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Abstract 

This study analysis the return volatility of spot market prices of crude oil (WTI) and natural gas (Henry Hub) for two 
different terms which cover 02.01.2009 – 28.04.2014 and 04.01.2010-28.04.2014 with different version of the GARCH 
class models such as GARCH, IGARCH, GJRGARCH, EGARCH, FIGARCH, FIAPARCH. In particular, the main 
idea of employing various GARCH models is to determine which one of these linear and nonlinear asymmetric models 
perform more accurate in terms of ingroups and intergroups activities. Therefore, the main purpose of the paper is to 
determine a model which ensures to get a maximum return with response to the minimum loss for returns of the 
investments held by individual investors and fund managers, private sector budget planning decision makers, and state 
agencies forecasting about macroeconomic indicators. To do this, the ten-days out-of-sample volatility forecasts of 
Loss Functions to capture the forecasting performance of GARCH class models and to prevent forecasting errors with 
efficiency hedge ratio in energy market are being considered. For two periods, asymmetric and integrated GARCH 
models give relatively more accurate performance than other available models. Respectively, for the first period, 
minimum loss model is FIGARCH-BBM (SST) and for the second period, is EGARCH(GED) for WTI crude oil series 
in consideration of MSE and MAE criterion. Similarly, for the first period minimum loss model is FIGARCH-BBM 
(SST) and for the second period, is EGARCH(GED) for Henry Hub natural gas series in consideration of MSE and 
MAE criterion. This study has potential recommendations for investors from developed and developing countries, 
which differs it from the current studies. 
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1. Introduction 

Accurately forecasting of crude oil and natural gas prices return volatility has a key role for policy 
makers to take decision, hedging strategies of production and refinery companies, and of course short term 
price movements of traders in financial markets. As well as, notably energy prices volatility affects growth 
rates, inflation and unemployment rates via production cost channels and is an important cost ingredient for 
long term and value added “Strategic Investment” decisions (Henrique and Sadorsky, 2011,79; Regnier, 
2007, 421; Apergis and Payne, 2010, 2759; Balcılar and Özdemir, 2013, 1; Henrique and Sadorsky, 2011, 
79; Akar, 2007, 2; Sarı et. al., 2010, 351). 

 
Volatility is usually one of the most important factors affecting the price of derivative products. 

Moreover, volatility and the opportunity cost of production of companies will be able to affect the 
transaction cost and the marginal cost of production. In order to make effective econometric implications 
intended for the average of variables, volatility must be forecasted accurately. Typically, despite having 
relatively high volatility in crude oil and natural gas prices, studies in this field focus on mostly other 
volatility of financial instruments. Therefore, frequency of related analyses in the literature, pricing 
mechanisms similarity, volatility transmission into each other and very high quantitative and qualitative 
correlation characteristics were decisive to analyze oil price and natural gas prices return volatility 
simultaneously (Panagiotidis and Rutledge, 2007, 346; Quanqian and Yang, 2009, 410). 

The premise of this study is built on homoeconomicus rationality behaviors, in Neoclassic Economics 
approach, that admires to get the maximum profit with response to the minimum loss provided by 
minimum risk strategies. High volatility, high-frequency and rapid jumps, bubbles, volatility clustering, 
and non-stationary characteristics of crude oil and natural gas markets shape risk perception of investors 
and traders in crude oil and natural gas markets, hence all these features prove that crude oil and natural 
gas markets prices and returns are not in a stationary state consistently. The volatility of oil and natural gas, 
due to the association with most of the raw materials, is transferred to the end users through the number of 
transfer mechanisms. Crude oil and natural gas volatilities become increasingly crucial on the basis of 
countries macroeconomic risks, especially for countries that depend more on energy imports and 
additionally, carry on  high current deficit and trade deficit accounts (in 2014, in Turkey, total imports 
242.2 billion dollars and energy imports is 48.8 billion dollars, while the current account deficit was 
recorded as 45.8 billion dollars), because of the major shares of crude oil and natural gas in their balance of 
payments. These volatilities bring a huge pressure on the current account deficit, and via fluctuating 
exchange rate regime channel, they affect interest rates and exchange rates and afterwards, deflate domestic 
currency generating inflationary situation in the medium term. As a matter of course, instead of enhancing 
productivity measurements in production/industrial sectors, firms will apply to fire employees as a cost 
cutting strategies, and then inevitably unemployment will crop up. Consequently, governments or states 
and companies that require effective strategies in derivative markets can intend, with an optimum hedge 
ratio, for these two commodities (i.e., crude oil and natural gas) calculated with FOB (Free On Board) price 
on spot market. 

The rest of the paper is organized as follows; the second part focuses on the explanation about the 
importance of selected periods and descriptive statistics. Third part makes some deep statements on the 
linear (GARCH, IGARCH), nonlinear asymmetric (EGARCH, GJRGARCH) and integrated (FIGARCH, 
FIAPARCH) models and introduces “Loss Functions” in regard of Mean Squared Error (MSE) and Mean 
Absolute Error (MEA) used in this study. Fourth part is built on interpretation of empirical results obtained 
from descriptive statistics, GARCH class models and Loss Functions tests. 
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2. Literature View 

This study investigates crude oil and natural gas as fossil fuels simultaneously because of their 
correlative movements. Serletis and Herbert (1999) analyze the time series characteristics of the industrial 
price of oil and natural gas and bear out that there is a cointegration between these two items in the first 
order. The reason of this cointegration comes from their substitutable features in industrial production. 
Ewing et. al (2002) study covers 1 April 1996 and 29 October 1999 period for close price of oil and of 
natural gas. They state that volatility of natural gas doesn’t react of its own volatility and oil price volatility 
is affected by its own volatility at 10% level. Natural gas volatility is affected by natural gas sector-led 
shock (e.g. events and news…) and crude oil return crosses error terms indirectly (Serletis and Herbert 
1999, 472; Ewing etc. al. 2002, 527). Regnier (2007) brings in through the production price of oil and 
natural gas and domestic sale price to compare volatility level differences between production-refinery oil 
and natural gas prices and domestic sale prices volatility form January 1945 to August 2005. According to 
the test results, crude oil, refinery oil and natural gas prices volatility was about %95 more volatile than 
domestic sale prices volatility. Mohammadi and Su (2010) analyzes weekly crude oil price from 2 January 
1997 to 10 March 2009. According to the results from the out of sample performances of conditional 
volatilities and means modeled by MA(1)- EGARCH(1,1,) and MA(1)- APARCH, conditional 
heteroscedasticity models performed more accurately and confidentially.  

Ural and Adakale (2010) analyze 1380 data sample between 01.02.2005 and 20.06.2010. They figure 
out that FIGAPGARCH and APGARCH student/t distributed models performe better. However they 
mentione that oil price had really high volatility during financial crisis over the past five years. Wei, Wang 
and Huang (2010), analyzes daily WTI and Brent crude oil price between 6 January and 31 December 
2009. They used nine types of GARCH models (RiskMetrics, GARCH, IGARCH, GJRGARCH, 
EGARCH, APARCH, FIGARCH, FIAPARCH, HYGARCH). None of these models demonstrated 
superiority each other. Nevertheless, nonlinear-GARCH models enables much more effective results to 
capture long-run volatility dynamics of oil price. Aloui and Mabrouk (2010) considered more than 5000 
daily prices from January 1986 to July 2007 of big four energy commodities (West Texas Intermediate 
(WTI), Europe Brent (Brent), New York Harbour Classic Normal Gazoline (NYHCRG) and Rotterdam 
Conventional Gasoline Regular (RCGR)) for the scope of study. FIAPARCH skewed student/t distributed 
model gave minimum loss in consideration of Value at Risk (VaR) performance criteria. 

3. Methodology and Models 

3.1 Methodology 

While autocorrelation function of oil and natural gas price return series decrease at a slow exponential 
rate and have long-run dependency characteristics (Lv and Shan, 2013, 8), this study considers GARCH 
class models (GARCH, IGARCH, GJRGARCH, EGARCH, FIGARCH and FIAPARCH) that long-run 
memory and asymmetry leverage are properly compatible. 
 
3.2 Models 
      

3.2.1 GARCH Model 

As Bollerslev uses Generalized Auto Regressive Conditional Heteroscedasticity (GARCH) in the 
model, current conditional variance is not only dependent an Autoregressive (AR) process as well as bound 
up with the square of Moving Average (MA) process (i.e., square of past shocks or innovations) (1986, 
311). Thus, it is not only the information of magnitude of a shock or innovation but the duration of 
information is crucial for models. 
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rt=μt + ɛt  = μt + σt zt,         zt ≈İİD(0,1)  

αt = σt ɛt   ɛ ≈ i.i.d. (0,1)                                                                                                                                 (1) 

σ2
t = α0 + +  ßj σ2

t-j 

Models assumed that shocks/innovations are distributed as independent and identical. Constraints on 

constants are ; α0 > 0, αi  ≥ 0 , ßj ≥ 0 ve  ßj ). Here, depending on whether  ßj is > or < 

or = 1, the magnitude of autocorrelation coefficient and ß- induced fading the speed of shocks/innovations 
will differentiate. 
 

3.2.2 IGARCH Model 

In heteroscedasticity literature, another linear GARCH class model, Integrated Generalized Conditional 
Heteroscedasticty (IGARCH) developed by Engle and Bollerslev (1986) is as below: 

IGARCH model is almost similar to standard GARCH model, but the only difference comes from 

parameters constraints which are  > 0 and αi + βJ =1. In this regard, shocks/innovations exhibit 
continuity (Ural, 2010, 92). 

 
3.2.3 GJRGARCH Model 

GJRGARCH is a nonlinear model developed by Glosten et.al. (1993) in order to determine asymmetric 
leverage effect which enable us to parse good and bad news effects over series. In order to parse these 
effects, Glosten et. al. (1993) they added a dummy variable (dt) into GARCH model developed by 
Bollerslev (1986).  

σt
2 =                                                                                                (3) 

In this variance equation dummy variable (dt )equals one in case of ɛt < 0, in other words effects of bad 
news over conditional variance equals (α + γ), and if dt =0 in case of  ɛt > 0 good news have more influence 
over conditional variance, and this effect equals to (α + γ) again. Therefore, asymmetry parameter γ will be 
meaningful in case of dt =1. In case of γ >0, it means that leverage (asymmetry) effect is on and bad news 
cause increasing volatility instead of good news. For the alternative case, if γ <0 again leverage 
(asymmetry) effect is on but this time good news cause to an increase in volatility instead of bad news 
(Wei et. al., 2010, 1479;  Lv and Shan, 2013, 8-9). 

 
3.2.4 EGARCH Model 

Another nonlinear GARCH model is Exponential GARCH (EGARCH) developed by Nelson (1991) 
which takes into account asymmetry and leverage effects. The differences of EGARCH models from 
Bollerslev (1986) GARCH model are capability of EGARCH to decomposing positive and negative 
shocks/innovations form each other and take logarithms of conditional variance, and thus prevent negative 
values of conditional variance (Nelson, 1991, 350). Model can be formulated as below: 
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The model doesn’t apply any constraints on parameters like α, β and  γ . This seems as an advantage of 
the model. However,  points out magnitude of conditional shocks/innovations on conditional variance. β 
parameter represents continuity of shocks/innovations on conditional variance, and brings an oscillation 
priority which is settled on conditional variance. Since  parameter is difference form zero and takes values 
between confidence interval, it is possible to talk about leverage and asymmetry effects. Moreover, if γ >0, 
positive shocks/innovations are much more effective than negative shocks on conditional variance 
(Narayan and Narayan, 2007, 6551; Ural, 2010, 93). 
 

3.2.5 FIGARCH and FIAPARCH Model 

While the above mentioned standard GARCH models are based upon undistinguishable long-run and 
short run volatility forecasts, fractionally integrated GARCH models doesn’t accept the assumption of 
standard GARCH models on I(0) integration level or mean reversion attitude and I(1) integration level or 
no mean reversion attitude. In these models, I(d) (0<d<1) indicates that a shock/innovation on series 
disappear at a slow hyperbolic rate. Fractionally integrated GARCH models claim that shocks/innovations, 
which effect volatility, can be included in long-run memory and disappear at a slow rate. That’s why, 
Baillie etc. al. (1996) and  Andersen and Bollerslev (1997) developed Fractioanly Integrated GARCH 
(FIGARCH) models. In case of d=0 FIGARCH (1,1) model will turn into GARCH(1,1) and IGARCH (1,1) 
in case of d=1 (Tang and Shieh, 2006, 439; Ural, 2010, 97). Baillie et. al. (1996) showed conditional 
variance of ɛt in FIGARCH (p,d,q) model as below: 

 

σt
2 =  [1- (L)]-1 + {1-[1- (L)]-1  (L)(1-L)d} t

2                                                                                                (5) 

=  [1- (L)]-1+  (L) t
2  

In the model,  (L) =  1L-  2 L
2 -  … -  q L

q  indicate the roots of equation which locate outside the 
unit circle, and for all t periods conditional variance must be positive. The constraints for parameters are 0 
≤ d ≤ 1, w>0, γ, β <1 , d stands for fractionally integrated parameter and L represents lag operator. As seen 
in the model, I(0) stationary and I(1) nonstationary cases are brought together and we obtain a structure 
which allows us to model a medium duration shocks on conditional variance.  

Fractioanlly Integrated Asymmetric Power GARCH (FIAPARCH) model was developed by Tse(1998) 
which brings Asymmetric Power ARCH (APARCH) model developed by Ding, Granger, and Engle (1993)  
together with FIGARCH  model developed by Baillie etc. al. (1996), in order to capture exchange rate 
volatility more accurately (Tse, 1998, 49). FIAPARCH(1,d,1) model can be formulated as below: 

σt
δ= [1- (L)]-1+[1-(1- (L)-1(1- L)(1-L) d] t|- t)

 δ  

   =  (L)(| t|- t)
 δ                                                                                                                                         (6) 

The constraints for parameters are 0 ≤ d ≤1 ,  , -1<  <1. In FIAPARCH model, as favourably 

earlier statements, parameter can capture fractionally integration elasticity as well as distinguish 

asymmetry effects. 
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3.3 Loss Functions 

Lee (2007)’s study named “Loss Functions in Time Series” set forth forecast period depended on loss 
functions as here; if there is a difference between the real value in period t and forecasted value of ft,h  in 
period t+h and variable of Yt+h, loss function will come about. A loss function of an error term can be 
symbolized as et+h = Yt+h – ft,h , c(Yt+h,ft,h). The forecast period depended on loss function must be modelled 
as ct+h(Yt+h,ft,h) (Lee, 2007, 2). However, MSE and MAE are the most referenced loss functions for 
evaluation of model’s performance. 

3.3.1 Mean Squared Error (MSE):  

MSE is the second moment (about the origin) of error terms which make relations between variance 
produced by estimator and variance deviation. The most reasonable reason to select MSE as a performance 
criterion is its highly sensitive pattern to extreme values (Cheong, 2009, 2349). MSE is calculated as the 
following formula; 

      P-1 2                                                                                                                                (7)  

 3.3.2 Mean Absolute Errors (MAE):  

MAE function set no upper and lower bound constraints and doesn’t vary depending on the 

transmission of scale (Lee, 2007, 6). MAE can be formulated as below; 

P-1                                                                                                                           (8)       

4. Emprical Results 

According to Table 1 below, the return series of natural gas has 0,052 (greater than 0) skewness value 
means positively skewed and hence, asymmetric distribution, on the other hand natural gas series are 
extremely leptokurtic with value 4,8460 (greater than 3). Because of leptokurtic distribution of the return 
series has fat tail problem. As often accepted in financial markets, in the majority of time, these kind of 
series are affected by negative side shocks/innovations, that’s why when for example an OPEC supply side 
shock/innovation or OECD and Non-OECD demand side shock/innovations will set off serious 
fluctuations and volatility because of fat tail feature of these series. The return series of crude oil has 0,075 
(greater than 0) skewness value means positively skewed and hence asymmetric distribution, on the other 
hand crude oil series is extremely leptokurtic with value 5,0475 (greater than 3). Because of leptokurtic 
distribution of return series has fat tail problem. Ljung-Box test statistic indicates that past dependency 
between error terms of model fade away after twenty lags in oil return series but not for natural gas series. 
According to the Jarque Bera test statistics, both of the series don’t have normal distribution. 
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Table 1: Natural Gas (Henry Hub) and Crude Oil (WTI) Return Series Descriptive Statistics: 02.01.2009-28.04.2014. 

Henry Hub WTI 

Observations 1330 1330 

Mean 0,0009 0,0006 

Standard Deviations 0,04329 0,0226 

Minimum  -0,39069 -0,1274 

Maximum 0.27843 0.1329 

Skewness 0.0502 0.075 

Excess Kurtosis 48,460 50,470 

Jarque-Bera(prob) 18675.26(0.00) 57.859(0.00) 

Q(20)(prob) 20,2160(0.128)* 19.968(0.029)* 

 
Price and return graphs for natural gas and crude oil are presented in Graph 1 and Graph 2. It is possible 

to spot that crude oil and natural gas prices and returns contain seasonal effects.  
 

                                       
                                     (a)                                                                                                (b) 
 

Graph 1: 02.01.2009- 28.04.2014 Natural Gas (Henry Hub) (a) Price and (b) Return Series         

 
 
 
 
 
 
 

 
                                                                                             

                           
                                                                                

       
                                 (a)                                                                                                 (b) 

Graph 2: 02.01.2009- 28.04.2014 Crude Oil (WTI) (a) Price and (b) Return Series 

 
04.01.2010 starting date for the series as discussed, the return series of natural gas has -1,348 (smaller 

than 0) skewness value means negatively skewed and hence, asymmetric distribution, on the other hand 
natural gas series are extremely leptokurtic with value 30,93 (greater than 3). Because of leptokurtic 
distribution of the return series has serious fat tail problem. This value is significantly different from 
previous value and it seems that natural gas series are more responsive to the supply crisis, demand 
imbalances and the most of other negative events. Already, because of February–March 2014 Crimea 
problem, price volatility started to become more volatile. Lower positive skewness value for crude oil 
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series means that asymmetric distribution is more invalid than previous period. However, leptokurtic 
distribution with 5,3079 value seems more desirable condition but still maintains its effect. That’s why it is 
possible to say that a fat tail problem is still on because of its leptokurtic distribution. Ljung-Box test 
statistic indicates that past dependency between error terms of model fade away after twenty lags in crude 
oil returns series but not for natural gas series. 
 
Table 2: Natural Gas (Henry Hub) and Crude Oil (WTI) Return Series Descriptive Statistics: 04.01.2010-28.04.2014 

 Henry Hub                    WTI 

Observations 1088 1088 

Mean 0,0001 0,0001 

Standard Deviations 0,03741 0,0170 

Minimum  -0,39000 -0,0853 

Maximum 0,27843 0,0989 

Skewness -134,879 0,0251 

Excess Kurtosis 309,302 53,079 

Jarque-Bera(prob) 18675.26(0.00) 57.859(0.00) 

Q(20)(prob) 174,529(0.00)* 12.9810(0.87)* 

 
 
 

                          
                                  
                                    (a)                                                                                              (b) 

 Graph 3 : 04.01.2010- 28.04.2014 Henry Hub and WTI Return Series Graphs    

In the above tables and graphs with non-standardized schocks/innovations, descriptive statistics for 
crude oil and natural gas return series for 04.01.2010-28.04.2014 are presented. Analyzing restricted period 
as a benchmark for previous period is to eleminate concerns about autocorrelation because of excess 
volatility movements, and of obtaining more effective conditional variances at the begining WTI series and 
at the end of Henry Hub series in 2009. In following section, the different types of GARCH class models 
estimate test results for WTI crude oil and natural gas return series detailed for 02.01.2009-28.04.2014 and 
04.01.2010-28.04.2014 periods. 
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4.1 Empirical Results of the Models 
 

Table 3: 02.01.2009-28.04.2014 WTI Maximum Likelihood Analysis Results 

 

GARCH IGARCH GJRGARCH EGARCH FIAPARCH FIGARCH 

(GED) (GED) (GED) (GED) -BBM -BBM 

        (SST) (GED) 

ω 
0.128(0.08) 0.030(0.17) 0.093(0.10) 0.035(0.94)  0.000(1.00) 0.039 (0.44) 

[0.97] [0.22] [0.95] [1.04]              [0.67] [0.16] 

α 
0.725(0.00) 0.082(0.00) 0.094(0.00)  0.087(0.00) 

  ]0.51] [0.14] [0.55] [3.92] 

ß 
0.915(0.00) 

0.917(0.00) 
0.932(0.00) 0.999(0.00) 0.685 (0.00) 0.776 (0.00) 

]0.68] [0.68] [0.04] [0.13] [0.36] 

γ1   

-0.074(0.00)  0.020(0.24) -0.436(0.00) 
0 

[0.51] [0.34] [0.40] 

γ2    

0.323(0.00) 

  [2.67] 

δ 
    

1.841(0.00) 
2 

[0.00] 

φ1 
    

   0.546 (0.00)  0.606(0.00) 

[0.68] [0.24] 

φ2       

d     

0.308(0.00) 0.384(00) 

[0.07] [0.08] 

       

Log(L) 2619 3193 2616 2580 3217 3258 

AIC -4.194 -5.133 -4.203 -4.13 -5.162 -5.152 

Schwarz -5.148 -5.07 -4.154 -4.043 -5.084 -5.082 

ARCH 1.635(0.09) 1.073 (0.37) 1.155(0.11) 1.2419(0.28) 0.443(0.92) 0.573(0.80) 

Q 4.774(0.31) 36.973(0.60) 57.304 (0.08) 50.763(0.74) 36.956.(897) 35.736(0.66) 

Q2 6.779(0.07) 50.134(0.38) 5.572(0.13) 88.862(0.003) 40.589 (0.76) 29.261(0.98) 

Note: Calculation of α and  ß parameters  in FIAPARCH and FIGARCH is included by GARCH parameter according to Oxmetrics 

algorithms For detailed information: http://www.doornik.com/oxmetrics.html/help, (27.06.2014). Statistics in brackets represent 

Nyblom stability test results.  

 

 In model estimation, for GJRGARCH and EGARCH, α parameter is found 0.094 and 0.087 
respectively. In that case, in response to ut-1 (-) shock/innovation, the volatility will decline because of these 
positive parameters for both models. ß parameter was found close to one in GARCH, IGARCH, 
GJRGARCH, FIAPARCH. This indicates the presence of high volatility on the WTI return series. But at 
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the same time, we can conclude that these shocks/innovations will fade away in the long run. GJRGARCH 
and FIAPARCH ɣ1 asymmetry parameters were found different from zero in %95 confidence level, so we 
can conclude that this allows asymmetry existence depending on positive and negative news effect to 
increase on WTI return series volatility. In FIAPARCH model, because of δ > 1 in %95 confidence interval 
for WTI return series, we can say that shocks fade away hyperbolically and because of ɣ = -0.436 long run 
volatility stem from negative shocks/innovations. In FIAPARCH and FIGARCH models, d parameters 
were found between -0.5 and 0.5, so we can hold forth on that WTI series are covariance-stationary and 
represent a mean reversion attitude. 
 

Table 4: 02.01.2009-28.04.2014 Henry Hub Maximum Likelihood Analysis Results 

 

GARCH IGARCH GJRGARCH EGARCH FIAPARCH FIGARCH 

(GED) (GED) (SST) (SST) -BBM -BBM 

        (SST) (SST) 

ω 
0.155(0.09) 0.086(0.09) 0.115(0.12) 0.000 (1.000)  2.409(0.53) 0.114(0.31) 

[0.97] [0.22] [0.91] [0.91] [0.67] [0.84] 

α 
0.070(0.00) 0.083(0.00) 0.100(0.00)  -0.06 (0.43) 

  [0.58] [0.14] [0.56] [0.56] 

ß 
0.914(0.00) 

0.091(0.00) 
0.92(0.00) 0.999 (0.000) 0.917(0.00)  -0.198 (0.49) 

[0.74] [0.71] [0.71] [0.13] [0.36] 

γ1   

-0.769(0.00)  0.033(0.13) -0.516(0.09) 
0 

[0.57] [0.57] [0.40] 

γ2 
   

0.313 (0.00) 

  [0.11] 

δ     

1.206(0.00) 
2 

[0.68] 

φ1 
    

0.070(0.50) 0.119(0.55) 

[0.09] [0.24] 

φ2       

d 
    

0.917(0.00) 0.891(0.00) 

[0.07] [0.16] 

       

Log(L) 2609 2592 2599 2552 2632 1239 

AIC -4.192 -4.175 -4.182 -4.107 -4.216 -4.204 

Schwarz -4.071 -4.089 -4.068 -4.005 -4.134 -4.129 

ARCH 
1.719(0.07) 1.787(0.058) 1.213(0.29) 0.062 (0.05) 1.615(0.09) 1.263(0.24) 

-1 -1 -5 -5 -5 -5 

Q 
55.472(0.11) 25.315(0.00) 22.556(0.00 22.456 (0.00) 51.332(0.10) 49.580(0.14) 

-5 -5 (10)) -10 -10 -10 

Q2 
7.517(0.05) 8.269(0.00) 7.476(0.05) 88.105(0.00) 7.952(0.04) 13.425(0.09) 

-5 -5 -10 -5 -5 -10 
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Note: Calculation of α and  ß parameters  in FIAPARCH and FIGARCH is included by GARCH parameter according to Oxmetrics 

algorithms For detailed information: http://www.doornik.com/oxmetrics.html/help, (27.06.2014). Statistics in brackets represent 

Nyblom stability test results.  

 
In model estimation, for GJRGARCH and EGARCH, α parameter was found 0.10 and -0.06 

respectively. In that case, the volatility shock/innovation in response to ut-1 (-) declines because of this 
positive parameters in GJRGARCH model but return series volatility, depending on ɣ1 (0.033)  and ɣ2 

(0.032) in consideration of EGARCH model, increases in response to ut-1 (-) negative shock/innovation. ß 
parameter is close to one in GARCH, IGARCH, GJRGARCH, and FIAPARCH. This indicates the 
presence of high volatility on the Henry Hub return series. However, we can, at the same time, conclude 
that these shocks/innovations fade away in the long run. In GJRGARCH model, ɣ1 asymmetry parameter is 
different from zero in 95% confidence level, so we can conclude that this allows asymmetry existence 
depending on positive and negative news effects to increase Henry Hub return series volatility. Because of 
δ > 1 in 95% confidence interval for Henry Hub return series, shocks fade away hyperbolically and because 
of FIAPARC ɣ = -0.516, long run volatility stem from negative shocks/innovations. In FIAPARCH and 
FIGARCH models, d parameters are not between -0.5 and 0.5, so we can not hold forth on Henry Hub 
return  series that have a covariance-stationary and doesn’t represent a mean reversion movements. 
 
Table 5: 02.01.2009-28.04.2014 WTI GARCH Models Performance Analyses 

  MEAN SQUARED ERROR (MSE) MEAN ABSOLUTE ERROR (MAE) 

GARCH(GED) 0.0006185 0.007786 

IGARCH(GED) 0.0000722 0.000234 

GJRGARCH(GED) 0.0006204 0.007767 

EGARCH(GED) 0.0006237 0.007762 

FIAPARCH-BBM(SST) 0.0000773 0.000243 

FIGARCH-BBM(SST) 0.0000319 0.000143 

 

Table 6: 02.01.2009-28.04.2014 Henry Hub GARCH Models Performance Analyses 

  MEAN SQUARED ERROR(MSE) MEAN ABSOLUTE ERROR(MAE) 

GARCH(GED) 0.0006222 0.007757 

IGARCH(GED) 0.0006166 0.007012 

GJRGARCH(GED) 0.0006195 0.007774 

EGARCH(GED) 0.0006616 0.01285 

FIAPARCH-BBM(SST) 0.0006192 0.007791 

FIGARCH-BBM(SST) 0.0006165 0.007848 

 
 
Table 7: 04.01.2010-28.04.2014 WTI Maximum Likelihood Analysis Results 

 

GARCH IGARCH GJRGARCH EGARCH FIAPARCH-
CHUNG FIGARCH- 

(GED) (GED) (GED) (GED) (SST) CHUNG 

          (SST) 

ω 
0.123(0.39) 0.028(0.40) 0.084 (0.17) 0.040(0.81)  68.740(0.41) 5.05(0.07) 

[1.01] [0.259 [0.95] [1.04] [0.22] [0.37] 

α 
0.081(0.14) 0.078(0.12) 0.019(0.23) -0.120(0.24) 

  [0.54] [0.15] [0.55] [3.92] 
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ß 

0.9879(0.00) 

0.921(0.00) 

0.905(0.00) 0.999(0.00) 0.685(0.00) 0.802 (0.00) 

[0.71] [0.68] [0.04] [0.08] [0.28] 

γ1   

-0.092(0.02)  -0.091(0.00) 0.447(0.00) 
0 

[0.51] [0.34] [0.18] 

γ2 
   

0.497(0.00) 

  [2.67] 

δ 
    

1.360(0.00) 
2 

[0.27] 

φ1 
    

   0.596(0.00)  0.618(0.00) 

[0.18] [0.27] 

φ2 

d     

0.351(0.00) 0.427(0.01) 

[0.22] [0.41] 

Log(L) 2654 2652 2668 2593 2674 2667 

AIC -5.361 -5.357 -5.385 -5.239 -5.393 -5.382 

Schwarz -5.316 -5.318 -5.33 -5.199 -5.329 -5.328 

ARCH 1.895(0.15) (1) 
2.301(0.08) 

1.661(0.19)(1) 
0.550(0.57) 0.778(0.45) 0.494(0.78) 

-1 -1 -1 [1] 

Q 
0.332(0.84) 0.696(0.70) 0.644 (0.72) 1.767(0.88) 0.331(0.84) 35.736(0.66) 

-5 -5 -5 -5 -5 [5] 

Q2 
10.67(0.22) 12.414(0.13) 10.2932(0.24) 6.337(0.09) 3.912 (0.27) 4.386(0.22) 

-10 -10 -10 -5 -5 [5] 

Note: Calculation of α and  ß parameters  in FIAPARCH and FIGARCH is included by GARCH parameter according to Oxmetrics 

algorithms For detailed information: http://www.doornik.com/oxmetrics.html/help, (27.06.2014).  Statistics in brackets represent 

Nyblom stability test results.  

 
For the first period, in order to determine the most superior GARCH model, the study benefits from 

Loss Funcitions tests, and then, finds that FIGARCH-BBM (SST) model has superior performance for 
WTI return series volatility in consideration of MAE and MSE criterias. For modelling Henry Hub return 
series volatility IGARCH (GED) and FIGARCH-BBM (SST) are selected in consideration of MAE and 
MSE criteria, respectively. For WTI and Henry Hub return series, investors who hold in a long or short run 

positions in spot markets, can benefit from   formula with parameters obtained from 

FIGARCH-BBM(SST) models to determine the optimum hedge ratio in derivative markets. By the way, 
for policy implication, state agencies can rearrange their optimal energy consumption portfolio by 
replacing another major energy commodities by observing and modeling with FIGARCH-BBM (SST), 
IGARCH (GED) and FIGARCH-BBM (SST) conditional variances to minimize effects of volatile prices.  

 
Table 8: 04.01.2010-28.04.2014 Henry Hub Maximum Likelihood Analysis Results 

 GARCH IGARCH GJRGARCH EGARCH 
FIAPARCH-
BBM (SST) 

FIGARCH-
BBM 
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(GED) (GED) (GED) (SST) (SST) 

ω 
0.11(0.44) 0.02(0.42) 0.07(0.12) 0.004(0.97) 50.46(0.35) 4.81(0.07) 

[0.97] [0.22] [0.95] [1.04] [0.23] [0.3]) 

α 
0.07(0.11) 0.07(0.13) 0.01(0.31)  -0.12(0.24) 

  [0.51] [0.14] [0.55] [3.92] 

ß 
0.88(0.00) 

0.092(0.00) 
0.91(0.00) 0.999 (0.000) 0.75(0.00) 0.79(0.00) 

[0.68] [0.68] [0.04] [0.09] [0.28] 

γ1   
0.09(0.01)  -0.091(0.00) 0.43(0.00) 

0 
[0.51] [0.34] [0.18] 

γ2    

0.49 (0.00) 

  [2.67] 

δ 
    

1.42(0.00) 
2 

[0.28] 

φ1     

0.57(0.00) 0.61(0.00) 

[0.10] [0.26] 

φ2 

d     

0.36(0.00) 0.42(0.00) 

[0.21] [0.41] 

Log(L) 2652 2650 2660 2593 2673 2666 

AIC -5.363 -5.36 -5.377 -5.239 -5.396 -5.386 

ARCH 
2.003(0.13) 2.477(0.08) 2.208(0.11) 0.55(0.57) 0.827(0.43) 

0.779(0.45)(1) 
-1 -1 -1 -1 -1 

Q 
1.05(0.95) 1.812(0.87) 1.129(0.95) 1.767 (0.88) 1.023(0.96) 

1.632(0.89)(5) 
-5 -5 -5 -5 -5 

Q2 
10.84(0.21) 12.545(0.12) 11.34(0.18) 6.337(0.09) 4.135(0.24) 4.470(0.21) 

-10 -5 -10 -5 -5 -5 

Note: Calculation α and  ß parameters  in FIAPARCH and FIGARCH are contained by GARCH parameter according to    

Oxmetrics algorithms. For detailed informations: http://www.doornik.com/oxmetrics.html/help, (27.06.2014).Bracket  

statiststics represent Nyblom stabilty test results.  

In model estimation for GJRGARCH and EGARCH, α parameter is 0.019 and -0.120, respectively. In 
that case, the volatility of Henry Hub return series in response to ut-1 (-) shock/innovations decline because 
of this positive parameters in consideration GJRGARCH models and opposite effects for EGARCH model. 
ß parameter is close to one in GARCH, IGARCH, GJRGARCH, and FIAPARCH models. This indicates 
the presence of high volatility on the WTI return series as same as previous analysis. But at the same time, 
we can conclude that these shocks/innovations fade away in the long run. For GJRGARCH, EGARCH, and 
FIAPARCH, ɣ1 asymmetry parameter is different from zero in 95% confidence level, so we can state that 
this allows asymmetry effects depending on positive and negative news to increase on WTI series 
volatility. Because of δ > 1 in 95% confidence interval for WTI series, we can state that shocks fade away 
hyperbolically and because of ɣ = 0.447, long run volatility stems from positive shocks/innovations. In 
FIAPARCH and FIGARCH models, d parameters are between -0.5 and 0.5, so we can hold forth on WTI 
series that are covariance-stationary and represent a mean reversion movements. 
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Table 9: 04.01.2010-28.04.2014 WTI GARCH Models Performance Analysis 

  MEAN SQUARED ERROR(MSE) MEAN ABSOLUTE ERROR(MAE) 

GARCH(GED) 0.000059 0.000221 

IGARCH(GED) 0.000067 0.000227 

GJRGARCH(GED) 0.0000626 0.000226 

EGARCH(GED) 0.0000403 0.000175 

FIAPARCH-CHUNG(SST) 0.0000521 0.000205 

FIGARCH-BBM(SST) 0.0000483 0.000186 

 
Table10: 04.01.2010-28.04.2014 Henry Hub GARCH Models Performance Analysis 

  MEAN SQUARED ERROR(MSE) MEAN ABSOLUTE ERROR(MAE) 

GARCH(GED) 0.0000575 0.000775 

IGARCH(GED) 0.0000596 0.000212 

GJRGARCH(GED) 0.0000454 0.000191 

EGARCH(GED) 0.0000403 0.000175 

FIAPARCH-BBM(SST) 0.0000553 0.000211 

FIGARCH-BBM(SST) 0.0000432 0.000185 

 
In model estimation, for GJRGARCH and EGARCH, α parameter is between 0.01 and -0.12, 

respectively. In that case, the volatility in response to ut-1 (-) shock/innovation declines because of this 
positive parameters in GJRGARCH model, but in consideration of EGARCH model in the first period, 
return series volatility depending on ɣ1 (-0.091)  and ɣ2 (0.49) parameters decline in response to ut-1 (+) 
positive shock/innovation and then, in the second period increase. ß parameter is close to one in GARCH, 
IGARCH, GJRGARCH and FIAPARCH. This means the presence of high volatility on the Henry Hub 
return series. However, at the same time, we can similarly conclude that these shocks/innovations fade 
away in the long run. In GJRGARCH and FIAPARCH models, ɣ1 asymmetry parameter is different from 
zero in 95% confidence level, so this allows asymmetry effects depending on positive and negative news 
effects to increase Henry Hub return series volatility. Because of δ > 1 in 95% confidence interval for 
Henry Hub return series, shocks/innovations fade away hyperbolically and because of FIAPARCH ɣ = 
0.43, long run volatility stems from positive shocks/innovations. In FIAPARCH and FIGARCH models, d 
parameters are between -0.5 and 0.5, so Henry Hub return series have covariance-stationary and represent a 
mean reversion movement. 

 
For the second period, in order to determine the most superior GARCH model, again we use Loss 

Functions tests. We found that EGARCH (GED) model has superior performance for modelling WTI 
return series volatility in consideration of MAE and MSE criterion. For modelling Henry Hub return series 
volatility, EGARCH (GED) model is selected in consideration of MAE and MSE criterion. For WTI and 
Henry Hub return series, investors, who hold in long or short run positions in spot markets, can benefit 

from   formula with parameters obtained from FIGARCH-BBM(SST) model to determine 

the optimal hedge ratio in derivative market. Therefore, for policy implication, state agencies can rearrange 
their optimal energy consumption portfolios by replacing another major energy commodities by observing 
and modelling EGARCH (GED) conditional variances to minimize effects of volatile prices.  
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5. Conclusion 
 

This study determines conditional variance and “Minimum Variance Hedge Ratio” to obtain “Optimal 
Hedge Ratio (OHR)” by benefiting from the results of Loss Functions performance analysis (e.g. Mean 
Absolute Error (MAE) and Mean Squared Error (MSE)) of ARCH class models. In the existing literature, 
analysts use linear regression slope coefficient to get a constant hedge ratio in terms of time (Chang and Yu 
2013, 159-160). This study aims to determine optimal option and future contracts hedge amounts in 
derivative markets in response to one unit position in WTI crude oil and Henry Hub natural gas spot 

markets by taking into account square of   formula.  

 
For this purpose, the FIGARCH BBM (SST) parameters calculated from relatively more volatile period 

between 02.01.2009 and 28.04.2014 demonstrate that investors should take 0,71 unit hedge position (e.g. in 
option and future markets) in response to one unit WTI spot markets position. However, for the same 
period, the FIGARCH BBM (SST) and IGARCH (GED) parameters  demonstrate that investors should 
take 1,41 and 1,62 respectively unit hedge position (e.g. in option and future markets) in response to one 
unit Henry Hub spot market position. The EGARCH (GED) parameters calculated from relatively less 
volatile period between 04.01.2010 and 28.04.2014 demonstrate that investors should take 0,5 unit hedge 
position (e.g. in option and future markets) in response to one unit WTI spot market position. However, for 
the same period, the EGARCH (GED) parameters demonstrate that investors should take 0,17 unit hedge 
position (e.g. in option and future markets) in response to one unit Henry Hub spot market position. 
 

Empirical results support our case with that WTI crude oil and Henry Hub natural gas return series are 
highly volatile. After 0,146 period, shocks/innovations fade away in WTI return series, but unfortunately, 
this period does not produce any calculation for Henry Hub natural gas return series because of its negative 
short run memory (α) parameters. Besides, for both of commodities in sub-periods, because α+ß coefficient 
found smaller than one, we can conclude that the series do not have long-run memory. However, it is 
possible to mention that positive shocks/innovations are more effective on volatility of the series. Instead 
of exploding jumps features of the series, shocks/innovations fade away about hyperbolic speed that means 
both series have a mean reversion attitude. 

 
Consequently, as mentioned earlier, especially crude oil, natural gas and the most of commodities are 

traded as financial products in recent years. For this reason, decision makers such as politicians in state 
agencies and managers of private sectors must seriously consider highly volatile market trends, 
particularly, because they have features of main raw materials. Shocks/innovations originated from oil and 
natural gas markets must be considered to minimize risks, as well as they should consider their pairwise 
causality between macroeconomic indicators like economic growth, current account deficit and 
unemployment. Therefore, they must determine optimal hedge strategies and benefit from derivative 
products efficiently in line with the midterm program objectives. In addition, for this purpose, regulators 
can make policies which enable to improve financial deepening. This study can humbly be a pioneer for 
further or any related studies which can be built on to research for the causes of crude oil and natural gas 
volatility and pairwise causality between macroeconomic indicators following the collapse of prices from 
$110 to $46 since June of 2014. 

 
References 

Aloui C. & Mabrouk S. (2010). Value-At-Risk Estimations Of Energy Commodities Via Long-Memory, Asymmetry and Fat-Tailed 
GARCH Models. Energy Policy, Cilt: 38, Sayı:5, 2326-2339. 



491 Omur Saltik et al.  /  Procedia Economics and Finance   38  ( 2016 )  476 – 491 

Akar, C. (2007). Volatilite Modellerinin Öngörü Performansları: ARCH, GARCH, SWARCH Karşılaştırması. Dokuz Eylül 
Üniversity Journal of Business Faculty, Volume 8, İssue:2, 201-217. 

Andersen, T. G. & Bollerslev T. (1998). Intraday Periodicity And Volatility Persistence In Financial Markets. Journal of Empirical 
Finance 4, 115– 158. 

Apergis, N. & James E. P. (2010). Natural Gas Consumption And Economic Growth: A Panel İnvestigation Of 67 Countries. Applied 
Energy, Volume: 87, Issue: 8, 2759-2763. 

Atukeren, E. (2003). Oil Prices and the Swiss Economy. Swiss Institute for Business Cycle Research (KOF), 1-22. 
Balcılar, M. & Zeynel A. Ö.. (2013). The Causal Nexus Between Oil Prices And Equity Market İn The U.S.: A Regime Switching 

Model. Energy Economics 39, 271-282. 
Baillie, R.T., Bollerslev, T. & Mikkelsen, H.O.. (1996). Fractionally Integrated Generalized Autoregressive Conditional 

Heteroskedasticity. Journal of Econometrics 74, 3 –30. 
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity, Journal  of Econometrics 31, 307-327. 
Cheong, C. W. (2009). Modeling and Forecasting Crude Oil Markets Using ARCH-Type Model. Energy Policy 37, 2346-2355. 
Engle, Robert F. ve Tim Bollerslev. (1986). Modelling The Persistence Of Conditional Variances. Econometric Reviews 5, 1–50. 
Birol E., Şentürk M., Akbaş Y. E. & Bayat T. (2011). Uluslararası Ham Petrol Fiyatlarındaki Volatilitenin İşsizlik Göstergeleri 

Üzerindeki Etkisi: Türkiye Örneği Üzerine Ampirik Bulgular. Gaziantep Üniversity Journal of Social Sciences, Volume: 10, Issue 
2, 2011, 715-730. 

Ewing, B. T, Farooq M. & Özfidan O. (2002).  Volatility Transmission In The Oil and Natural Gas Markets. Energy Economics 24, 
525-538. 

Glosten, L., Jagannathan R. & Runkle D. E.. (1993). On The Relation Between The Expected Value And The Volatility Of The 
Nominal Excess Return On Stocks. Journal of  Finance 48, 1779 – 1801. 

Henriques, I. &  Sadorsky P. ( 2011). The Effect Of Oil Price Volatility On Strategic Investment. Energy Economics 33, 79-87. 
Lee T.-H. (2015). Loss Functions in Time Series Forecasting. Accessed 15 August. 

http://www.faculty.ucr.edu/~taelee/paper/lossfunctions.pdf. 
Xiaodong L. & Shan X. (2013). Modelling Natural Gas Market Volatility Using GARCH With Different Distributions. Physica A, 1-

49. 
Mohammadi H. & Lixian S. (2010). International Evidence On Crude Oil Price Dynamics Applications of ARIMA-GARCH Models. 

Energy Economics 32, 1001-1008. 
Narayan P. K. &  Narayan  S. (2007). Modelling Oil Price Volatility. Energy Policy 35, 6549-6553. 
Nelson, D. (1991).  Conditional  Heteroskedasticity  In  Asset  Returns:  A  New Approach. Econometrica 59, 347-370.  
Theodore P.and Rutledge E.. (2007). Oil And Gas Markets In The UK: Evidence From A Cointegrating Approach. Energy Economics 

29(2), 329-347. 
Qianqian L. & Yang S. (2009). The Relationship Between Implied And Realized Volatility:Evidence From The Australian Stock 

Index Option Market. Rev Quant Finan Acc 32, 405–419 
Bénassy Q. A.  ,Mignon V. & Penot A. (2005). China and The Relationship Between the Oil Price and the Dollar. Centre D’etudes 

Prospetıves Et D’ınformatıons Internatıonales (CEPPII) Working Paper No:16, 1-31. 
Regnier, E. ( 2007). Oil And Energy Price Volatility. Energy Economics 29, 405 – 427. 
Sarı, R., Shawkat H. & Soytaş U. (2010). Dynamics Of Oil Price, Precious Metal Prices, And Exchange Rate. Energy Economics 32, 

351-362. 
Serletis, A. & Herbert J. (1999). The Message In North American Energy Prices. Energy Econ. 21, 471-483. 
Tse, Y.K. (1998). The Conditional Heteroscedasticity Of The Yen– Dollar Exchange Rate. Journal of Applied Econometrics 13, 49 – 

55. 
Ural, M.( 2010). Yatırım Fonlarının  Performans ve Risk Analizi (1st ed.). Ankara: Detay Yayıncılık. 
Ural, M. ,  Adakale T. (2009). Beklenen Kayıp Yöntemi İle Riske Maruz Değer Analizi .Mediterranean Journal of Faculty of 

Economics and Administrative Science,  17, 23-39. 
Wei, Yu,  Wang Y. &  Huang D. (2010). Forecasting Crude Oil Market Volatility: Further Evidence Using GARCH-Class Models. 

Energy Economics 32(6), 477 -1484.  


