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OBJECTIVES This study was performed to determine whether angiotensin type 1 (AT1) receptor inhibition
improves abnormal coronary vasomotion and endothelial dysfunction in patients with
atherosclerosis or its risk factors.

BACKGROUND Endothelial dysfunction, an early feature of atherosclerosis, contributes to abnormal vasomo-
tion during stress. Angiotensin II may contribute to endothelial dysfunction in atheroscle-
rosis.

METHODS In 25 patients, mean age 59 6 2 years, with atherosclerosis or its risk factors, we measured
coronary vasomotion during flow-mediated dilation (FMD) in response to adenosine, cold
pressor test (CPT) and exercise before and after AT1 receptor blockade with intracoronary
losartan (5 mg).

RESULTS Losartan did not alter resting coronary vascular tone, but epicardial FMD improved from
5.6 6 1.5% to 8.9 6 1.8% (p 5 0.02). Abnormal epicardial vasomotion during CPT and
exercise also improved with losartan from 21.7 6 0.8% to 1.5 6 0.1% (p 5 0.02) and 20.6 6
0.9% to 3.4 6 1.2% (p 5 0.009), respectively. Improvement in epicardial vasomotion was
most prominent in segments with baseline endothelial dysfunction evidenced as constriction
during stress. Microvascular dilation during adenosine, an endothelium-independent re-
sponse, was unchanged with losartan.

CONCLUSIONS Inhibition of the coronary vascular AT1 receptors in patients with atherosclerosis improves
epicardial vasomotion during stress, probably by improving endothelial dysfunction. Whether
AT1 receptor blockade will provide long-term therapeutic benefits in atherosclerosis needs
further investigation. (J Am Coll Cardiol 2001;38:1089–95) © 2001 by the American
College of Cardiology

Physical and mental stress dilate human coronary epicardial
arteries and microvessels in normal individuals, and the
resulting augmentation in blood flow serves to meet the
increased myocardial oxygen requirements (1–4). The vas-
cular endothelium is pivotal in regulating this vasomotion
by the release of a variety of relaxing and constricting factors
(5–7). One important endothelium-derived relaxing factor
is nitric oxide (NO) or an adduct of NO that contributes
almost entirely to epicardial, and to a lesser extent, micro-
vascular dilation during metabolic stress (8,9). Atheroscle-
rosis and its risk factors are associated with depressed
microvascular dilator responses and paradoxical constriction
of epicardial arteries with exercise, which may contribute to
the pathogenesis of myocardial ischemia in these patients
(1,2,4,10). Endothelial cell dysfunction associated with
reduced NO activity is believed to be the major underlying
cause for this abnormal vasomotion, and, thus, interventions
that ameliorate endothelial dysfunction and increase NO
bioavailability are likely to improve coronary vasomotion
and reduce myocardial ischemia in patients with coronary
atherosclerosis.

While the precise cellular and molecular mechanisms for

endothelial injury are still not clear, a large body of evidence
suggests that alterations in the cytoplasmic redox state is a
major contributory factor. In disease states, increased gen-
eration of reactive oxygen species, such as the superoxide
anion and a relative deficiency of cellular antioxidant de-
fense mechanisms, lead to an increase in oxidant stress.
High concentration of superoxide anion contributes to
atherogenesis by inactivating NO and increasing the activity
of the transcription factor nuclear factor kappa B (11).
Recent experimental studies have confirmed that angioten-
sin II (AII), the effector peptide of the renin-angiotensin
system, can promote endothelial dysfunction by increasing
superoxide anion generation (12,13), an effect that is medi-
ated through angiotensin type 1 (AT1) receptors (14). It is
also known that hypercholesterolemia and atherosclerosis
lead to marked upregulation of angiotensin-converting en-
zyme activity (ACE) in epicardial vessels that results in
increased local generation of AII (15). We recently demon-
strated that AT1 receptor blockade selectively improved
peripheral vascular endothelial dysfunction, measured as the
response to the pharmacologic probe acetylcholine in pa-
tients with atherosclerosis.

In this study, we hypothesized that AII also contributes
to coronary endothelial injury in human atherosclerosis and
that inhibition of the AT1 receptor, by reversing endothelial
dysfunction, will lead to improved coronary vasomotor
function during physiologic stress.
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METHODS

Patients. We studied 25 consecutive patients with either
coronary atherosclerosis or those with angiographically nor-
mal coronary arteries and risk factors for atherosclerosis
undergoing diagnostic cardiac catheterization for investiga-
tion of chest pain or abnormal noninvasive tests. Risk
factors were defined as the presence of hypertension (blood
pressure .140/90 mm Hg), hypercholesterolemia (low-
density lipoprotein .160 mg/dl), diabetes, current smoking
or smoking in the previous year (Table 1). Patients with a
myocardial infarction in the previous month, valvular heart
disease or those treated with an ACE inhibitor or AT1
receptor antagonist in the previous two weeks were ex-
cluded. Cardiac medications were withdrawn for at least
48 h and aspirin a week before the study. The study was
approved by the Institutional Review Board of the National
Heart, Lung and Blood Institute, and informed written
consent was obtained from all patients.
Protocol. After completion of diagnostic coronary arte-
riography, a 6F guide catheter was introduced into the
coronary artery, and blood flow velocity was measured using
a 0.014 in. wire equipped with a Doppler crystal at its tip
(Cardiometrics Flowire, Cardiometrics, Inc., Mountain
View, California) (16). Adenosine was infused directly into
the midsegment of the study vessel using an infusion
catheter that was advanced over the Doppler wire. Losartan
was given via the same infusion catheter after it was
withdrawn proximal to the coronary segment being evalu-

ated for flow-mediated dilation (FMD). Infusion rates
ranged between 1 ml/min to 2 ml/min.

After a 5-min infusion of dextrose 5% at 1 ml/min,
baseline coronary blood flow velocity was measured and
coronary angiography performed. This was repeated after
each intervention. In 18 patients, adenosine was infused
into the midvessel at 2.2 mg/min for 2 min to stimulate
maximal increase in coronary blood flow in order to assess
FMD in the proximal segment of the vessel (17). Fourteen
patients were subjected to the cold pressor test (CPT) by
immersing one hand in ice water for 90 s to 120 s. Eight
patients performed arm exercise in the supine position using
an ergometer (KHL Inc., 8450A ergometer, Kirkland,
California). The workload was set at 10 W and increased
every 2 min by 10 W to a symptom-limited maximum level.
Thus, 15 of the 25 patients studied had two interventions.

After a 15-min recovery period, losartan (Merck, West-
point, Pennsylvania), an AT1 receptor antagonist, was
infused at 250 mg/min for 20 min. This dose was chosen to
produce AT1 receptor blockade similar to that achieved by
50 mg of orally administered losartan and was shown to
inhibit peripheral vasoconstriction with AII (18,19). Sub-
sequently, adenosine infusion, CPT and exercise were re-
peated in each respective group as previously described.
Measurement of coronary blood flow and diameter.
Coronary blood flow was derived from the coronary blood
flow velocity and diameter measurements using the formula
(P 3 average peak velocity 3 0.125 3 diameter2) (1).
Coronary vascular resistance was calculated as mean arterial
pressure 4 coronary blood flow. For calculating flow,
coronary artery diameter was measured in a 0.25-cm to
0.5-cm segment of vessel beginning 0.25 cm beyond the tip
of the flow wire. Coronary angiograms were recorded using
a cineangiographic system (Toshiba, Inc., Japan), and quan-
titative angiography was performed with the ARTREK
software (Quantim 2001, Statview, ImageComm Systems,
Inc., Mountain View, California) by an investigator blinded
to the sequence of the interventions.

In addition to the measurement of the diameter at the
level of the Doppler flow wire, 0.25 cm to 0.5 cm segments
of midregions and distal regions of the epicardial coronary
arteries were also measured by quantitative coronary angiog-
raphy in patients who performed the CPT and exercise.
Reproducibility. The reproducibility of the coronary vas-
cular responses to adenosine and CPT were evaluated in six
patients over a period of 1 h. Percent change in coronary
vascular resistance (275 6 4% and 276 6 3%, p 5 0.9) and
FMD (6.2 6 1% and 6.3 6 1%, p 5 0.7) were similar
during the two infusions of adenosine. Also, the percent
change in coronary vascular resistance (26.3 6 6.9% and
212.7 6 5.8%, p 5 0.6) and diameter (21.5 6 0.9% and
22.0 6 0.7%, p 5 0.7) in response to CPT were repro-
ducible.
Statistical analysis. Data are expressed as mean 6 SEM.
Differences between means were compared by paired or
unpaired Student t test, as appropriate. All p values are

Abbreviations and Acronyms
ACE 5 angiotensin-converting enzyme

activity
AT1 5 angiotensin type 1
AII 5 angiotensin II
CPT 5 cold pressor test
FMD 5 flow-mediated dilation
NADH/NADPH 5 nicotinamide adenine

dehydrogenase/nicotinamide
adenine phosphate dehydrogenase

NO 5 nitric oxide

Table 1. Patient Characteristics

Variables

Study

FMD CPT Exercise

Number 18 14 8
Men 9 6 4
Age, yr 58 6 2 60 6 3 57 6 1
LDL, mg/dL 146 6 12 148 6 12 129 6 11
HDL, mg/dL 45 6 3 48 6 4 45 6 6
Hypertension, n (%) 13 (72) 10 (71) 4 (50)
Diabetes, n (%) 4 (22) 0 (0) 5 (63)
Atherosclerosis, n (%) 10 (56) 6 (43) 7 (88)
Plasma ACE, U/l 11.0 6 1 10.9 6 1.6 9.7 6 1.7

ACE 5 angiotensin-converting enzyme level; CPT 5 cold pressor test; FMD 5
flow-mediated dilation; HDL 5 high-density lipoprotein; LDL 5 low-density
lipoprotein.
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two-tailed, and a p value ,0.05 was considered to be
statistically significant. Multiple comparison adjustment
was performed using Holm’s method to keep the experi-
mental a at 0.05. Univariate correlations were performed
using the Pearson’s correlation coefficient. Two-way re-
peated measures analysis of variance was performed that
included patients, study medication (group: baseline vs.
losartan) and stress modality (stage: baseline vs. stress [CPT
or exercise and FMD]) as main effects and incorporated the
two-factor interactions between them.

RESULTS

Coronary vascular response to losartan. After 10 min of
intracoronary losartan infusion, there was no change in
coronary epicardial diameter (1.73 mm 6 0.06 mm vs.
1.71 mm 6 0.07 mm, p 5 0.2), blood flow (36.7 6
4.8 ml/min vs. 37.4 6 5.2 ml/min, p 5 0.9) or vascular
resistance (4.7 6 0.5 mm Hg 3 cm21 3 s vs. 4.6 6
0.5 mm Hg 3 cm21 3 s, p 5 0.2). Heart rate (77 6 2
beats/min to 76 6 2 beats/min, p 5 0.2) and mean arterial
pressure (115 6 3 mm Hg to 113 6 3 mm Hg, p 5 0.3) also
remained unchanged.
Effect of losartan on FMD. Flow-mediated dilation was
determined in the proximal segment of the study vessel that
was exposed to increased blood flow and shear forces but not
to the adenosine that was infused distally. During the
control infusion of adenosine, mean epicardial FMD was
5.6 6 1.5% (p , 0.001). After losartan, this was signifi-
cantly enhanced to 8.9 6 1.8%, p , 0.001 (p 5 0.02
compared with before losartan, Fig. 1). There was no
difference in the increase in coronary blood flow in response
to adenosine (310 6 25% to 310 6 28%, p 5 0.4 before vs.
after losartan).
Effect of losartan on coronary vasomotor responses to
CPT. Cold pressor test significantly increased heart rate
and blood pressure, but there was no difference in the
systemic hemodynamic response to CPT with losartan
(Table 2), nor was there a difference in the change in
microvascular tone with CPT after losartan. Coronary blood
flow increased by 17 6 6% before compared with 18 6 5%
after losartan, p 5 0.5 (Table 2). Epicardial coronary artery
diameter tended to decrease with CPT before losartan (by
21.7 6 0.8%). After losartan, CPT resulted in epicardial
coronary dilation (by 1.5 6 1.1%, p 5 0.02 compared with
before losartan, Fig. 2).
Effect of losartan on coronary vasomotor responses to
exercise. Exercise significantly increased heart rate, blood
pressure and coronary blood flow. These changes were
similar after losartan (Table 2). Peak workload during arm
exercise was 39 6 7 W and mean duration was 5.6 6
0.4 min during the control study, and each patient exercised
to the same workload and duration after treatment with
losartan. Coronary microvascular vasodilation was similar
before and after losartan; blood flow increased by 102 6
37% and 87 6 15% (p 5 0.6) before compared with after

losartan. Before losartan, exercise did not alter mean epi-
cardial coronary artery diameter (20.6 6 0.9%, p 5 0.2,
compared with rest). However, after losartan there was
significant epicardial coronary artery dilation with exercise
(3.4 6 1.2%, p 5 0.02 compared with rest, p 5 0.016
compared with before losartan, Fig. 3).

There was a negative correlation between the diameter
changes in response to either exercise or CPT and the
magnitude of improvement with losartan (r 5 20.38, p 5
0.013). Thus, improvement with losartan was only observed
in segments that constricted (endothelial dysfunction) with
either exercise or CPT (from 23.8 6 1% constriction to
11.1% dilation, p , 0.001, n 5 30). In contrast, segments
that initially dilated with stress (normal endothelial func-
tion), dilated to the same degree after losartan (3.1 6 0.4%
before to 4.1 6 2% after losartan, p 5 0.9, n 5 14).
Two-way repeated measures analysis of variance suggested
that the interactions between group 3 stage were significant
for both stress modalities (CPT/exercise and FMD, p 5
0.003 and p 5 0.008, respectively), indicating that the p
values for the main event (group or stage) are not interpret-
able. Therefore, separate pairwise t test comparisons were

Figure 1. Percent change in epicardial diameter (flow-mediated dilation)
(top) and coronary vascular resistance (bottom) during adenosine, before
(control) and after losartan.
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made for each intervention, and each comparison was
significant after adjusting for multiple comparisons (n 5 3)
using Holm’s method.

DISCUSSION

Increasing evidence suggests that the renin-angiotensin
system is implicated in the pathogenesis of atherosclerosis,
although the precise mechanisms remain controversial. The
major findings of this study are that acute AT1 receptor
blockade with losartan can improve endothelium-dependent
and physiologic epicardial coronary vasomotion in patients
with atherosclerosis or its risk factors, as indicated by
augmentation of FMD and the reversal of abnormal epicar-
dial vasomotion during CPT and exercise.
AT1 receptor blockade and basal coronary vascular tone.
The dose of losartan used in our study appears to be
sufficient to block AT1 receptors in humans, and the
blockade persists for at least 60 min, the period during
which we investigated the effects of losartan on various
maneuvers (18–20). Acute AT1 receptor blockade with
intracoronary losartan did not alter conductance or resis-
tance vessel tone, suggesting that endogenous AII is not a
determinant of resting tone in atherosclerotic coronary
vessels in vivo. This observation is consistent with previous
studies in young healthy volunteers in whom acute AT1
receptor blockade did not alter basal tone in the forearm
microcirculation (18,20). Alternatively, the reduced AII-
mediated constriction during AT1 receptor blockade may
be offset by simultaneous alteration in activity of other
endogenous vasoactive substances that autoregulate resting
coronary vasomotor tone.
AT1 receptor blockade and endothelial dysfunction.
Flow-mediated dilation is an important endothelium-
dependent mechanism that modulates coronary epicardial
tone in response to increased shear stress (21). Conductance
vessel FMD is abolished by damaging the endothelium or
by inhibiting NO synthesis (1,22). Flow-mediated dilation
is impaired in the atherosclerotic human coronary arteries in
vivo (17), and its magnitude reflects NO release in response

to increased shear stress. In this study, losartan improved
epicardial coronary FMD, suggesting that it augmented the
endothelium-dependent release of NO. The maximal blood
flow increase in response to adenosine was similar, indicat-
ing that the stimulus for FMD was comparable before and
after losartan and that endothelium-independent microvas-
cular dilation was unchanged with losartan. This result
illustrates that the improvement in brachial artery FMD
after oral losartan therapy observed in our recent study,
which was also accompanied by an increase in serum
nitrogen oxide levels, also occurs in the coronary circulation
(19).
AT1 receptor blockade and physiologic epicardial coro-
nary vasomotion. Microvascular and epicardial coronary
vasodilation during stress, which, under maximal stimula-
tion is able to increase coronary blood flow by up to fivefold,
is designed to meet myocardial oxygen demands. In athero-
sclerosis, stresses such as pacing, exercise, mental stress or
CPT result in paradoxical coronary constriction or impaired
vasodilation, as observed in this study (1–4). We have
shown that this is secondary to endothelial cell injury and
occurs because sympathetically mediated alpha-adrenergic
receptor activation and myogenic constriction cannot be
opposed by increased release of endothelium-derived relax-
ing factors (1).

We now demonstrate that epicardial coronary vasomo-
tion during exercise or CPT in patients with atherosclerosis
or its risk factors can be improved by acutely inhibiting AT1
receptors. Improvement in epicardial reactivity occurred
without alteration in coronary blood flow and, hence, shear
stress between the two tests before and after losartan.
Furthermore, improvement with losartan was most marked
in segments with the greatest constriction in response to
physical stress, suggesting that improvement preferentially
occurred in patients with the worst endothelial dysfunction
(23,24). Although the latter observation raises the possibil-
ity of regression to the mean as an explanation, several
potential mechanisms may contribute to this finding.

Table 2. Response to CPT and Exercise

Variables

Before Losartan After Losartan p Value Before vs.
After Losartan
During StressBaseline Stress Baseline Stress

CPT
Heart rate (beats/min) 77 6 4 87 6 4† 76 6 3 83 6 4† 0.2
Mean arterial pressure (mm Hg) 113 6 4 140 6 4† 112 6 5 138 6 4† 0.4
Coronary blood flow (ml) 39 6 7 46 6 10 37 6 8 44 6 10* 0.5
Coronary vascular resistance

(mm Hgzml21zmin)
4.0 6 0.6 4.2 6 0.6 4.4 6 0.6 4.7 6 0.7 0.2

Exercise
Heart rate (beats/min) 80 6 4 112 6 5† 77 6 5 113 6 4† 0.8
Mean arterial pressure (mm Hg) 112 6 4 145 6 5† 112 6 5 146 6 4† 0.5
Coronary blood flow (ml) 31 6 5 63 6 14* 32 6 4 58 6 8† 0.4
Coronary vascular resistance

(mm Hgzml21zmin)
4.3 6 0.8 3.3 6 0.9* 4.2 6 0.8 3.1 6 0.6† 0.4

*p , 0.05; †p , 0.01 compared with baseline.
CPT 5 cold pressor test.
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Potential mechanisms underlying the improvement in
endothelial function by AT1 receptor antagonism. Ex-
perimental evidence supports the presence of increased
ACE and AII levels in atherosclerotic lesions (25). Angio-
tensin II is a powerful stimulus for nicotinamide adenine
dehydrogenase/nicotinamide adenine phosphate dehydro-
genase (NADH/NADPH) oxidase-dependent vascular su-
peroxide anion generation that inactivates endothelial NO
(12,13,15), a mechanism that also appears to be instrumen-
tal in precipitating endothelial dysfunction in hypercholes-
terolemia, atherosclerosis, hypertension and diabetes. Infu-
sion of AII in rats increases vascular superoxide anion
production and NADH/NADPH oxidase activity, and the
consequent impairment of endothelium-dependent relax-
ation is restored to normal by treatment with losartan.
Indeed, losartan lowers the production of superoxide to
below normal levels, suggesting that endogenous AII may
modulate basal superoxide anion production (13). Thus,
AT1 receptor antagonism may reverse endothelial dysfunc-
tion by improving NO bioavailability.

An alternate proposed mechanism of action of AT1
receptor antagonists is via the release of NO by angiotensins

I, II, III, IV and angiotensin peptide (1–7). The effect of
angiotensin fragments can be inhibited by NO synthase
inhibition, bradykinin B2 receptor blockade and protease
inhibitors (26,27). Thus, angiotensin peptides promote NO
activity by activating local kinin production, an effect that is
mediated, at least partly, through AT2 receptor stimulation
(28,29). Therefore, during acute AT1 receptor blockade,
greater local AII may be available to stimulate AT2 recep-
tors, an effect that may be mediated via the bradykinin B2
receptor and involves enhancement of both prostaglandins
and NO (28,29).

Angiotensin II, via stimulation of the AT1 receptor, also
releases potent vasoconstrictors including endothelin and
the prostanoid PGH2 and augments sympathetic constrictor
tone, and inhibition of these effects by losartan may also be
responsible for the improved vasodilator function observed
(30).

Thus, AT1 receptor antagonism may improve coronary
vasomotion by several mechanisms including improvement
of NO bioavailability. This study supports this concept by
demonstrating losartan-mediated improvement in FMD,
considered to be primarily dependent on NO release (1,22).

Figure 2. Percent change in epicardial diameter (top) and coronary
vascular resistance (bottom) during cold pressor testing, before (control)
and after losartan.

Figure 3. Percent change in epicardial diameter (top) and coronary
vascular resistance (bottom) during exercise, before (control) and after
losartan.
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The study was not specifically designed to evaluate whether
an increase in NO activity is responsible for the beneficial
effect of losartan on epicardial vasomotion with CPT and
exercise. However, we have previously observed that losar-
tan improves endothelium-dependent acetylcholine re-
sponses in the femoral microcirculation, and oral therapy
increases NO activity in humans (19). Other mechanisms
that may contribute to the observed improvement are
inhibition of sympathetic nervous system activation during
stress with AT1 receptor blockade, an effect that has also
been observed with ACE inhibitors and is consistent with
the synergy between AII and the sympathetic nervous
system (31,32).

It is unlikely that the observed improvement in coronary
vasomotion with losartan was due to endothelium-
independent effects of losartan. First, there was no baseline
alteration of tone with losartan, and, secondly, microvascu-
lar dilation with adenosine, which is almost entirely due to
endothelium-independent actions, was unaltered by losartan
in this study, and, finally, we had previously noted a lack of
effect in femoral microvascular dilation with sodium nitro-
prusside or of brachial dilation with nitroglycerin after
losartan (19).
Comparison with ACE inhibitors. Previous studies have
demonstrated that ACE inhibition reverses endothelial
dysfunction in atherosclerosis (33,34) and improve FMD
(32). As observed in this study, improvement in epicardial
coronary vasomotion during stress with ACE inhibition was
only evident in segments with endothelial dysfunction
measured as the constrictor response to stress (31,32). This
effect is, at least partly, due to increased bioavailability of
bradykinin and can be inhibited by NO synthase blockade
(35). This study offers circumstantial evidence that preven-
tion of AII synthesis by ACE inhibitors may also contribute
to their beneficial vascular effects. Further experiments
evaluating whether ACE inhibition reverses endothelial
dysfunction during concomitant AT1 and AT2 receptor
inhibition will provide definitive data. Whether ACE inhi-
bition, particularly with tissue-avid compounds, will be
superior to AII receptor antagonists in the coronary circu-
lation needs further study (31,34).
AT1 receptor blockade and microvascular coronary dila-
tion during stress. Exercise and CPT reduced coronary
vascular resistance, but this was not altered by losartan.
Thus, unlike epicardial vasomotion, microvascular dilation
is not potentiated by AT1 receptor inhibition in patients
with atherosclerosis or its risk factors. That coronary mi-
crovascular dilation during stress is, at least partly, depen-
dent on endothelium-derived NO activity has been demon-
strated by us previously. L-NG monomethyl arginine, an
inhibitor of NO synthesis, partly inhibited pacing-induced
increase in coronary blood flow in patients with normal
endothelial function, but this contribution was reduced in
those with endothelial dysfunction (1). In contrast with its
relatively modest effects on the microvessels, NO synthase

inhibition completely inhibited pacing-mediated epicardial
coronary dilation, indicating that conductance vessel dila-
tion is almost entirely, and microvascular dilation is only to
a small extent, dependent on endothelial NO (1,36). Cor-
onary microvascular dilation during exercise, in addition to
NO, is also mediated by release of local metabolites includ-
ing adenosine, prostaglandins, carbon dioxide, hypoxia,
circulating catecholamines and withdrawal of sympathetic
tone (36). Additionally, these multiple mechanisms may
compensate for any deficiency in NO activity in patients
with endothelial dysfunction because of the known autoreg-
ulatory capacity of the coronary microcirculation (36–38).
Deficiency in the contribution of NO to microvascular
dilation may, therefore, only become evident during peak
stress. In our study, neither exercise nor CPT produced
maximal stress on the coronary microcirculation. Although
this observed discrepancy between the epicardial and mi-
crovascular circulations may explain why AT1 antagonists
do not appear to be effective antianginal agents, in the
majority of cases myocardial ischemia is a consequence of
one or more flow-limiting stenoses in the epicardial circu-
lation. However, clinical studies specifically addressing this
issue have not been performed.
Study limitations. We did not study vessels with .50%
stenosis and, thus, cannot conclude whether AT1 receptor
blockade would also improve function in vessels with more
severe atherosclerosis. Due to the limited number and
heterogeneous nature of patients studied, we are unable to
investigate whether the beneficial effects of AT1 receptor
antagonists is more likely to occur in patients with one or
another of the specific risk factors for atherosclerosis.
Additionally, since our study examines the effect of acute
AT1 receptor blockade, we cannot comment on whether
similar results would be achieved with chronic losartan
therapy. However, we have recently demonstrated improve-
ment in physiologic vasomotion in the brachial artery with
long-term losartan therapy, suggesting that vascular endo-
thelial dysfunction can be improved by both acute and
chronic AT1 receptor antagonism (19). These issues need to
be clarified by further appropriately designed studies.
Conclusion and implications. Angiotensin type 1 receptor
antagonism improves physiologic coronary vasomotion and
endothelial dysfunction in patients with atherosclerosis and
its risk factors. In experimental models of atherosclerosis,
AT1 receptor blockade appears to have a protective effect
(39). Potential mechanisms for these vasculoprotective ef-
fects include the prevention of endothelial injury (40–42),
augmentation of NO activity (40), inhibition of lipid per-
oxidation (39) and an antiproliferative effect (43). These
findings, together with our observations that losartan im-
proves coronary and peripheral endothelial function, pro-
vides impetus for studying the antiatherogenic potential of
AT1 receptor antagonism in patients with atherosclerosis
(19).
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