polarizations of the gravitational 
waves as the primordial tensor perturbation modes. After quantizing these perturbations, we 
write down their two-point correlation functions and relate the latter to the scalar and tensor 
power spectra PR and PT . In this way, we introduce the commonly used inflationary observables 
in terms of PR and PT , which include the scalar and tensor spectral indices nR and nT , the 
tensor-to-scalar ratio r , and the runnings of the spectral indices αR and αT .

In Section 5, we introduce the slow-roll approximation by defining the Hubble slow-roll pa-
rameters, which allow us to neglect certain terms in the equations of motion and control the 
validity of the approximation. However, the presence of a non-trivial non-minimal coupling f (ϕ)

is found to introduce two extra slow-roll parameters in addition to those present in minimally-
coupled models of inflation. After writing the inflationary observables mentioned above and the 
cosmological equations of motion in terms of the Hubble slow-roll parameters, we derive the 
generalized solution for the inflationary attractor. This enables us to define new potential slow-
roll parameters, purely in terms of f (ϕ), k(ϕ) and V (ϕ), which reduce to the Hubble slow-roll 
parameters in the slow-roll approximation. Hence, we derive explicit expressions for the infla-
tionary observables in a straightforward manner for any scalar-curvature theory using only the 
expressions of the model functions, thus avoiding the intermediate step of having to solve the 
equations of motion.

In Section 6, we examine the different frames that may occur in inflationary dynamics and 
derive the transformation properties of the generalized potential slow-roll parameters. By virtue 
of these parameters, we show that cosmological observables of inflation are frame-independent 
when expressed in terms of the inflaton ϕ to first order in the slow-roll approximation. Instead, 
the number of e-folds, commonly used in the literature to express analytic predictions for infla-
tionary observables, is found to be frame-dependent. However, in our generalized approach, the 
end-of-inflation condition may be uniquely extended, so that it becomes frame-independent and 
reduces to the usual condition for the Einstein frame, thus leaving observables expressed in terms 
of e-folds frame-invariant.

In Section 7, we consider three specific models of inflation: (i) induced gravity inflation, 
(ii) Higgs inflation, and (iii) F(R) theories. In induced gravity inflation, the effective Planck 
mass is fully induced by the inflaton. We distinguish between small-field and large-field induced 
gravity inflation and derive expressions for the cosmological observables in both cases. We then 
proceed similarly in Higgs inflation, which contains a non-minimal coupling that modifies, but 
not fully dominates the effective Planck mass. By analogy, we derive expressions for all cosmo-
logical observables of inflation and evaluate the size of the non-minimal coupling through the 
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normalization of the power spectrum. In all cases, the expressions for the cosmological observ-
ables reduce to the ones found in the literature to lowest order. Finally, we consider a slightly 
different class of theories, the so-called F(R) models, where inflation is driven by a modifica-
tion to the Einstein–Hilbert action. Using an auxiliary field, we recast these models in terms 
of scalar-curvature models, and so obtain predictions for a Starobinsky-like model, for which 
F(R) = αR + βnR

n.
In Section 8, we outline how our frame-covariant formalism can be extended beyond the tree-

level approximation, within the framework of the Vilkovisky–DeWitt effective action [17,18]. 
Our explicit demonstration will be at the one-loop level, thus making plausible its applicability 
to higher orders. Finally, Section 9 summarizes our conclusions and presents possible future di-
rections along the frame-covariant formalism for inflation that we are studying. Technical details 
related to the transformation properties of the model functions are given in Appendix A.

2. Scalar-curvature theories and frame transformations

In this section, we define the classical action S describing the inflationary dynamics in 
scalar-curvature theories. The invariance of S under conformal rescalings of the metric gμν and 
reparameterizations of the inflaton field ϕ will help us to introduce the concept of frame trans-
formations.

For simplicity, let us assume that the energy densities of all other fields are sufficiently diluted 
with respect to the energy density of the inflaton, such that there is no contribution to the La-
grangian from hydrodynamic matter. With this assumption, we may define the classical action S
for a wide class of scalar-curvature theories as

S[gμν,ϕ,f (ϕ), k(ϕ),V (ϕ)]

≡
∫

d4x
√−g

[
− f (ϕ)

2
R + k(ϕ)

2
gμν(∇μϕ)(∇νϕ) − V (ϕ)

]
, (2.1)

where g ≡ detgμν and R is the Ricci scalar. In addition, f (ϕ) is the non-minimal scalar-curvature 
coupling function, k(ϕ) is the non-canonical inflaton wavefunction, and V (ϕ) is the inflaton 
potential. We collectively call the functions f (ϕ), k(ϕ) and V (ϕ) model functions that enter the 
action S in (2.1). We will adopt the convention ημν = diag(+1, −1, −1, −1) for the Minkowski 
flat limit of gμν , and work in natural units where the mass parameters are normalized to the 
reduced Planck mass MP ≡ (8πG)−1/2. Finally, we define the covariant derivatives denoted 
by ∇μ to be metric-compatible with respect to gμν , meaning that the action is diffeomorphism 
invariant.

By specifying the model functions f (ϕ), k(ϕ), and V (ϕ), we can cover a wide range of 
models. For instance, the so-called F(R) theories may be described by setting k(ϕ) = 0. More 
details are given in Section 7.3. In all scenarios, we assume that the inflaton relaxes in its expected 
value ϕVEV at the end of inflation, and so the effective reduced Planck mass MP matches its 
observed value at the present epoch, i.e. f (ϕVEV) = M2

P ≡ 1. For a review of the dynamics of 
minimal inflationary scenarios, the reader may consult [19].

It is now important to study the response of the classical action S under conformal rescalings 
of the metric gμν and reparameterizations of the inflaton field ϕ. To this end, we first perform a 
conformal transformation by rescaling the metric

gμν → g̃μν = �2 gμν , (2.2)
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where the coordinate-dependent function � = �(x) is known as the conformal factor. Changing 
its value is often referred to as changing the conformal frame of the theory. Under the conformal 
transformation (2.2), the Ricci scalar transforms as

R̃ = �−2R − 6�−3gμν∇μ∇ν� . (2.3)

Likewise, we may perform an arbitrary inflaton reparameterization ϕ → ϕ̃ = ϕ̃(ϕ), whose ex-
plicit form may be determined by(

dϕ̃

dϕ

)2

= K(ϕ) . (2.4)

Then, using (2.2) and (2.3) in (2.1), the classical action S, upon neglecting a total derivative, can 
be rewritten in the form

S[g̃μν, ϕ̃, f̃ (ϕ̃), k̃(ϕ̃), Ṽ (ϕ̃)]

=
∫

d4x
√−g̃

[
− f̃ (ϕ̃)

2
R̃ + k̃(ϕ̃)

2
g̃μν(∇μϕ̃)(∇ν ϕ̃) − Ṽ (ϕ̃)

]
. (2.5)

In the above, the transformed model functions f̃ (ϕ̃), k̃(ϕ̃) and Ṽ (ϕ̃) have been expressed in 
terms of the original ones f (ϕ), k(ϕ) and V (ϕ) as follows [20,21]:

f̃ (ϕ̃) = �−2 f ,

k̃(ϕ̃) = �−2

K

(
k − 6f �−2�2

,ϕ + 6�−1f,ϕ �,ϕ

)
, (2.6)

Ṽ (ϕ̃) = �−4 V .

Here, f (ϕ), k(ϕ) and V (ϕ), the conformal factor �, and their possible derivatives with respect 
to ϕ, appearing on the right-hand side (RHS) of (2.6), all depend on ϕ. Alternatively, they may 
also be expressed in terms of the transformed field ϕ̃ through ϕ = ϕ(ϕ̃), after inverting the solu-
tion ϕ̃ = ϕ̃(ϕ) to Equation (2.4). Technical details related to the derivation of the transformation 
properties of the model functions given in (2.6) are presented in Appendix A.

The original action (2.1) is said to be in the Jordan frame, where the non-minimal coupling 
of the inflaton to the curvature appears explicitly. In most analyses of inflationary dynamics, 
one usually considers the Einstein frame, for which the conformal factor � is chosen such that 
the non-minimal coupling becomes minimal: f̃ (ϕ̃) = M2

P . However, in this article, we will be 
more general and consider the full class of conformal transformations, where � = �(x) is an 
arbitrary well-behaved function. While frame invariance is often assumed as an a priori principle, 
there is no guarantee that any given theory will generate frame-independent predictions unless it 
has explicitly been constructed to be frame-invariant. As such, there has been much discussion 
about whether the Jordan frame or the Einstein frame are physically equivalent. In particular, 
there have been claims of both conformal independence [13] and conformal dependence [22] in 
the literature. This is further compounded by the fact that after a conformal transformation, the 
wavefunction k(ϕ) of the inflaton kinetic term is not canonical. Hence, some authors include in 
their definition of “conformal transformations” a field reparameterization that renders the kinetic 
term canonical, i.e. k(ϕ) → 1. For this reason, we shall use a more general terminology and 
call the combined effect of a conformal transformation and a field reparameterization a frame 
transformation.
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From the above discussion, it has become clear that the functional form of the classical ac-
tion S as defined in (2.1) remains invariant under general frame transformations [cf. (2.5)]. The 
functional form of S could have been modified, for example, by the presence of higher-order 
derivative terms induced by the conformal rescaling (2.2). This means that under frame transfor-
mations, the action of a scalar-curvature theory gets transformed to an equivalent action within 
the same class of theories. This basic property of invariance of the classical action S in (2.1)
under frame transformations may be expressed as follows:

S[gμν,ϕ,f (ϕ), k(ϕ),V (ϕ)] = S[g̃μν, ϕ̃, f̃ (ϕ̃), k̃(ϕ̃), Ṽ (ϕ̃)] . (2.7)

Note that although the functional form of S does not change, the functions f , k and V do
change as given in (2.6), as a consequence of frame transformations. Equation (2.7) repre-
sents a fundamental property that underlies our frame-covariant formulation of inflation. In 
Section 8, we will show how this fundamental property (2.7) can be extended to the effective 
action beyond the tree-level approximation. Thus, developing a formalism that can be applied to 
a general scalar-curvature theory will allow us to independently examine and compare the pre-
dictions for the inflationary observables that are obtained by using S[gμν, ϕ, f (ϕ), k(ϕ), V (ϕ)]
or S[g̃μν, ϕ̃, f̃ (ϕ̃), k̃(ϕ̃), ̃V (ϕ̃)]. This exercise will be useful to address the question of whether 
frame transformations are physically significant or not. Our first step towards developing such 
a formalism will be to study the behavior of the background fields during inflation in the next 
section.

3. Classical dynamics

In this section, we consider the cosmological evolution of the background inflaton field ϕ, 
since its imprint on observable quantities depends on the value of ϕ at horizon exit. Under the 
assumption that the inflaton ϕ is spatially homogeneous evolving in a space described by the 
FRW metric, we derive the equations of motion for ϕ by treating it as a perfect fluid.

Taking now the functional derivative of the action (2.1) with respect to ϕ yields the inflaton 
equation of motion

k ∇2ϕ + k,ϕ

2
(∇ϕ)2 + V,ϕ + f,ϕ

2
R = 0 , (3.1)

where ,ϕ denotes differentiation with respect to ϕ and we suppress arguments of ϕ from now 
on. Similarly, by varying (2.1) with respect to the metric gμν , we obtain the generalized Einstein 
equation

Gμν ≡ Rμν − 1

2
gμνR = Tμν

f
− f,ϕϕ

f
(∇ϕ)2 gμν − f,ϕ

f
(∇2ϕ)gμν

+ f,ϕ

f
(∇μ∇νϕ) + f,ϕϕ

f
(∇μϕ)(∇νϕ) , (3.2)

where Gμν is the Einstein tensor, Rμν is the Ricci tensor and Tμν is the energy–momentum 
tensor defined as

Tμν ≡ 2√−g

δSϕ

δgμν
, (3.3)

where Sϕ is the matter part of the inflaton action. Applying this last formula to the matter sector 
given in (2.1), we find
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Tμν = k (∇μϕ)(∇νϕ) − k

2
(∇ϕ)2gμν + Vgμν . (3.4)

Contracting (3.2) with the inverse metric gμν , we can eliminate R from (3.1), leading to a more 
convenient form for the inflaton equation,(

k + 3f 2
,ϕ

2f

)
∇2ϕ +

(
k,ϕ

2
+ 3f,ϕ

2f
f,ϕϕ + k

2

f,ϕ

f

)
(∇ϕ)2 + f 2U,ϕ = 0 , (3.5)

with

U ≡ V

f 2
. (3.6)

We observe that (3.2) may be written in the standard form for the Einstein equation as

Rμν − 1

2
gμν R = M−2

P T (NM)
μν . (3.7)

Here, T (NM)
μν is the modified, non-minimal (NM) energy–momentum tensor defined as

T
(NM)
μν

M2
P

≡ Tμν

f
− f,ϕϕ

f
(∇ϕ)2 gμν − f,ϕ

f
(∇2ϕ)gμν

+ f,ϕ

f
(∇μ∇νϕ) + f,ϕϕ

f
(∇μϕ)(∇νϕ) . (3.8)

Evidently, the standard Einstein gravity is recovered when f = M2
P and T (NM)

μν is replaced 
with Tμν .

The equations of motion of cosmological interest can be derived under the assumption that 
ϕ = ϕ(t) is spatially homogeneous and that the universe is described by a flat FRW metric of the 
form gμν = diag(N2

L, −a2, −a2, −a2), where a = a(t) is the scale factor and NL = NL(t) is the 

lapse function. Imposing these conditions on the modified energy–momentum tensor T (NM)
μν , we 

find that T (NM)
μν is diagonal, which enables us to define the modified energy density ρ(NM) and 

pressure p(NM) as [23]

T (NM)
μν ≡ diag

(
N2

Lρ(NM),−a2p(NM),−a2p(NM),−a2p(NM)
)

. (3.9)

In this way, using (3.9), the explicit forms of the modified energy density and pressure are found 
to be

ρ(NM)

M2
P

= ρ

f
− 3Hḟ

f
, (3.10)

p(NM)

M2
P

= p

f
+ 2Hḟ

f
+ f̈

f
. (3.11)

Here and in the following, the Hubble parameter is defined as

H ≡ ȧ

a
, (3.12)

where the overdot from now on denotes differentiation with respect to τ . The latter is related to 
the cosmic time t through dτ ≡ NLdt and includes the effect of the general lapse function NL. 
Thus, ȧ is defined, for instance, as
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ȧ ≡ 1

NL

da

dt
. (3.13)

In addition, ρ and p denote the ordinary comoving energy density and pressure, respectively, as 
these are read off from Tμν ≡ diag(N2

Lρ, −a2p, −a2p, −a2p), i.e.

ρ = k

2
ϕ̇2 + V , p = k

2
ϕ̇2 − V . (3.14)

With the definitions of ρ(NM) and p(NM) given in (3.10) and (3.11), the continuity, Friedmann, 
and the acceleration equations take on the form

ρ̇(NM) + 3H
[
ρ(NM) + p(NM)

]
= 0 , (3.15)

H 2 = ρ(NM)

3
, (3.16)

Ḣ = −ρ(NM) + p(NM)

2
. (3.17)

These equations become identical to the minimal case, for ρ(NM) → ρ and p(NM) → p. Sub-
stituting the forms of ρ(NM) and p(NM) given in (3.10) into (3.15), (3.16) and (3.17), we derive 
cosmological equations of motion for the general scalar-curvature theories [24],(

k + 3f 2
,ϕ

2f

)(
ϕ̈ + 3Hϕ̇

)
+

(
k,ϕ

2
+ 3f,ϕ

2f
f,ϕϕ + k

2

f,ϕ

f

)
ϕ̇2 + f 2U,ϕ = 0 , (3.18)

H 2 = 1

3f

(
k

2
ϕ̇2 + V

)
− f,ϕ

f
H ϕ̇ , (3.19)

Ḣ = −kϕ̇2

2f
+ Hḟ

2f
− f̈

2f
. (3.20)

Notice that these equations are written down by neglecting the spatial dependence of the back-
ground inflaton field ϕ, i.e. ϕ = ϕ(t).

The cosmological equations of motion that we have presented here for the background met-
ric gμν and the inflaton field ϕ will be useful for our discussions in the subsequent sections. 
Specifically, the general equations of motion for ϕ and gμν , stated in (3.2) and (3.5), will be 
needed to study the cosmological perturbations in Section 4. Likewise, the homogeneous limit of 
these equations presented in (3.18), (3.19) and (3.20) will be used to determine the inflationary 
attractor trajectory for the scalar-curvature theories. The latter will in turn be used in Section 5
to evaluate the predictions for cosmological observables of inflation in these theories.

4. Cosmological perturbations

The imprint left by inflation on the CMB can be understood in terms of perturbations to the 
metric and the inflaton. At very early times, perturbations corresponding to scales of cosmo-
logical interest (smaller than the current size of the observable universe) are inside the Hubble 
horizon and are free to evolve [25]. When the perturbations leave the horizon, they stop evolv-
ing [26], meaning that the observed anisotropy in the CMB at scales entering the horizon in the 
current epoch was formed at the point of horizon exit. This anisotropy can be found by calculat-
ing the two-point correlation function of cosmological perturbations just before they exited the 
horizon. In this section, we will depart from the well-studied perturbations in minimally-coupled 
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inflationary models [19] and consider perturbations of scalar-curvature theories. In order to make 
contact with observations, we will look at how cosmological perturbations evolve with the aim 
of calculating the power spectrum of the CMB. We will start by writing the explicit form of the 
perturbation of the metric, which we will use to write down the linearized Einstein field equa-
tions to first order which control how the classical perturbations evolve, allowing us to quantize 
them and to calculate the two-point function, from which we may make contact with inflationary 
observables.

The first step in determining the evolution of the quantized perturbations is to study the evo-
lution of classical perturbations. This is given by the linearized Einstein field equations,

δGμν = M−2
P δT (NM)

μν , (4.1)

where δGμν and δT (NM)
μν are the perturbations of the respective Einstein and energy–momentum 

tensors, Gμν and Tμν , that result from linear variations of ϕ and gμν . Explicitly, the inflaton ϕ

and the metric gμν may be expanded around their background values ϕ̄ and ḡμν as

ϕ = ϕ̄ + δϕ , gμν = ḡμν + δgμν . (4.2)

Parameterizing the perturbation δgμν of the metric is more involved, as there are several degrees 
of freedom that need to be taken into account. Therefore, we adopt the standard scalar–vector–
tensor decomposition and expand the full metric gμν as follows:

gμνdxμdxν = (1 + 2φ)N2
Ldt2 + 2a(∂iB + Bi)NLdt dxi

− a2
[
(1 + 2ψ)δij + ∂i∂jA + ∂iAj + ∂jAi + hij

]
dxidxj , (4.3)

where φ, ψ , A, B are the scalar perturbations, Ai , Bi are the vector perturbations and hij is the 
tensor perturbation to the metric. All these perturbations are independent of each other.

As the only persistent (scalar) measure of inflation, we introduce the diffeomorphism-invariant 
comoving curvature perturbation Rϕ [27]:

Rϕ = φ − H

˙̄ϕ δϕ , (4.4)

where φ is the remaining physical degree of freedom in the perturbed metric. After expanding 
the 00, 0i, and ij components of the linearized Einstein equations, we find that the comoving 
curvature perturbation R satisfies the following equation in Fourier space [28]:

1

N2
La3QR

d

dt

(
NLa3QRṘ

)
+ k2R

a2
= 0 , (4.5)

where k ≡ |k| corresponds to the scale of the Fourier mode k of the perturbation, and R cor-
responds to the Fourier components of the comoving curvature perturbation. Similarly, the two 
polarizations of the gravitational waves h+,× satisfy the following equation:

1

N2
La3QT

d

dt

(
NLa3QT ḣ+,×

)
+ k2h+,×

a2
= 0 . (4.6)

The quantities QR and QT are given by

QR = kϕ̇2 + 3ḟ 2

2f(
H + ḟ

)2
≡ ϕ̇2

H 2
ZR , QT = f ≡ M2

P ZT , (4.7)
2f
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where, for later convenience, we have defined ZR and ZT as

ZR ≡
k + 3ḟ 2

2f ϕ̇2(
1 + ḟ

2Hf

)2
, ZT ≡ f

M2
P

. (4.8)

Note that ZR = ZT = 1 in the Einstein frame, in which f = M2
P and k = 1. By further defining

zR ≡ a
√

QR , vR ≡ zRR , (4.9)

and similarly for zT and vT ,

zT ≡ a
√

QT , vT ≡ zT h+,× , (4.10)

the equations of motion (4.5) and (4.6) can be written as

d2vR,k

dη2
+

(
k2 − 1

zR

d2zR
dη2

)
vR,k = 0 , (4.11)

d2vT,k

dη2
+

(
k2 − 1

zT

d2zT

dη2

)
vT,k = 0 , (4.12)

which correspond to simple harmonic oscillators with time-dependent masses and the conformal 
time η is given by NLdt = adη. Treating vR and its conjugate momentum as operators and 
imposing the usual commutation relations on them, we can write down its mode expansions in 
terms of the mode functions vR,k and the corresponding creation and annihilation operators. 
Imposing the condition that, in the early time limit, the perturbations live in de Sitter space, 
which is characterized by a constant vacuum density driving its accelerated expansion and η =
−1/(aH), we may write the mode functions that satisfy (4.11). Then, from the condition that the 
solutions must correspond to the Bunch–Davies vacuum at very early times [29], we can finally 
write the two-point correlation function for the canonical fields vR,

〈vR,k1 |vR,k2〉 = ∣∣vR,k

∣∣2
δ(k1 + k2) . (4.13)

This is the correlation function for fields in de Sitter space, but since inflation ends when the 
comoving horizon stops shrinking, the fields are in quasi-de Sitter space, and their two-point 
correlation function is related to that of the canonical fields by the normalization (4.9). For scalar 
perturbations, we may arrive at the two-point correlation function �R ≡ ∣∣vR,k

∣∣2, which is given 
by

�R = H 4

ZRϕ̇2
, (4.14)

where from now on, we use unbarred quantities to denote the background.
Observable cosmological quantities which can be measured on the CMB are linked to the 

primordial perturbations through transfer functions which induce a multiplicative multipole con-
tribution to the power spectrum of scalar perturbations [30],

PR ≡ k3

4π2
�R . (4.15)

In a similar way, we may write the power spectrum PT for tensor perturbations calculated through 
the correlation function �T ≡ ∣∣vT,k

∣∣2 = H 2/ZT , i.e.
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PT = 2k3

π2
�T . (4.16)

In the standard Einstein gravity, (4.15) and (4.16) reduce to their usual expressions. The power 
spectra are further related to the primordial density perturbation via a multiplicative factor due to 
quadrupole anisotropies. However, the scale dependence of the spectrum is independent of this 
factor. The scale dependence, which is termed the spectral index or scalar tilt, is defined as

nR − 1 ≡ d ln�R
d lnk

∣∣∣∣
k=aH

, (4.17)

where k = aH is the horizon crossing condition, since the horizon crossing time is when the 
perturbations left their observable imprint on the scalar tilt. There is an analogous relation for the 
tensor tilt,

nT ≡ d ln�T

d ln k

∣∣∣∣
k=aH

. (4.18)

Another useful observable is the tensor-to-scalar ratio r , which is defined as

r ≡ PT

PR
. (4.19)

Finally, we may define the running of the spectral indices, which encodes their scale dependence, 
as follows:

αR ≡ dnR
d lnk

∣∣∣∣
k=aH

, (4.20)

αT ≡ dnT

d lnk

∣∣∣∣
k=aH

. (4.21)

Observe that the power spectra and all observable quantities derived from them depend solely on 
the background, even though these quantities are of pure quantum-mechanical origin.

5. Slow-roll inflation

In this section we present the slow-roll approximation formalism which is often employed 
to approximate the equations of motion governing the inflationary dynamics in scalar-curvature 
theories, as well as calculate all cosmological observables from the scalar and tensor power 
spectra PR and PT [cf. (4.17) and (4.19)]. To this end, we first define the Hubble slow-roll 
parameters which we use to express the predictions for the cosmological observables of inflation, 
such as nR, nT and r . We then discuss the inflationary attractor solution, with aid of which the 
inflationary observables can be expressed in a concise manner in terms of new potential slow-roll 
parameters which only depend on the model functions f (ϕ), k(ϕ), and V (ϕ) and their derivatives 
with respect to ϕ.

5.1. Hubble slow-roll inflation

The basic working hypothesis in the slow-roll approximation formalism is that, during infla-
tion, the following double inequality holds:

ϕ̈ 	 Hϕ̇ 	 H 2ϕ . (5.1)



796 D. Burns et al. / Nuclear Physics B 907 (2016) 785–819
The above hierarchy of energy scales was first considered to describe minimal inflation [31]. 
Nevertheless, this hierarchy of scales can be extended to non-minimal inflation in general scalar-
curvature theories by noting that, for any well-behaved function g(ϕ) of the inflaton ϕ, one may 
require [32] that

g̈ 	 Hġ 	 H 2g . (5.2)

This motivates us to define the following Hubble slow-roll parameters [33]1:

εH ≡ − Ḣ

H 2
, δH ≡ − ϕ̈

H ϕ̇
, (5.3)

κH ≡ 1

2

ḟ

Hf
= 1

2

f,ϕϕ̇

Hf
, σH ≡ 1

2

Ė

HE
= 1

2

E,ϕϕ̇

EH
, (5.4)

with

E ≡ kf + 3

2
f 2

,ϕ . (5.5)

Note that the Hubble slow-roll parameters provide a measure of the deviation of the universe 
from an exact de Sitter space. In particular, the slow-roll parameters κH and σH defined in (5.4)
are necessary to fully describe the dynamics in non-minimal inflation. In the Einstein frame, it is 
also possible to establish the relation ηH ≡ ε̇H /(HεH ) = 2εH − 2δH . However, for the scalar-
curvature theories under study, δH proves to be more convenient for computing cosmological 
observables of inflation [34], rather than the more frequently used parameter ηH . For later con-
venience, we also define the quantity

ηH ≡ εH + δH , (5.6)

which differs from ηH .
We are now in a position to calculate the cosmological observables of inflation in the slow-roll 

approximation in terms of the Hubble slow-roll parameters defined in (5.3) and (5.4). With the 
help of these parameters, we may write down ZR given in (4.7) as

ZR =
k + 3ḟ 2

2f ϕ̇2(
1 + ḟ

2Hf

)2
= E/f

(1 + κH )2
. (5.7)

Observe that ZR is a key parameter in inflationary dynamics, as it enters the definition of the 
scalar power spectrum PR in (4.15) through �R in (4.14).

Since the cosmological perturbations freeze outside the horizon, their power spectrum PR
when they first exit the horizon will match the one observed at the present epoch, assuming that 
we only observe scales that are just re-entering the horizon without having time to evolve further. 
The condition for this second horizon crossing due to the re-entry of the perturbations is given 
by aH = k. The latter can be rewritten as

lnk = lna + lnH . (5.8)

1 Note that our notation for these parameters can be linked to the notation in [33] by

εH = −ε1 , δH = −ε2 , κH = ε3 , σH = ε4 .
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Employing the definition of e-folds: dN = Hdτ = d lna and the relation (5.8), we easily find 
that

d lnk

dN
= 1 + d lnH

dN
= 1 − εH . (5.9)

We may now calculate the spectral index nR in (4.17), by using the chain rule, by means of (5.9), 
along with the expression for ZR in (5.7). Keeping only the leading order in a series expansion 
of the slow-roll parameters, we arrive at [28,33]

nR = 1 − 4εH + 2δH + 2κH − 2σH . (5.10)

In deriving (5.10), we have assumed that the Hubble slow-roll parameters are slowly varying, 
such that we may discard their time derivatives, as dictated by the generalized slow-roll approx-
imation given in (5.2). Proceeding as above for the cosmological observables nT and r defined 
in (4.18) and (4.19), respectively, we obtain in the slow-roll approximation,

nT = −2εH − 2κH , (5.11)

r = 16εH + 16κH . (5.12)

Analogous leading-order expressions can be derived for αR and αT , by using (5.10) and (5.11)
in their definitions (4.20) and (4.21).

In spite of having expressed the inflationary observables in a compact form in terms of the 
Hubble slow-roll parameters, their accurate evaluation at horizon crossing remains still a chal-
lenge. In particular, the inflationary observables often depend crucially on the number of e-folds, 
given by N(t, tend) =

∫ tend
t

H dt (with NL = 1), where the cosmic time tend characterizing the 
end of inflation may be determined by the condition

max(εH , |ηH |) = 1 , (5.13)

where ηH is given in (5.6). However, this condition only applies in the Einstein frame, and 
as we will show in Section 6, it is frame-dependent, which necessitates the introduction of an 
appropriate frame-covariant extension for it to be applicable in general Jordan frames.

5.2. The inflationary attractor trajectory

In the Einstein frame, the equations of motions can be drastically simplified, if certain con-
ditions are met, which assure that the slow-roll parameters are sufficiently small at early times, 
so as to successfully generate inflationary dynamics. These conditions select a class of solu-
tions known as the inflationary attractor trajectory, to which all other inflationary trajectories 
converge rapidly independent of their initial position in phase space, such that the use of the 
so-called slow-roll approximation is justified [35]. As we will see in the next subsection, we may 
use the inflationary attractor solution to write the Hubble slow-roll parameters in terms of the 
potential U(ϕ) and its derivatives with respect to the inflaton field ϕ. Thus, one may define a 
new set of fully equivalent parameters called the potential slow-roll parameters. Our aim is to 
generalize this procedure to scalar-curvature theories in the Jordan frame.

The first step in doing so is to derive the approximate equations of motion that govern the 
inflationary attractor trajectory. Therefore, we start with the generalized equations of motion for 
the background metric and inflaton fields, and express them in terms of the Hubble slow-roll 
parameters εH , δH , κH and σH . With the help of (5.3) and (5.4), and upon substitution of (3.20)
into (3.19), the Friedmann equation may be rewritten as
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H 2 = f U

3

(
1 − εH

3
− θH

3

)−1

. (5.14)

For convenience, we have defined a new slow-roll parameter θH ,

θH ≡ 1

2

f̈

H 2f
. (5.15)

As we will now show, θH is of higher order than the rest of the slow-roll parameters. Using (5.4)
in (5.15), it follows that

θH = 1

2

(
f,ϕϕϕ̇2

H 2f
− δH κH

)
. (5.16)

In order to eliminate the term ∝ f,ϕϕ in (5.16), we use the fact that κ̇H /H can also be written as

κ̇H

H
= f,ϕϕϕ̇2

H 2f
− δH κH + εH κH − κ2

H . (5.17)

Using (5.17) in (5.16), we finally arrive at

θH = 1

2

(
κ̇H

HκH

− εH + κH

)
κH . (5.18)

The latter shows that, to the leading linear order in the slow-roll approximation, θH vanishes. 
This result is also consistent with the one that one would have naively obtained by considering 
the double inequality in (5.2).

Similarly, after dividing (3.18) by 3Hϕ̇E/f , where E is defined in (5.5), the inflaton equation 
of motion may be recast into the form,

1 − 1

3
δH + 1

3
σH = − f 2U,ϕ

3Hϕ̇E/f
. (5.19)

Finally, the acceleration equation (3.20) can be written down as

εH + κH − θH = kϕ̇2

2H 2f
. (5.20)

The inflationary attractor solution is obtained by considering only the leading terms in the 
Friedmann and inflaton equations (5.14) and (5.19). Hence, ignoring all terms depending on the 
Hubble slow-roll parameters, we find that (5.14) and (5.19) simplify to

H 2 ≈ f U

3
, H ϕ̇ ≈ − f 3 U,ϕ

3E
, (5.21)

which determine the inflationary attractor trajectory in the leading slow-roll approximation. By 
dividing separately the LHSs and RHSs of the two equations of motions in (5.21), we obtain the 
useful relation

H

ϕ̇
≈ − E U

f 2 U,ϕ

. (5.22)

With the aid of (5.21) and (5.22), in the next subsection we can define a new set of potential 
slow-roll parameters, which will be used to express all relevant cosmological observables of 
inflation in a concise manner.
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5.3. Potential slow-roll inflation

Having derived the equations of motion that determine the inflationary attractor trajectory 
in (5.21), we are now in a position to express the Hubble slow-roll parameters εH , δH , κH and 
σH , given in (5.3), in terms of the model functions f (ϕ), k(ϕ) (or E(ϕ)) and U(ϕ) and their 
derivatives with respect to ϕ, without making any explicit reference to the Einstein frame. The 
new parameters so derived will be called the potential slow-roll parameters to distinguish them 
from the Hubble slow-roll parameters in (5.3) and they will be valid in any Jordan frame.

We start our derivation by noticing that time derivatives acting on ϕ, e.g. ϕ̇, can be eliminated 
by virtue of (5.22) and that time derivatives acting on the Hubble parameter H , e.g. Ḣ , may 
also be replaced with ϕ-derivatives acting on f and U , after differentiating both sides of the first 
equation in (5.21) with respect to the rescaled cosmic time τ . In this way, we may derive from 
the Hubble slow-roll parameters a new set of parameters, such that εU ≈ εH , δU ≈ δH , κU ≈ κH

and σU ≈ σH , which do not depend on H and ϕ̇.
Following carefully the procedure mentioned above, the potential slow-roll parameters gener-

alized in the Jordan frame are found to be

εU ≡ 1

2

f U,ϕ(f U),ϕ

EU2
, δU ≡ 1

2

f U,ϕ(f U),ϕ

EU2
+

(
f 2U,ϕ

EU

)
,ϕ

,

κU ≡ − f,ϕ

2

f U,ϕ

EU
, σU ≡ − 1

2

E,ϕ

E2

f 2U,ϕ

U
.

(5.23)

Because of the equivalence between the Hubble and potential slow-roll parameters in the slow-
roll approximation, writing down the analytical formulae for the tensor-to-scalar ratio r , and the 
spectral indices nR and nT in terms of the latter parameters becomes a simple task. In fact, what 
we only need to do is to replace the Hubble slow-roll parameters in the expressions (5.12), (5.10)
and (5.11), with their potential counterparts:

r = 16εU + 16κU , (5.24)

nR = 1 − 4εU + 2δU + 2κU − 2σU , (5.25)

nT = −2εU − 2κU . (5.26)

Note that the results for r and nT confirm the so-called “consistency relation” of minimal infla-
tion,

r = −8nT , (5.27)

which remains also valid in the context of general scalar-curvature theories.
We may similarly proceed to derive analytic expressions for the runnings αR and αT of the 

spectral indices nR and nT in terms of the potential slow-roll parameters. With this aim, we first 
note the useful chain-rule relation:

dϕ

d lnk
= dϕ

dN

dN

d ln k
= ϕ̇

H
(1 − εH )−1 ≈ − f 2 U,ϕ

E U
. (5.28)

In arriving at the last expression in (5.28), we first used (5.9) and then (5.22), and approxi-
mated (1 − εH )−1 ≈ 1, in the leading slow-roll approximation. On the basis of the definitions 
for the spectral runnings αR and αT in (4.20) and (4.21), and after employing the chain-rule 
relation (5.28), we find
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αR = − f 2 U,ϕ

E U
nR,ϕ = f 2U,ϕ

E U

(
4εU − 2δU − 2κU + 2σU

)
,ϕ

, (5.29)

αT = − f 2 U,ϕ

E U
nT ,ϕ = f 2 U,ϕ

E U

(
2εU + 2κU

)
,ϕ

. (5.30)

In Section 7, we will use the analytical expressions stated in (5.24), (5.25), (5.29) and (5.30)
to obtain predictions for all relevant cosmological observables of inflation in specific models. 
In this context, we should remark here that all the inflationary observables of interest must be 
evaluated at inflaton field values ϕ, which typically correspond to the time when the observed 
cosmological scales have left the horizon, i.e. about N = 60 e-folds before the end of inflation.

Another advantage of our formalism is that the four potential slow-roll parameters εU , δU , 
σU and κU and their ϕ-derivatives suffice to calculate all the observables to leading order in the 
slow-roll approximation. Indeed, if we were to calculate higher runnings of the spectral indices, 
we would not need to introduce new slow-roll parameters as is usually done in the Einstein frame, 
but only higher derivatives of εU , δU , σU and κU with respect to ϕ. Nonetheless, we may confirm 
that our expressions for the cosmological observables reduce to the well-known ones quoted in 
the literature for the minimally coupled inflation models [36]:

r = 16εV , nR = 1 − 6εV + 2ηV , nT = −2εV ,

αR = 16εV ηV − 24ε2
V − 2ξ2

V , αT = −8ε2
V + 4εV ηV , (5.31)

which are expressed in terms of the Einstein-frame parameters εV , ηV , and ξV , given by

εV ≡ M2
P

2

V 2
,ϕ

V 2
, (5.32)

ηV ≡ M2
P V,ϕϕ

V
= εV + δV , (5.33)

ξ2
V ≡ M4

P V,ϕV,ϕϕϕ

V 2
. (5.34)

For completeness, we also derive simplified expressions for the power spectra of the curvature 
and tensor perturbations PR and PT , given by (4.15) and (4.16), in the slow-roll approximation. 
Employing (5.7), (5.21), and (5.22), the power spectra PR and PT take on the simple form

PR ≈ k3

12π2

E U3

f 2 U2
,ϕ

= k3

24π2

U

εU + κU

, (5.35)

PT ≈ 2k3

3π2
U . (5.36)

Finally, thanks to (5.22), the number of e-folds may be evaluated to leading order in the slow-roll 
approximation as

N(ϕ) = −
ϕend∫
ϕ

dϕ′ E(ϕ′)
f (ϕ′)2

U(ϕ′)
U(ϕ′),ϕ′

, (5.37)

where ϕend is the inflaton value at the end of inflation, which is usually determined by the condi-
tion:
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max(εU , |ηU |) = 1 , (5.38)

with ηU ≡ εU + δU .
An obstacle in our approach to derive a frame-covariant formulation of inflation is the fact that 

the number of e-folds N , and especially ϕend, are not frame-invariant quantities. This means that 
the end-of-inflation condition (5.38) requires a non-trivial extension in order to hold true in an 
arbitrary Jordan frame. In order to be able to find this missing piece of information, we study in 
the next section the transformation properties of the potential slow-roll parameters under frame 
transformations.

6. Frame covariance

In this section, we will use the results that we derived in Section 5, in the context of scalar-
curvature theories, in order to evaluate the cosmological observables in different frames. Even 
though the action S for these theories is not invariant under conformal rescalings of the met-
ric gμν and field reparameterizations of the inflaton field ϕ, its functional dependence on the 
transformed metric g̃μν and inflaton field ϕ̃, and the transformed model functions f̃ , k̃ and Ṽ , 
does not change [cf. (2.7)].2 Given the transformation properties of these quantities, we may de-
termine how the potential slow-roll parameters transform. Taking the latter into account, we will 
show that the physical cosmological observables remain invariant under frame transformations 
in the leading order of the slow-roll approximation.

6.1. Conformal transformations

Let us first examine how the generalized potential slow-roll parameters εU , δU , κU and σU , 
as defined in (5.23), would change by considering only a conformal rescaling of the metric gμν , 
according to (2.2). For this purpose, we take into account the relations of the transformed model 
functions f̃ , k̃ and Ṽ in terms of the original ones f , k and V , by setting K = 1 in (2.6), which 
amounts to ϕ̃ = ϕ. We then find that the quantities U and E, given in (3.6) and (5.5), transform 
correspondingly as

Ũ (ϕ) = U(ϕ) , Ẽ(ϕ) = E(ϕ)

�4
. (6.1)

We may now use the original definitions of the slow-roll parameters in (5.23) to compute the 
transformed ones, by replacing U(ϕ) → Ũ (ϕ̃) and f (ϕ) → f̃ (ϕ̃), with ϕ̃ = ϕ. In this way, we 
have, for example,

ε̃U (ϕ) = 1

2

f̃ Ũ,ϕ̃(f̃ Ũ ),ϕ̃

ẼŨ2
, (6.2)

and similarly for δ̃U , κ̃U and σ̃U . If we expand the new slow-roll parameters by means of (2.6), 
we find that they transform as

2 Our frame-covariant approach to scalar-curvature theories is general, as it describes the transformation properties 
of kinematic parameters from one Jordan frame to another arbitrary Jordan frame, and so includes the special class of 
Jordan-to-Einstein frame transformations discussed in [14] without making any a priori assumptions about the frame 
invariance (or lack thereof) of scalar-curvature theories as in [9].



802 D. Burns et al. / Nuclear Physics B 907 (2016) 785–819
ε̃U (ϕ) = εU (ϕ) − ��(ϕ) , δ̃U (ϕ) = δU (ϕ) − ��(ϕ) ,

κ̃U (ϕ) = κU (ϕ) + ��(ϕ) , σ̃U (ϕ) = σU(ϕ) + 2��(ϕ) , (6.3)

where

�� ≡ f 2U,ϕ

EU

�,ϕ

�
. (6.4)

Evidently, depending on the actual value of ��, the slow-roll parameters may not be small and 
can have either sign after a conformal transformation.

6.2. Inflaton reparameterizations

Let us now discuss a second class of general frame transformations, under which only the 
inflaton field ϕ gets reparameterized as ϕ → ϕ̃ = ϕ̃(ϕ). Such a field reparameterization may be 
determined through the differential equation (dϕ̃/dϕ)2 = K(ϕ) [cf. (2.4)], where K(ϕ) is an 
arbitrary function of ϕ. Inflaton reparameterizations, with K(ϕ) = k(ϕ), are usually performed 
in the literature to make the inflaton kinetic term canonical, but here we will not impose this 
restriction.

Applying (2.6) to the transformed model functions f̃ , k̃ and Ṽ for � = 1 yields

f̃ (ϕ̃) = f (ϕ(ϕ̃)) , k̃(ϕ̃) = k(ϕ(ϕ̃))

K(ϕ(ϕ̃))
, Ṽ (ϕ̃) = V (ϕ(ϕ̃)) , (6.5)

implying that

Ẽ(ϕ̃) = E(ϕ(ϕ̃))

K(ϕ(ϕ̃))
. (6.6)

Here, we have assumed that the function ϕ̃ = ϕ̃(ϕ) can be inverted to ϕ = ϕ(ϕ̃), at least piece-
wise.

As was done above for the case of conformal transformations only, we rely on the analytical 
expressions given in (5.23) to calculate the transformed slow-roll parameters ε̃U , δ̃U , κ̃U and σ̃U , 
as functions of ϕ̃. We then use the chain rule,

d

dϕ̃
= 1√

K(ϕ)

d

dϕ
(6.7)

to re-express them in terms of the original slow-roll parameters εU , δU , κU and σU , which de-
pend on the original inflaton field ϕ. Thus, under an inflaton reparameterization, the slow-roll 
parameters transform as

ε̃U (ϕ̃) = εU (ϕ) , δ̃U (ϕ̃) = δU (ϕ) + �K(ϕ) ,

κ̃U (ϕ̃) = κU (ϕ) , σ̃U (ϕ̃) = σU(ϕ) + �K(ϕ) , (6.8)

where we have defined

�K(ϕ) ≡ 1

2

K,ϕ

K

f 2U,ϕ

EU
. (6.9)

Notice that under a reparameterization of the inflaton field ϕ, only the slow-roll parameters δU

and σU get transformed.
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6.3. Invariance under frame transformations

Given the transformation properties of the potential slow-roll parameters stated in (6.3)
and (6.8), it is straightforward to show that the cosmological observables of inflation, such as 
the tensor-to-scalar ratio r , the scalar and tensor spectral indices nR and nT , and their runnings 
αR and αT , do not depend on the choice of frame in the leading order of the slow-roll approx-
imation. Employing the analytical expressions (5.24), (5.25), (5.26), (5.29) and (5.30) for the 
aforementioned cosmological observables in terms of slow-roll parameters, we find that

r̃(ϕ̃) = r(ϕ) , ñT (ϕ̃) = nT (ϕ) , ñR(ϕ̃) = nR(ϕ) ,

α̃R(ϕ̃) = αR(ϕ) , α̃T (ϕ̃) = αT (ϕ) . (6.10)

It should be stressed here that the inflationary observables r , nR, nT , αR and αT are invariant 
under the separate action of conformal rescalings of the metric gμν and field reparameterizations 
of the field ϕ.

The frame invariance of the cosmological observables shown above holds, as long as their 
ϕ-dependence through ϕ = ϕ(ϕ̃) is taken into account. However, this frame invariance is spoiled, 
once the same observables are naively expressed in terms of the number of e-folds N . In fact, 
under conformal rescalings of the metric, the number of e-folds N does transform and is not
frame-invariant. To see this explicitly, we first note that the exact determination of N is given by

N =
tend∫
t

NLH dt ′ =
aend∫
a

da′

a′ = ln
(aend

a

)
, (6.11)

which transforms to

Ñ =
ãend∫
ã

dã′

ã′ =
aend∫
a

da′

a′ +
�end∫
�

d�

�
= N + ln

(
�end

�

)
. (6.12)

Thus, N is not frame invariant, as it receives an extra contribution given by ln(�end/�). It is 
interesting to compare this last result with the corresponding one that would have been obtained 
by virtue of (5.37) which was derived in the slow-roll approximation. Making use of the transfor-
mation properties of E(ϕ) and f (ϕ) reported above, we find that the integrand in (5.37) remains 
unaltered under frame transformations. However, the field value of ϕ at the end of inflation, ϕend, 
is usually determined by the condition max(εU , |ηU |) = 1 [cf. (5.38)], which is only applicable 
in the Einstein frame. Since the end-of-inflation condition (5.38) is frame-dependent, we need to 
deduce its frame-invariant generalization that should hold to any Jordan frame. This is given by

max(εU + κU , |εU + δU + 4κU − σU |) = 1 . (6.13)

As we will show below, this generalization is unique and reduces to the Einstein case when 
κU = σU = 0. Hence, by means of (6.13), we have ϕ̃end = ϕ̃(ϕend), and so N(ϕ) = Ñ(ϕ̃) in the 
slow-roll approximation. This exercise tells us that the unwanted term ln(�end/�) on the RHS 
of (6.12) would only become significant beyond the leading order of the slow-roll approxima-
tion. Consequently, we have shown that all relevant cosmological observables are frame-invariant 
when expressed in terms of the number of e-folds N in the slow-roll approximation:

r̃(Ñ) = r(N) , ñT (Ñ) = nT (N) , ñR(Ñ) = nR(N) ,

α̃R(Ñ) = αR(N) , α̃T (Ñ) = αT (N) . (6.14)
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In order to explicitly demonstrate the uniqueness of the end-of-inflation condition (6.13), we 
will prove that demanding σU = κU = 0 uniquely singles out the Einstein frame. With the help 
of (6.3) and (6.8), we readily see that σU and κU transform as

κ̃U = κU + �� , σ̃U = σU + 2�� + �K . (6.15)

Requiring the vanishing of σ̃U and κ̃U implies

�� = −κU , �K = −σU + 2κU . (6.16)

Using the definition of �� and �K in (6.4) and (6.9), respectively, along with the definitions of 
the slow-roll parameters κU and σU in (5.23), we obtain

�,ϕ

�
= f,ϕ

2f
, (6.17)

K,ϕ

2K
= E,ϕ

2E
− f,ϕ

f
. (6.18)

These two constraining differential equations can be easily solved first for � and then for K . 
In this way, we find that

M2�2 = f , K = E/f 2 . (6.19)

However, the solutions for � and K , given in (6.19), single out uniquely the Einstein frame from 
an arbitrary Jordan frame, provided the mass parameter M is set equal to the reduced Planck 
mass MP .

7. Specific models

In this section we will apply our frame-covariant formalism to a few typical scalar-curvature 
models of inflation, such as induced gravity inflation and Higgs inflation. In addition, we consider 
Starobinsky-like F(R) models of inflation, which can be shown to be equivalent to scalar-
curvature theories via a Legendre transform, after the introduction of an auxiliary scalar field. 
In all the examples that we will be considering, we assume that the slow-roll approximation de-
scribes well the inflationary dynamics, such that we can use the results presented in Section 5.3
to derive analytical expressions for all relevant cosmological observables, such as the tensor-
to-scalar ratio r , the scalar and tensor spectral indices nR and nT , and their runnings αR and 
αT .

7.1. Induced gravity inflation

Induced gravity inflation postulates that the value of the effective Planck mass MP is exclu-
sively controlled by the VEV of the inflaton field ϕ. In the Jordan frame, induced gravity inflation 
is described by a non-minimal coupling f (ϕ) = ξϕ2 to the Ricci scalar R, a canonical kinetic 
term, i.e. k(ϕ) = 1, and a potential of the form V (ϕ) = λ(ϕ2 − M2

P /ξ2)2 [37,38].
Knowing the explicit forms of the model functions f (ϕ), k(ϕ) and V (ϕ), we may first use 

them to evaluate the generalized slow-roll parameters εU , δU , κU and σU defined in (5.23). Then, 
with the aid of these parameters, we can analytically calculate all relevant inflationary parameters 
in the slow-roll approximation, as functions of the inflaton field ϕ. In detail, we find
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r = 128M4
P ξ

(1 + 6ξ)
(
M2

P − ξϕ2
)2

, (7.1)

nR = M4
P (1 − 10ξ) − 2M2

P ξ(1 + 14ξ)ϕ2 + ξ2(1 + 6ξ)ϕ4

(1 + 6ξ)
(
M2

P − ξϕ2
)2

, (7.2)

αR = −128M4
P ξ3ϕ2

(
3M2

P + ξϕ2
)

(1 + 6ξ)2
(
M2

P − ξϕ2
)4

, (7.3)

αT = − 256M6
P ξ3ϕ2

(1 + 6ξ)2
(
M2

P − ξϕ2
)4

, (7.4)

with nT = −r/8. In the same slow-roll approximation, the number of e-folds N is found to be

N = − (1 + 6ξ)
[
2M2

P ln
(√

ξϕ/MP

) + M2
P − ξϕ2

]
8ξM2

P

. (7.5)

Here we used the fact that induced gravity inflation ends at exactly ϕ = ϕend = MP /
√

ξ .
There are two scenarios of gravity induced inflation: (i) the scenario of small-field inflation, 

in which the inflaton starts at small values, in which ξϕ2 	 M2
P , and (ii) the scenario of standard 

chaotic large-field inflation, in which ξϕ2  M2
P . Ideally, we wish to express quantities in terms 

of the number N of e-folds. To do this, we must invert the relation N = N(ϕ) to ϕ = ϕ(N), in 
order to substitute the latter into the inflationary observables. However, this proves to be challeng-
ing for most models. Therefore, our strategy will be to expand N(ϕ) (about zero for small-field 
inflation, and about infinity for large-field inflation), truncate the series to lowest order, and then 
invert this truncated relation, before substituting it into the expressions for the inflationary ob-
servables. This will help us to make contact with already established results in the literature, 
while simultaneously allowing for more accurate predictions to be extracted simply by including 
more terms in the series expansion.

7.1.1. Small-field inflation
For small-field (SF) inflation, a good approximation is obtained, if the cosmological observ-

ables listed in (7.1)–(7.4) and the number of e-folds N in (7.5) are expanded about ϕ = 0, thus 
assuming that the horizon exit happened long before the end of inflation. Thus, for SF values 
of ϕ, the number of e-folds N becomes

N = −1 + 6ξ

8ξ

[
ln

(
ξϕ2

M2
P

)
+ 1

]
. (7.6)

From this last expression, we see that a large number of e-folds N corresponds to small values 
of ϕ.

We may now invert the relation N = N(ϕ) given in (7.6), i.e. as ϕ = ϕ(N), so as to write the 
cosmological observables in terms of N . Hence, in the SF approximation for ϕ, we get

rSF = 128ξe2βξ N+2

(1 + 6ξ)
(
eβξ N+1 − 1

)2
,

nR,SF = 1 + 6ξ − 2(1 + 14ξ)eβξ N+1 + (1 − 10ξ)e2βξ N+2

(1 + 6ξ)
(
eβξ N+1 − 1

)2
,
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αR,SF = −128ξ2e2βξ N+2
(
3eβξ N+1 + 1

)
(1 + 6ξ)2

(
eβξ N+1 − 1

)4
,

αT ,SF = − 256ξ2e3βξ N+3

(1 + 6ξ)2
(
eβξ N+1 − 1

)4
, (7.7)

with βξ = 8ξ/(1 + 6ξ). In particular, for a large number N of e-folds, we find

rSF � 128ξ

1 + 6ξ
, nR,SF � 1 − 16ξ

1 + 6ξ
. (7.8)

Consequently, the tensor-to-scalar ratio r and the scalar spectral index nR are not sensitive to N
in the gravity induced scenario of SF inflation. Expressions similar to (7.8) have been reported 
in the literature [24], all of which are approximations of (7.7) for a large number N of e-folds.

7.1.2. Large-field inflation
For the case of the gravity induced scenario of large-field (LF) inflation, we expand the an-

alytical expressions (7.1)–(7.5) of all relevant inflationary quantities given in terms of ϕ about 
infinity. In this LF limit, the number of e-folds simplifies to

N = (1 + 6ξ)ϕ2

8M2
P

. (7.9)

Substituting this expression in (7.1)–(7.4), the inflationary observables in the same LF limit be-
come

rLF = 128 ξ (1 + 6ξ)

[(8N − 6)ξ − 1]2
,

nR,LF = 4
(
16N2 − 56N − 15

)
ξ2 − 4(4N + 1)ξ + 1

[(8N − 6)ξ − 1]2
,

αR,LF = −1024Nξ3(2(4N + 9)ξ + 3)

[(6 − 8N)ξ + 1]4
,

αT ,LF = − 2048Nξ3(1 + 6ξ)

[(6 − 8N)ξ + 1]4
. (7.10)

Upon expanding for a large number N of e-folds, the above expressions simplify to

rLF =
(

3

4
+ 1

8ξ

)
1

N2
+ O

(
1

N3

)
,

nR,LF = 1 − 2

N
+ O

(
1

N2

)
,

αR,LF = − 2

N2
+ O

(
1

N3

)
,

αT ,LF = −
(

3 + 1

2ξ

)
1

N3
+ O

(
1

N4

)
. (7.11)

Finally, it is interesting to evaluate the admissible value of λ by the normalization of the power 
spectrum,
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�R = λ (1 + 6ξ)
(
M2 − ξϕ2

)4

32M4ξ5ϕ4
. (7.12)

In terms of N , this is given by

�R = λ [1 + (6 − 8N)ξ ]4

2048N2ξ5(1 + 6ξ)
. (7.13)

The power spectrum is normalized via [39]

�R = 1

3

U

εU + κU

= (0.027)4

3
, (7.14)

where U(ϕ) ≡ V (ϕ)/f 2(ϕ) [cf. (3.6)], and εU and κU are given in (5.23). Hence, the value of 
the quartic coupling λ may be estimated in terms of the non-minimal coupling ξ as follows:

λ ≈ (0.027)4 × ξ(1 + 6ξ)

2N2
, (7.15)

where N ≈ 60 is the scale at which the largest cosmological scales have presently re-entered the 
horizon. We should reiterate here that, to leading order in 1/N , our analytical predictions for the 
cosmological observables �R, r and nR reproduce the results known from the literature [24] for 
both the scenarios of SF and LF induced gravity inflation. Within our frame-covariant formalism, 
however, the full frame-invariant expressions for all inflationary quantities can be computed to 
arbitrarily high order in 1/N , simply by including higher-order terms in the expansion for N(ϕ).

7.2. Higgs inflation

This scenario is based on the radical suggestion [40,42] that the inflaton field ϕ is the Standard 
Model (SM) Higgs boson observed at the CERN Large Hadron Collider (LHC). In order to make 
such a scenario phenomenologically viable, however, a sizable non-minimal coupling ξ of the 
Higgs field ϕ to the curvature R is required, which may be partly attributed to renormalization-
group running effects, even within the SM in curved space [41].

In the Jordan frame, the model of Higgs inflation can be fully described by the non-minimal 
coupling function f (ϕ) = M2

P + ξϕ2, a canonical kinetic term for the inflaton (k(ϕ) = 1), and 
the SM potential: V (ϕ) = λ(ϕ2 − v2)2, where v is the VEV of the Higgs boson. As before, we 
apply our frame-covariant approach of inflation in the slow-roll approximation to analytically 
compute the cosmological observables, i.e.

r = 128M4
P

ϕ2
[
M2

P + ξ(1 + 6ξ)ϕ2
] ,

nR = ξ2(1 + 6ξ)2ϕ6 − 2M2
P ξ

(
48ξ2 + 2ξ − 1

)
ϕ4 + M4

P

(
1 − 40ξ − 192ξ2

)
ϕ2 − 24M6

P

ϕ2
[
M2

P + ξ(1 + 6ξ)ϕ2
]2

,

αR = −64M4
P

(
M2

P + ξϕ2
) [

3M6
P + 9M4

P ξ(1 + 6ξ)ϕ2 + 8M2
P ξ2(1 + 6ξ)2ϕ4 + 2ξ3(1 + 6ξ)2ϕ6

]
ϕ4

[
M2

P + ξ(1 + 6ξ)ϕ2
]4

,

αT = −128M6
P

(
M2

P + ξϕ2
) [

M2
P + 2ξ(1 + 6ξ)ϕ2

]
ϕ4

[
M2

P + ξ(1 + 6ξ)ϕ2
]3

, (7.16)

with nT = −r/8. Assuming that the field value ϕ at horizon exit is much larger than that at the 
end of inflation, i.e. ϕ  ϕend, the number N of e-folds reads
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N = (1 + 6ξ)ϕ2

8M2
P

+ 6

8
ln

(
M2

P

M2
P + ξϕ2

)
. (7.17)

Under the assumption ξϕ2  M2
P , after inverting (7.17), we obtain to leading order,

ϕ =
(

8M2
P N

1 + 6ξ

)1/2

. (7.18)

Substituting this last expression in (7.16) leads to

r = 16(1 + 6ξ)

8ξN2 + N

=
(

12 + 2

ξ

)
1

N2
+ O

(
1

N3

)
,

nR = 64ξ2N3 + (
1 − 40ξ − 192ξ2

)
N − 16ξ(8ξ − 1)N2 − 3(1 + 6ξ)

N(1 + 8ξN)2

= 1 − 2

N
+ O

(
1

N2

)
,

αR = − 1

N2(1 + 8ξN)4

[
2048ξ3N2

(
4N2 + 15N + 9

)
ξ4 + 32N

(
160N2 + 300N + 81

)
+ 4

(
272N2 + 252N + 27

)
ξ2 + 12(8N + 3)ξ + 3

]
= − 2

N2
+ O

(
1

N3

)
,

αT = −2(1 + 6ξ)
(
32N(4N + 3)ξ2 + 6(4N + 1)ξ + 1

)
N2(8ξN + 1)3

= −
(

3 + 1

2ξ

)
1

N3
+ O

(
1

N4

)
. (7.19)

In the above, we also quote approximate results for large values of e-folds N , assuming that 
ξ � 1.

We may now estimate the size of ξ , using the normalization of the dimensionless power 
spectrum �R. The power spectrum in terms of the inflaton field ϕ is given by

�R = λϕ6
[
M2 + ξ(1 + 6ξ)ϕ2

]
32M4

P

(
M2

P + ξϕ2
)2

, (7.20)

which may be translated into the number N of e-folds as

�R = 16λN3(8ξN + 1)

(1 + 6ξ)[(8N + 6)ξ + 1]2
. (7.21)

Setting λ = 0.129 as the value for the quartic coupling (corresponding to a SM Higgs-boson 
mass of 125 GeV) and N = 60 as the nominal number of e-folds for the horizon exit, we may 
match �R with the normalization (7.14) to deduce the known result [40]:

ξ = N√
3

√
λ

(0.027)2
≈ 17,000 . (7.22)
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Note that our method for deriving observables does not require transforming to the Einstein 
frame, in which finding a closed-form expression of the potential is not possible. Hence, our 
frame-covariant approach leads to more accurate results which still agree to leading order in 
1/N with those reported in the literature [40,42].

7.3. F(R) models

An interesting class of possible inflationary scenarios emerges, when the universe self-
accelerates without the direct presence of a scalar field [44]. A wide range of such models is 
encoded in F(R) theories, which are described by the following action:

S[gμν,F ] = −
∫

d4x
√−g

F(R)

2
. (7.23)

These theories may be recast in a form equivalent to the scalar-curvature theories by introducing 
an auxiliary field �:

S[gμν,�] = −
∫

d4x
√−g

1

2

[
F(�) + F(�),�(R − �)

]
. (7.24)

It is not difficult to check that the equation of motion for �, δS/δ� = 0, implies � = R, pro-
vided F(�),�� does not vanish in the domain of interest. Consequently, the action in (7.24) is 
equivalent to the original action of F(R) theories given in (7.23).

We may now introduce another field ϕ, such that

ϕ = F(�),� , (7.25)

which will play the role of the inflaton. To this end, we write (7.24) as

S[gμν,ϕ] =
∫

d4x
√−g

[
− 1

2
ϕ R + V (ϕ)

]
, (7.26)

where V (ϕ) is given by

V (ϕ) = 1

2
ϕ �(ϕ) − 1

2
F

(
�(ϕ)

)
. (7.27)

Here, the expression for � = �(ϕ) comes from inverting the functional relation in (7.25). This 
action is equivalent to a special class of scalar-curvature theories, termed Brans–Dicke mod-
els [43], with the additional constraint: k(ϕ) = 0, i.e. the absence of an inflaton kinetic term in 
the considered Jordan frame.

We will now present some typical results that can be obtained for a simple class of F(R)

theories, within our frame-covariant formalism of inflation. We consider a modified version of the 
Starobinsky model [44] that still offers analytic predictions. In this version of Starobinsky-like 
inflation, the function F(R) assumes the form

F(R) = αR + βnR
n , (7.28)

where α and βn are arbitrary parameters and n ≥ 2. The usual procedure would be to perform a 
conformal transformation of the action (7.26) to go to the Einstein frame [45]. Within our frame-
covariant approach, however, this intermediate computational step becomes unnecessary. Instead, 
we may simply use the functional form of F(R) to arrive at an expression for the potential V (ϕ), 
as given in (7.27), and derive predictions for the cosmological observables by considering the 
equivalent scalar-curvature theory in the Jordan frame.
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Given the form of F(R) in (7.28), (7.25) yields

ϕ(�) = α + βnn�n−1 , (7.29)

which is easily inverted to

�(ϕ) =
(

ϕ − α

βnn

)1/(n−1)

. (7.30)

The potential thus becomes

V (ϕ) = n − 1

2
βn

(
ϕ − α

βnn

)n/(n−1)

. (7.31)

For this class of Starobinsky-like theories, the model functions are: f (ϕ) = ϕ, k(ϕ) = 0, 
and V (ϕ) is given by (7.31). Applying the results of our frame-covariant formalism presented 
in Section 5.3, the following analytic expressions for the cosmological parameters are obtained:

r = 16

3

[(n − 2)ϕ − 2α(n − 1)]2

(n − 1)2(ϕ − α)2
, (7.32)

nR =
(
n2 + 2n − 5

)
ϕ2 − 2α

(
n2 + 4n − 5

)
ϕ − 5α2(n − 1)2

3(n − 1)2(ϕ − α)2
, (7.33)

αR = 8αnϕ(3α(n − 1) + ϕ)[(n − 2)ϕ − 2α(n − 1)]
9(n − 1)3(ϕ − α)4

, (7.34)

αT = −8αnϕ[(n − 2)ϕ − 2α(n − 1)]2

9(n − 1)3(ϕ − α)4
, (7.35)

with nT = −r/8. As before, the inflaton field value ϕ must be evaluated at the point of horizon 
crossing. We note that generically, ϕ starts small during inflation and gets even smaller as the 
number of e-folds increases. Hence, we calculate the number of e-folds N by expanding ϕ about 
ϕend to lowest order:

N = − 3

2

(n − 1)(ϕ − ϕend)(ϕend − α)

ϕend[(n − 2)ϕend − 2α(n − 1)] . (7.36)

At the end of inflation, we expect that F(R) = M2
P R, i.e.

F(Rend) = αRend + βnR
n
end = M2

P Rend . (7.37)

Since � = R, we find

�end =
(

M2
P − α

βn

)1/(n−1)

. (7.38)

From (7.29), it is then possible to calculate ϕend as

ϕend = nM2
P − (n − 1)α . (7.39)

As a consequence, the number of e-folds N in (7.36) becomes

N = 3(n − 1)
(
α − M2

P

) [
α(n − 1) − nM2

P + ϕ
]

2
[
M2

P (n − 2) − α(n − 1)
] [

M2
P n − α(n − 1)

] . (7.40)
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Solving (7.40) for ϕ, substituting its expression into (7.32)–(7.35), and expanding the latter for 
large N to order 1/N , we derive the following approximate analytic expressions for the cosmo-
logical observables:

r ≈ 16(n − 2)2

3(n − 1)2
− 16α(n − 2)n

(
α − M2

P

)
(n − 1)

[
M2

P (n − 2) − α(n − 1)
] [

M2
P n − α(n − 1)

] 1

N
,

nR ≈ n2 + 2n − 5

3(n − 1)2
− 2αn

(
α − M2

P

)
(n − 1)

[
α2(n − 1)2 − 2αM2

P (n − 1)2 + M4
P (n − 2)

] 1

N
,

αR ≈ 4α(n − 2)n
(
α − M2

P

)
3(n − 1)2

[
M2

P (n − 2) − α(n − 1)
] [

M2
P n − α(n − 1)

] 1

N
,

αT ≈ − 4α(n − 2)2n
(
α − M2

P

)
3(n − 1)2

[
M2

P (n − 2) − α(n − 1)
] [

M2
P n − α(n − 1)

] 1

N
. (7.41)

We observe that βn does not enter the expressions for the observables. In fact, all inflationary 
observables are independent of βn, to all orders in 1/N . Instead, we see that there is strong 
dependence on the power n of Rn in (7.28), and for α = M2

P , the expressions listed in (7.41)
become independent of the number of e-folds N through order 1/N . Finally, we note that, for 
α �= M2

P , the runnings of the spectral indices αR and αT start at order 1/N , and so they turn out 
to be at least one order of magnitude larger than those found in the models of induced gravity 
and Higgs inflation.

8. Beyond the tree-level approximation

In the process of developing a frame-covariant formalism of inflation, we have assumed that 
the inflaton and metric perturbations are quantized fields. By using the equations of motion to 
derive expressions for the mode functions and thus the correlation functions, we have been calcu-
lating all relevant inflationary observables at the tree level only. However, higher order radiative 
corrections may induce a non-negligible correction to the inflationary observables. At this time, 
the question whether these quantum corrections to cosmological observables are frame-invariant 
has not yet been resolved [15,16,46]. It has been suggested [12,15,47] that the Vilkovisky–DeWitt 
formalism [17,18] could be used to solve the frame problem beyond the tree level approxima-
tion. In this section, we will outline how to extend the frame invariance of the action (2.7) to 
the effective action, which incorporates the aforementioned corrections, through the use of the 
Vilkovisky–DeWitt formalism. We will explicitly demonstrate this invariance at the one-loop 
level.

In order to simplify the discussion, we shall make two assumptions: (i) the inflaton field does 
not couple to other matter fields, even though their inclusion will be straightforward in the present 
formalism, and (ii) the radiative corrections coming from the quantized metric perturbation are 
negligible in comparison to the quantum inflaton corrections. Assumption (ii) will be sufficient 
in most cases, as quantum gravitational corrections will be O(1/M2

P ) in general, and as such 
they can be ignored in comparison to the quantum inflaton corrections.

The quantum-corrected inflaton equation of motion and Einstein field equations are given by

δ� = 0 ,
δ� = 0 , (8.1)
δϕ(x) δgμν(x)
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where δ/δϕ(x) and δ/δgμν(x) are functional derivatives with respect to the fields ϕ(x) and 
gμν(x) respectively, and �[gμν, ϕ] ≡ �[gμν, ϕ, f (ϕ), k(ϕ), V (ϕ)] is the effective action which 
is determined through the functional integro-differential equation

exp

(
i

h̄
�[gμν,ϕ]

)
=

∫
DϕQM[ϕQ] exp

(
i

h̄

[
S[gμν,ϕ

Q] −
∫

d4x (ϕ − ϕQ)
δ�[gμν,ϕ]

δϕ

])
, (8.2)

where DϕQ M[ϕQ] is the path integral measure and S[gμν, ϕ] is the action defined in (2.1).
To obtain an expression for the effective action, we shall solve equation (8.2) perturbatively 

in h̄. To make this process simpler, we may make a field transformation of the quantum field ϕQ

to ϕ′Q, given by ϕQ = ϕ + h̄
1
2 ϕ′Q. We then expand the effective action in powers of h̄:

�[gμν,ϕ] =
∞∑

n=0

h̄n�n[gμν,ϕ] . (8.3)

For simplicity, we shall only compute � to O(h̄). We find

�0[gμν,ϕ] = S[gμν,ϕ] , (8.4)

�1[gμν,ϕ] = lnM[ϕ] − 1

2
ln det

(
δ2S[gμν,ϕ]
δϕ(x)δϕ(y)

)
. (8.5)

Now that we know the explicit expression for �1[gμν, ϕ], we shall examine how it transforms 
under inflaton reparameterizations and conformal transformations.

Let us first consider inflaton reparameterizations within the one-loop effective action 
�1[gμν, ϕ]. For this discussion, we shall denote S[ϕ, k(ϕ)] ≡ S[gμν, ϕ, f (ϕ), k(ϕ), V (ϕ)] and 
�1[ϕ, k(ϕ)] ≡ �1[gμν, ϕ, f (ϕ), k(ϕ), V (ϕ)] for brevity, since only ϕ and k(ϕ) are affected by 
the inflaton reparameterizations. Under the transformations (2.4), we may write �1 as

�1[ϕ̃, k̃(ϕ̃)] = lnM̃[ϕ̃] − 1

2
ln det

(
δ2S[ϕ̃, k̃(ϕ̃)]
δϕ̃(x)δϕ̃(y)

)
. (8.6)

We wish to relate �1[ϕ, k(ϕ)] to �1[ϕ̃, k̃(ϕ̃)]. We first examine how the first functional derivative 
of the action transforms. We obtain

δS[ϕ, k(ϕ)]
δϕ(x)

= √−g

(
−f (ϕ),ϕ

2
R − k(ϕ),ϕ

2
(∂ϕ)2 − k(ϕ)∂2ϕ − V (ϕ),ϕ

)
,

δS[ϕ̃, k̃(ϕ̃)]
δϕ̃(x)

= K
−1/2
x

δS[ϕ, k(ϕ)]
δϕ(x)

, (8.7)

where we use (2.6) with � = 1 and have denoted Kx ≡ K(ϕ(x)) for brevity. We may now 
proceed to determine the transformation of the second functional derivative of the action which 
we find to be

δ2S[ϕ̃, k̃(ϕ̃)]
δϕ̃(x)δϕ̃(y)

= K
−1/2
x K

−1/2
y

[
δ2S[ϕ, k(ϕ)]
δϕ(x)δϕ(y)

− K
−1/2
x

2
(lnKx),ϕ

δS[ϕ, k(ϕ)]
δϕ(x)

δ(x − y)

]
.

(8.8)
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Now that we have found the transformation of the second term in (8.6), let us consider how 
the function M[ϕ] transforms under inflaton reparameterizations. We will require that the path 
integral measure must remain invariant under inflaton parameterizations:

DϕQ M[ϕQ] = Dϕ̃Q M̃[ϕQ(ϕ̃Q)] (8.9)

and hence this defines the transformation of M as

M̃[ϕ̃] ≡ det
(
K

−1/2
x δ(x − y)

)
M[ϕ(ϕ̃)]. (8.10)

Consequently, due to the combination of the transformations (8.8) and (8.10), the one-loop ef-
fective action �1 is not invariant under inflaton reparameterizations:

�1[ϕ̃, k̃(ϕ̃)] �= �1[ϕ, k(ϕ)] . (8.11)

This result is also consistent with the one observed in [12], by an explicit computation. As shown 
in (8.8), the primary source of the frame-dependence is the presence of the functional derivatives 
with respect to ϕ(x). It was the idea of Vilkovisky [17] to extend the effective action such that 
it remains invariant under field reparameterizations. With subsequent developments by DeWitt 
[18], the combined work is now known as the Vilkovisky–DeWitt formalism. The essential ob-
servation is the following. If the second term in (8.5) transforms covariantly, then the one-loop 
effective action would remain invariant under inflaton reparameterizations.

Let us briefly describe Vilkovisky’s idea. Suppose we identify the field ϕ(x) at each spacetime 
point x with a coordinate on a manifold. We shall call this manifold the field space. Given this 
identification, it is possible to extend the notion of functional derivatives to covariant functional 
derivatives. Denoting the covariant functional derivative by D/Dϕ(x), we have

D2S

Dϕ(x)Dϕ(y)
≡ δ2S

δϕ(x)δϕ(y)
− �z

xy

δS

δϕ(z)
, (8.12)

where �z
xy is the connection and we use the Einstein–DeWitt convention in which repeated space-

time coordinates are integrated over all spacetime. In this instance, the connection �z
xy transforms 

in a way that ensures that the second covariant functional derivative transforms covariantly un-
der inflaton reparameterizations. To determine the transformation of the connection on the field 
space, we require that it should transform to cancel the second term inside the brackets in (8.8). 
This requirement leads to the transformation

�̃z
xy = K

1/2
z K

−1/2
x K

−1/2
y

[
�z

xy − 1

2
(lnKx),ϕδ(x − y)δ(y − z)

]
. (8.13)

This ensures that the double covariant functional derivative transforms as

D̃2S[ϕ̃, k̃(ϕ̃)]
D̃ϕ(x)D̃ϕ(y)

= K
−1/2
x K

−1/2
y

D2S

Dϕ(x)Dϕ(y)
. (8.14)

Given this transformation property, let us now define a new effective action by replacing the 
functional derivatives with covariant functional derivatives in the one-loop effective action (8.5):

�VD
1 [ϕ, k(ϕ)] ≡ lnM[ϕ] − 1

2
ln det

(
D2S[ϕ, k(ϕ)]
Dϕ(x)Dϕ(y)

)
. (8.15)

This is known as the one-loop Vilkovisky–DeWitt effective action, which can be rigorously de-
rived by generalizing the source term coupled to the fields, such that the linear expression ϕ−ϕQ

in (8.2) is replaced with a function σ(ϕ, ϕQ) endowed with specific properties [17]. Now, if we 
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make an inflaton reparameterization using (8.14) and (8.10), we find that �VD
1 [ϕ̃, k̃(ϕ̃)] trans-

forms as

�VD
1 [ϕ̃, k̃(ϕ̃)] = lnM[ϕ] − 1

2
ln det

(
D2S[k(ϕ),ϕ]
Dϕ(x)Dϕ(y)

)
= �VD

1 [ϕ, k(ϕ)] . (8.16)

Thus, replacing functional derivatives with their covariant counterparts in the usual definition of 
the one-loop effective action ensures that the one-loop effective action is unaffected by inflaton 
reparameterizations.

Let us now discuss the form of the measure functional M[ϕ] and the connection �z
xy . Taking 

the analogous case of differential geometry as an example, one is able to obtain the invariant 
integral measure and the affine connection in terms of the metric tensor of the field space. From 
this case, we may construct M[ϕ] and �z

xy by taking inspiration from differential geometry in 
terms of some metric Gxy for the field space. These expressions then take the form

M[ϕ] ≡ √
detGxy , (8.17)

�z
xy ≡ 1

2
Gzw

(
δGwx

δϕ(y)
+ δGwy

δϕ(x)
− δGxy

δϕ(w)

)
, (8.18)

where Gzw is the inverse field space metric satisfying the relation GywGwx = δ(x − y). We must 
now find a suitable object to be the metric in the field space. To find this expression, observe that 
the metric and its inverse must transform as

G̃xy = K
−1/2
x K

−1/2
y Gxy , G̃xy = K

1/2
x K

1/2
y Gxy , (8.19)

in order for the measure and the connection to transform correctly [cf. (8.10), (8.13)]. There is 
only one object in the frame-covariant formalism which transforms in this manner: the inflaton 
wavefunction k(ϕ). Therefore, if we write

Gxy ≡ k(ϕ) δ(x − y) , (8.20)

then (8.19) is satisfied, along with (8.10) and (8.13). With this definition, we may now find 
explicit expressions for the measure functional and the connection:

M[ϕ] = det
(
k1/2(ϕ)δ(x − y)

)
, �z

xy = 1

2

(
lnk(ϕ)

)
,ϕ

δ(x − y)δ(y − z) , (8.21)

and hence we are able to compute �VD
1 explicitly as required.

At this point, it is important to note that the path-integral quantization of the theory from 
its Hamiltonian, rather its Lagrangian, gives rise to an integral measure M[ϕ] related to the 
field-space determinant of the metric Gxy given in (8.20). In the same context, it is not difficult 
to check that upon an arbitrary ϕ-reparameterization, a free theory for the field ϕ, where f (ϕ) =
k(ϕ) = 1 and V (ϕ) = 0, will still remain a free theory off-shell at the generating-functional level 
�VD

1 [ϕ, k(ϕ)], without inducing non-renormalizable ultra-violet infinities at the one-loop level, 
iff the integral measure M[ϕ] as stated in (8.21) is chosen. Therefore, theoretical consistency of 
the path-integral quantization renders the Vilkovisky–DeWitt effective action unique.

Finally, let us briefly discuss the case of conformal transformations. It was shown in Sec-
tion 2 that the action remains invariant under a conformal transformation [cf. (2.7) with K = 1]. 
Furthermore, any functional derivative of the action with respect to ϕ(x) should also remain 
invariant under conformal transformations, as the functional derivatives do not transform them-
selves. In addition, the measure functional M[ϕ] should not transform under conformal trans-
formations, as there is no quantized metric perturbation in the path integral, according to the 
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assumption (ii) stated in the beginning of this section. Hence, under conformal transformations, 
we have

�1[g̃μν, ϕ, f̃ (ϕ), k̃(ϕ), Ṽ (ϕ)] = �1[gμν,ϕ,f (ϕ), k(ϕ),V (ϕ)] , (8.22)

which demonstrates the invariance of �1 with respect to conformal transformations. However, the 
same reasoning, as outlined above, will also apply to the one-loop Vilkovisky–DeWitt effective 
action �VD

1 . Therefore, we conclude that �VD
1 remains invariant under frame transformations, 

i.e. the combined action of both conformal transformations and inflaton reparameterizations.

9. Conclusions

We have presented a frame-covariant formalism of inflation in the slow-roll approximation for 
a wide class of theories known as scalar-curvature theories. We defined a set of transformations, 
known as frame transformations, and under these, we determined the transformation properties 
of the model functions: (i) the scalar-curvature coupling function f (ϕ), (ii) the inflaton wave-
function k(ϕ), and (iii) the inflaton potential V (ϕ). Consequently, we were able to show that 
both the classical action and its functional form remain invariant under frame transformations 
[cf. (2.7)], assuming that the model functions f (ϕ), k(ϕ) and V (ϕ) transform according to (2.6). 
By generalizing the inflationary attractor solution, we have derived a new set of potential slow-
roll parameters stated in (5.23). Through these new parameters, we have found that inflationary 
observables, such as the power spectrum, the spectral indices and their runnings, can all be ex-
pressed in a concise manner in terms of the generalized potential slow-roll parameters and their 
ϕ-derivatives, which in turn depend explicitly on the model functions f (ϕ), k(ϕ), and V (ϕ).

In addition to obtaining concise expressions for the cosmological observables, we also utilized
the potential slow-roll parameters defined in (5.23) to examine the effect of frame transforma-
tions on these observables in a simple manner. We have displayed that the tensor-to-scalar ratio r , 
the spectral indices nR and nT , and their runnings αR and αT , are frame-invariant within this 
generalized potential slow-roll formalism, as long as the end-of-inflation condition is uniquely 
extended to be frame invariant as given in (6.13). A direct consequence of this formalism is 
that one does not need to transform to the Einstein frame to utilize the potential slow-roll ap-
proximation; we have explicitly shown that this formalism reduces to the potential slow-roll 
approximation in the Einstein frame in Section 6.3.

To demonstrate the use of the advertised formalism, we then apply it to specific scenarios, 
such as the induced gravity inflation, Higgs inflation and Starobinsky-like F(R) models. This 
application led to results for the cosmological observables which were more exact in comparison 
to those already presented in the literature without the need to go to the Einstein frame; our results 
were found to be consistent to lowest order in 1/N , the reciprocal of the number of e-folds, with 
those presented in the literature.

Finally, we have outlined how our frame-covariant formalism can be naturally extended be-
yond the tree-level approximation within the framework of the Vilkovisky–DeWitt effective 
action. Specifically, we have explicitly demonstrated how the one-loop Vilkovisky–DeWitt ef-
fective action, which is written in terms of functional derivatives of the classical action, may be 
made invariant under inflaton reparameterizations. The Vilkovisky–DeWitt formalism is there-
fore the natural starting point to begin an analysis of the so-called frame problem, in addition to 
the study of the radiative corrections to cosmological observables and their consolidation with 
the slow-roll approximation. It is the authors’ opinion that this is an important milestone to-
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wards the solution of the frame problem, and we hope to report progress on this issue using the 
Vilkovisky–DeWitt formalism in a forthcoming communication.
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Appendix A. The inflaton action under frame transformations

In this appendix, we derive the transformation properties given in (2.6) for the model func-
tions f (ϕ), k(ϕ) and V (ϕ) describing the classical action S of inflationary scalar-curvature 
theories [cf. (2.1)], under a frame transformation. As defined in Section 2, a frame transfor-
mation consists of a conformal transformation (2.2) and an inflaton reparameterization (2.4).

To start with, we first consider the classical action (2.1) in the Jordan frame

S[gμν,ϕ,f, k,V ] ≡
∫

d4x
√−g

[
− f

2
R + k

2
gμν(∇μϕ)(∇νϕ) − V

]
, (A.1)

where we have suppressed the implicit dependence of the model functions f , k and V on ϕ. 
Under the conformal transformation (2.2), R transforms according to (2.3). As a consequence, S
changes to

S[gμν,ϕ,f, k,V ] =
∫

d4x
√−g

[
− f

2

(
�2R̃ + 6�−1gμν∇μ∇ν�

)
+ k

2
gμν(∂μϕ)(∂νϕ) − V

]
. (A.2)

Our next step is to rewrite S in terms of g̃μν = �2gμν as follows:

S[gμν,ϕ,f, k,V ] =
∫

d4x

{√−g̃

[
− �−2f

2
R̃ + k

2
�−2 g̃μν(∂μϕ)(∂νϕ) − �−4V

]
− 3f �−1∂μ(

√−ggμν∇ν�)

}
. (A.3)

Then, we make use of the following identity:

f �−1∂μ(
√−g gμν∇ν�) = ∂μ[f �−1√−ggμν∇ν�] − √−g gμν∇μ[f �−1]∇ν� .

(A.4)

Substituting (A.4) into (A.3), we may neglect the total derivative on the RHS of (A.4), upon total 
integration in the action. In addition, we assume that � and ϕ are tempered functions that are 
locally Lorentz invariant and so they both depend on x2 ≡ xμxμ. Thus, the conformal factor �
depends implicitly on the inflaton ϕ, i.e. � = �[ϕ(x)], entailing that the coordinate covariant 
derivative ∇μ� can be converted into ∇μϕ through the chain rule:

∇μ� = �,ϕ ∇μϕ . (A.5)

By virtue of (A.5), the action S in (A.3) becomes
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S[gμν,ϕ,f, k,V ] =
∫

d4x
√−g̃

{
− �−2f

2
R̃ (A.6)

+ �−2

2K

[
k + 6�,ϕ

(
�−1f,ϕ − f �−2�,ϕ

)]
× g̃μν(∇μϕ̃)(∇ν ϕ̃) − �−4V

}
,

where ϕ̃ = ϕ̃(ϕ) represents an arbitrary reparameterization of the original inflaton field ϕ, which 
is determined by the Jacobian squared: K = K(ϕ) = (dϕ̃/dϕ)2 [cf. (2.4)].

We now observe that the last expression of the action in (A.6) can be brought into the form:

S[g̃μν, ϕ̃, f̃ , k̃, Ṽ ] =
∫

d4x
√−g̃

[
− f̃

2
R + k̃

2
g̃μν(∇μϕ̃)(∇ν ϕ̃) − Ṽ

]
, (A.7)

after making the following identifications for the transformed model functions:

f̃ (ϕ̃) = �−2 f ,

k̃(ϕ̃) = �−2

K

(
k − 6f �−2�2

,ϕ + 6�−1f,ϕ �,ϕ

)
, (2.6)

Ṽ (ϕ̃) = �−4 V .

Notice that the tilted model functions are evaluated at ϕ̃, which is achieved by expressing ϕ as 
ϕ = ϕ(ϕ̃), e.g.

f̃ (ϕ̃) = �−2[ϕ(ϕ̃)] f [ϕ(ϕ̃)] . (A.8)

Evidently, the latter ensures that the actions (A.1) and (A.7) are equal, exhibiting the same func-
tional dependence [cf. (2.7)]. We may now specialize the frame transformations (2.6), so as to 
go to the Einstein frame. This is accomplished by choosing �2 = f , such that f̃ = 1, and the 
squared Jacobian K , such that the inflaton kinetic term becomes canonical, with k̃ = 1.
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