NORTH-HOLLAND

On the Structure of Commutative Matrices. II

Tomaž Košir*
Department of Mathematics, Statistics, and Computing Science
Dalhousie University
Halifax, Nova Scotia, Canada

Submitted by Thomas J. Laffey

Abstract

A finite set \mathbf{A} of $N \times N$ nilpotent commutative matrices that have one-dimensional joint kernel is considered. The theorem (due to Suprunenko and Tyshkevich) that the algebra \mathscr{A} generated by \mathbf{A} and the identity matrix has dimension equal to N is proved. A canonical basis for \mathscr{A} is given, and related structure constants are discussed. (©) Elsevier Science Inc., 1997

0. INTRODUCTION

In this article we continue to study the structure of commutative matrices that we began in [11]. Now, our main results are extensions of results of Kravchuk, Suprunenko, and Tyshkevich (see [18, §§2.6-7]). Our motivation comes from multiparameter spectral theory [1]. Similarly to the way results of [11, Section 2] are used to construct bases for root subspaces of nonderogatory eigenvalues in [12], the results of this paper are used to find the corresponding bases for simple eigenvalues (see [10]). We will present this application to multiparameter spectral theory separately.

In [11] we considered an n-tuple $\mathbf{A}=\left\{A_{i}, i=1,2, \ldots, n\right\}$ of commutative nilpotent $N \times N$ matrices over the complex numbers. Now we also

[^0]consider the algebra \mathscr{A} generated by \mathbf{A} and the identity matrix. For the most part we make a further assumption that \mathbf{A} is simple, i.e., that the joint kernel of matrices in \mathbf{A} is one-dimensional. Then we show that the algebra \mathscr{A} has (vector-space) dimension equal to N. This result is found in [18, p. 62, Theorem 13]. We also describe a canonical basis \mathscr{T} for the algebra \mathscr{A}. When $n=2$ the basis \mathscr{T} coincides (possibly after a change of basis for \mathbb{C}^{N}) with bases given in [2, 13, 20].

In [11] we viewed \mathbf{A} also as a cubic array. The matrices in an array were brought by a simultaneous similarity to a special block upper triangular form called the reduced form. The reduced form has two important properties: the column cross sections of the blocks on the first upper diagonal are linearly independent, and the products of row and column cross sections are symmetric. (See Proposition 1 and Corollary 1 of [11].) The main result of [11] tells us how to reconstruct a commutative array from two sets of matrices, one of which is a set of symmetric matrices. Now we show, that when \mathbf{A} is simple, the symmetric matrices are determined by the canonical basis and their entries are precisely the structure constants for multiplication in \mathscr{A}.

We proceed with a brief overview of the setup of the paper. In the next section we recall notation from [11], and in Section 2 we discuss some further properties of the general commutative array \mathbf{A}. We also obtain an upper bound for the dimension of the algebra \mathscr{A} in terms of N and the dimension of the joint kernel of matrices in \mathbf{A}. In the remaining Section 3-5 we study the simple case. In Section 3 we show that the dimension of \mathscr{A} is equal to N. Next, in Section 4, we introduce a canonical basis for the algebra \mathscr{A} and the associated set of structure constants. We show that a simple array \mathbf{A} is determined by the structure constants and a set of coefficients that depend only on the joint kernel of A_{i}. This is a minimal set required to describe \mathbf{A}. In Section 5 we illustrate the discussion with two examples, and we consider the relation of our results with [2, 13, 20].

We conclude the introduction with some remarks on related literature. Finite sets of commutative matrices, algebras they generate, and their reduced forms under simultaneous similarity were studied, among others, by Trump [19] and Rutherford [17]. (See [14] for earlier references.) It was show by Gel'fand and Ponomarev [5] that to find a canonical form for general n-tuples of commuting matrices is as hard as to find a canonical form for an arbitrary n-tuple of matrices. In Section 4 we briefly touch on this problem in the case when \mathbf{A} is simple. While elementary properties of (nilpotent) commutative matrices are usually exhibited in monographs on linear algebra (e.g. [4, 6, 15]) our main reference is the book by Suprunenko and Tyshkevich [18].

It was pointed out by the referee that the results of Corollary 1 and Theorem 2 are related to the problem of finding good bounds for the
dimension of the algebra \mathscr{A}. A satisfactory solution to the problem has not yet been found. Most authors have attempted to get a bound as a function of n and N. For instance, there are now several proofs (e.g. [2, 13, 20]) that if $n \leq 2$ the dimension of \mathscr{A} is at most N and that, if the algebra \mathscr{A} is maximal commutative subalgebra of the full matrix algebra, it has dimension exactly N. (This is the case in our setup when \mathbf{A} is simple.) Our Corollary 1 provides a bound of a different type which involves N and the dimension d_{1} of the joint kernel of \mathbf{A}; more precisely, we show that $\operatorname{dim} \mathscr{A} \leq 1+d_{1}\left(N-d_{1}\right)$. This is closer to a result of Gustafson [8], who used the joint cokernel (rather then the joint kernel) of matrices in \mathbf{A}. The approach in [8] is module-theoretic; in the language of linear algebra the fact that θ in $[8, \S 2]$ is a monomorphism implies that $\operatorname{dim} \mathscr{A} \leq 1+r_{1}\left(N-r_{1}\right)$, where r_{1} (denoted by n in [8]) is the dimension of the joint cokernel.

After the paper had been submitted, we came across another module-theoretic paper [16] by Neubauer and Saltman, where the structure of two generated commutative matrix algebras is studied and several characterizations of algebras for which $\operatorname{dim} \mathscr{A}=N$ are given.

1. COMMUTATIVE ARRAYS

We first recall notation and definitions from [11]. In addition, we now denote the set of integers $\{1,2, \ldots, n\}$ by \underline{n}. A set of commutative nilpotent $N \times N$ matrices $\mathbf{A}=\left\{A_{s}, s \in \underline{n}\right\}$ is viewed also as a cubic array of dimensions $N \times N \times n$. Such an array is called commutative. For $i \geq 1$ we write

$$
\operatorname{ker} \mathbf{A}^{i}=\bigcap_{k_{1}+\cdots+k_{n}=i} \operatorname{ker}\left(A_{1}^{k_{1}} A_{2}^{k_{2}} \cdots A_{n}^{k_{n}}\right)
$$

Suppose that $M=\min _{i}\left\{\operatorname{ker} \mathbf{A}^{i}=\mathbb{C}^{N}\right\}$. Then

$$
\begin{equation*}
\{0\} \subset \operatorname{ker} \mathbf{A}^{1} \subset \operatorname{ker} \mathbf{A}^{2} \subset \cdots \subset \operatorname{ker} \mathbf{A}=\mathbb{C}^{N} \tag{1}
\end{equation*}
$$

is a filtration of the vector space \mathbb{C}^{N}. Further we write

$$
\begin{equation*}
D_{i}=\operatorname{dim} \operatorname{ker} \mathbf{A}^{i} \quad \text { and } \quad d_{i}=D_{i}-D_{i-1} \tag{2}
\end{equation*}
$$

for $i \in \underline{M}$. Here $D_{0}=0$. Then there exists a basis

$$
\mathscr{B}=\left\{z_{1}^{1}, z_{2}^{1}, \ldots, z_{d_{1}}^{1} ; z_{1}^{2}, z_{2}^{2}, \ldots, z_{d_{2}}^{2} ; \cdots ; z_{1}^{M}, z_{2}^{M}, \ldots, z_{d_{m}}^{M}\right\}
$$

for \mathbb{C}^{N} such that for every $i \in \underline{M}$ the set

$$
\mathscr{B}_{i}=\left\{z_{1}^{1}, z_{2}^{1}, \ldots, z_{d_{1}}^{1} ; z_{1}^{2}, z_{2}^{2}, \ldots, z_{d_{2}}^{2} ; \cdots ; z_{1}^{i}, z_{2}^{i}, \ldots, z_{d_{i}}^{i}\right\}
$$

is a basis for $\operatorname{ker} \mathbf{A}^{i}$. Such a basis \mathscr{B} is said to be filtered. A set of commutative nilpotent matrices \mathbf{A} is then simultaneously reduced to a special upper triangular form and viewed as a cubic array

$$
\mathbf{A}=\left[\begin{array}{ccccc}
\mathbf{0} & \mathbf{A}^{12} & \mathbf{A}^{13} & \cdots & \mathbf{A}^{1, M} \tag{3}\\
\mathbf{0} & \mathbf{0} & \mathbf{A}^{23} & \cdots & \mathbf{A}^{2, M} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}^{M-1, M} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0}
\end{array}\right]
$$

where

$$
\mathbf{A}^{k l}=\left[\begin{array}{cccc}
\mathbf{a}_{11}^{k l} & \mathbf{a}_{12}^{k l} & \cdots & \mathbf{a}_{1, d_{1}}^{k l} \tag{4}\\
\mathbf{a}_{21}^{k l} & \mathbf{a}_{22}^{k l} & \cdots & \mathbf{a}_{2, d_{l}}^{k l} \\
\vdots & \vdots & & \vdots \\
\mathbf{a}_{d_{k}, 1}^{k l} & \mathbf{a}_{d_{k}, 2}^{k l} & \cdots & \mathbf{a}_{d_{k}, d_{l}}^{k l}
\end{array}\right]
$$

is a cubic array of dimensions $d_{k} \times d_{l} \times n$, and $\mathbf{A}_{i j}^{k l} \in \mathbb{C}^{n}$. The row and column cross sections of $\mathbf{A}^{k l}$ are

$$
R_{i}^{k l}=\left[\begin{array}{llll}
\mathbf{a}_{i 1}^{k l} & \mathbf{A}_{i 2}^{k l} & \cdots & \mathbf{a}_{i, d l}^{k l} \tag{5}
\end{array}\right], \quad i \in \underline{d_{k}},
$$

and

$$
\left(C_{j}^{k l}\right)^{T}=\left[\begin{array}{llll}
\mathbf{a}_{1 j}^{k l} & \mathbf{a}_{2 j}^{k l} & \cdots & \mathbf{a}_{d_{k}, j}^{k l} \tag{6}
\end{array}\right], \quad j \in \underline{d_{l}} .
$$

These are matrices of dimensions $n \times d_{l}$ and $n \times d_{k}$, respectively.
The array \mathbf{A} is the form (3) is called reduced if the matrices $C_{j}^{k, k+1}$, $j \in \underline{d_{k+1}}$, are linearly independent for $k \in M-1$.

By [11, Proposition 1] it follows that the array (3) is reduced. Furthermore, a commutative cubic array (3) is reduced if and only if it is written in a filtered basis.

We call a matrix A symmetric if $A=A^{T}$. In [11, Corollary 1] we observed that \mathbf{A} is commutative if and only if certain products of row and column cross sections are symmetric. The main result of [11], Theorem 3, tells us how to construct the column cross sections of \mathbf{A}^{23} from the row cross sections of \mathbf{A}^{12} and a set of symmetric matrices.

2. KRAVCHUK-TYPE THEOREM FOR A SET OF COMMUTATIVE MATRICES

For $k=2,3, \ldots, M$ we denote by \mathscr{S}_{k} the linear span of the set

$$
\left\{\mathbf{a}_{i j}^{l l} ; l=2,3, \ldots, k, i \in \underline{d_{1}}, j \in \underline{d_{l}}\right\} .
$$

Proposition 1. For $k=2,3, \ldots, M-1, l=k+1, k+2, \ldots, M$, $i \in \underline{d}_{k}, j \in \underline{d_{l}}$, one has $\mathbf{a}_{i j}^{k l} \in \mathscr{S}_{l-k+1}$.

Proof. By the construction of column cross sections of the array \mathbf{A}^{23} in the proof of [11, Theorem 3] (in particular see the first displayed formula in [11, p. 176]) it follows that $\mathbf{a}_{i j}^{23} \in \mathscr{S}_{2}$. In a similar way, we apply the construction of [11, Theorem 3] to the arrays $\mathbf{A}^{k-1, k}$ and $\mathbf{A}^{k . k+1}, k=$ $2,3, \ldots, M-1$, to obtain that

$$
\mathbf{a}_{i j}^{k, k+1} \in \mathscr{S}_{2 k},
$$

where $\mathscr{S}_{2 k}=\operatorname{Span}\left\{\mathbf{A}_{i j}^{k-1, k} ; i \in d_{k-1}, j \in d_{k+1}\right\}$. Then it follows that

$$
\mathbf{a}_{i j}^{k, k+1} \subset \mathscr{S}_{2 k} \subset \mathscr{S}_{2, k-1} \subset \cdots \subset \mathscr{S}_{21}=\mathscr{S}_{2}
$$

Next we apply the construction of [11, Theorem 3] to the arrays

$$
\left(\begin{array}{cc}
\mathbf{A}^{11} & \mathbf{A}^{13} \\
\mathbf{0} & \mathbf{A}^{23}
\end{array}\right) \quad \text { and } \quad\binom{\mathbf{A}^{24}}{\mathbf{A}^{34}}
$$

(see [11, p. 177]). This shows that $\mathbf{a}_{i j}^{24} \in \mathscr{S}_{3}$. As in the case $\mathbf{a}_{i j}^{k, k+1}$ we show inductively that $\mathbf{a}_{i j}^{k, k+2} \in \mathscr{S}_{3}$ for $k \geq 2$. Proceeding in the above manner for $l-k+1=3,4, \ldots, M-1$, we obtain that $\mathbf{a}_{i j}^{k l} \in \mathscr{S}_{l-k+1}$ for all possible choices of i, j, k, and l.

Suppose that $M_{N}(\mathbb{C})$ is the algebra of all $N \times N$ matrices over \mathbb{C} and that \mathscr{A} is the subalgebra generated by the set of commutative matrices \mathbf{A} and the identity matrix $I=I_{N}$. As a vector space, \mathscr{A} is spanned by I and all the products of elements of \mathbf{A}, and in particular every element in \mathscr{A} is of the form $A=\alpha I+B$, where $\alpha \in \mathbb{C}$ and B is nilpotent. Furthermore, A has a block upper triangular form $A=\left[A^{k l}\right]_{k, l=1}^{M}$, where $A^{k l}$ is a $d_{k} \times d_{l}$ matrix block, $\Lambda^{k k}=\alpha I_{d_{k}}$, and $\Lambda^{k l}=0$ for $k>l$.

The following is a version of Kravchuk's theorem (see [18, p. 57]).
Theorem 1. If $A=\left[A^{k l}\right]_{k, l=1}^{M} \in \mathscr{A}$ is such that $A^{1 l}=0$ for $l \in \underline{M}$, then $A=0$.

Proof. Since $A^{11}=0$, it follows that $A^{k k}=0$ for all $k \in M$, and so A is nilpotent. Let $A_{n+1}=A$ and $\hat{\mathbf{A}}=\left\{A_{i} ; i \in N+1\right\}$. Then $\hat{\mathbf{A}}$ can be viewed as a commutative cubic array of dimensions $\overline{N \times N} \times(n+1)$. Since $A_{n+1} \in$ \mathscr{A} it follows that $\hat{\mathbf{A}}=\left[\hat{\mathbf{A}}^{k l}\right]_{k, l=1}^{M}$ is in the reduced form (3). Proposition 1 applied to $\hat{\mathbf{A}}$ implies that each entry of the block arrays $\hat{\mathbf{A}}^{k l}$ is in the linear span of the entries of $\hat{\mathbf{A}}^{1 l}$. Since $A_{n+1}^{1 l}=A^{1 l}=0$, it follows that $A_{n+1}^{k l}=0$ for all k and l, and so $A_{n+1}=A=0$.

The next result follows immediately from Theorem 1.
Corollary 1. Each element $A=\left[A^{k l}\right]_{k, l=1}^{M}$ in \mathscr{A} is uniquely determined by its first (block) row, i.e. by the entries in $A^{1, l}, l \in \underline{M}$. Furthermore, $\operatorname{dim} \mathscr{A} \leq 1+d_{1}\left(N-d_{1}\right)$.

3. THE SIMPLE CASE

As we already mentioned in Section 1, we view \mathbf{A} as a set of commutative matrices and also as a commutative array. A commutative array \mathbf{A} is called simple if $d_{1}=1$, i.e., if $\operatorname{dim} \bigcap_{i=1}^{N} \operatorname{ker} A_{i}=1$.

The result of this and the next section are a generalization of results in [18, §2.7]. The authors in [18] study maximal commutative algebras of nilpotent matrices, whercas we arrive at these results while studying n-tuples of nilpotent matrices. Also we work with the complete filtration (1).

Theorem 3. If the array \mathbf{A} is simple, then $\operatorname{dim} \mathscr{A}=N$.

Proof. Since $d_{1}=1$, it follows by Corollary 1 that

$$
\begin{equation*}
\operatorname{dim} \mathscr{A} \leq N \tag{7}
\end{equation*}
$$

To prove the converse inequality, we consider, for $j \in M-1$, the set \mathbf{A}_{j} of all products of j elements of \mathbf{A} as a cubic array $\mathbf{A}_{j}=\left[\mathbf{A}_{j}^{k l}\right]_{k, l=1}^{M}$. Then it follows that $\mathbf{A}_{j}^{k l}=0$ for $k>l-j$. Since $\operatorname{dim} \operatorname{ker} \mathbf{A}^{j}=D_{j}=\sum_{i=1}^{j} d_{j}$, it follows that the nonzero column cross sections of \mathbf{A}_{j} are linearly independent; in particular, the column cross sections of $\mathbf{A}_{j}^{1, j+1}$ are linearly independent. Thus, it follows that we can find in \mathscr{A} elements $T_{h}^{j}=\left[T^{j k l}\right]_{k, l=1}^{M}$ such that $T_{i}^{j k l}=0$ for $k>l-j$ and

$$
T_{j}^{j 1, j+1}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

where 1 is in h th position. The element $T_{h}^{j}, j \in \underline{M-1, h \in \underline{d_{j+1}} \text {, together }}$ with the identity matrix I, are clearly linearly independent, and there are

$$
1+\sum_{j=1}^{M-1} d_{j+1}=N
$$

of them. Therefore $\operatorname{dim} \mathscr{A} \geq N$, and so with (7) we have that $\operatorname{dim} \mathscr{A}=N$.

Corollary 2. The algebra \mathscr{A} is a maximal commutative subalgebra of $M_{N}(\mathbb{C})$.

Proof. Suppose that $B \in M_{N}(\mathbb{C})$ is such that $A B=B A$ for all $A \in \mathscr{A}$. Write $B=\left[B_{i j}\right]_{i, j=1}^{M}$ and $B_{11}=\left[b_{11}\right]$. Let matrices $T_{h}^{j}, j \in \underline{M-1,} h \in \underline{d_{j+1}}$,
 we first obtain that B is upper triangular, and furthermore, we see that

$$
\begin{equation*}
B_{j j}=b_{11} I_{d_{j}} . \tag{8}
\end{equation*}
$$

Now, let $A_{n+1}=B-b_{11} I$ and $\mathbf{A}^{\prime}=\left\{A_{s} ; s \in n+1\right\}$. Then \mathbf{A}^{\prime} is a commutative array, and it is simple. Thus Theorem 2 implies that the algebra \mathscr{A}^{\prime} generated by \mathbf{A}^{\prime} and I has dimension equal to N. Since $\mathscr{A} \subset \mathscr{A}^{\prime}$ and $\operatorname{dim} \mathscr{A}=N$, it follows that $\mathscr{A}=\mathscr{A}^{\prime}$. Then $B=A_{n+1}+b_{11} I$ is in \mathscr{A}, and hence \mathscr{A} is maximal.

Corollary 3. If a set \mathbf{A} of $N \times N$ commutative matrices is such that the eigenspace at each joint eigenvalue is one-dimensional, then the dimension of the algebra generated by \mathbf{A} (and the identity matrix) is N.

Proof. Since \mathbb{C}^{N} is the direct sum of all joint spectral subspaces of matrices of \mathbf{A}, the result follows if we show it for each joint spectral subspace. For each joint eigenvalue $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of \mathbf{A} let \mathscr{A}_{λ} be the algebra generated by the restrictions of elements of \mathbf{A} and the identity to the joint spectral subspace $V_{\boldsymbol{\lambda}}$ of \mathbf{A} at $\boldsymbol{\lambda}$. The algebra \mathscr{A} generated by \mathbf{A} and I is a direct sum of the algrebras $\mathscr{A}_{\boldsymbol{\lambda}}$ as $\boldsymbol{\lambda}$ ranges over all the joint eigenvalues of A. But then it follows by Theorem 2 that $\operatorname{dim} \mathscr{A}_{\lambda}=\operatorname{dim} V_{\lambda}$, and thus $\operatorname{dim} \mathscr{A}=\Sigma_{\lambda} \operatorname{dim} \mathscr{A}_{\lambda}=\Sigma_{\lambda} \operatorname{dim} V_{\lambda}=N$.

4. CANONICAL BASIS AND STRUCTURE CONSTANTS FOR THE ALGEBRA \mathscr{A} IN THE SIMPLE CASE

Here we still assume that \mathbf{A} is simple. Then Corollary 1 and Theorem 2 imply that for $g \in M-1$ and $h \in d_{g+1}$ there exist matrices $T_{h}^{g}=$ $\left[T_{h}^{g k l}\right]_{k, l=1}^{M} \in \mathscr{A}$ such that

$$
\begin{equation*}
T_{h}^{g k l}=0 \tag{9}
\end{equation*}
$$

if either $k<l-g$ or $k=1$ and $l \neq g+1$, and

$$
T_{h}^{g 1, g+1}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \tag{10}
\end{array}\right]
$$

where 1 is in the h th position. Moreover, the matrices T_{h}^{g} are uniquely determined by the conditions (9) and (10), and

$$
\mathscr{T}=\{I\} \cup\left\{T_{h}^{g} ; g \in \underline{M-1}, h \in \underline{d_{g+1}}\right\}
$$

is a (canonical) basis for \mathscr{A}. We write $T_{h}^{g k l}=\left[t_{h i j}^{g k l}\right]_{i=1, j=1}^{d_{k}} \underset{1}{d_{l}}$. Then we have that

$$
\begin{equation*}
T_{i}^{k} T_{j}^{l}=\sum_{g=k+l}^{M-1} \sum_{h=1}^{d_{g+1}} t_{i j h}^{k l g} T_{h}^{g}=\sum_{g=k+l}^{M-1} \sum_{h=1}^{d_{g+1}} t_{j i h}^{l k g} T_{h}^{g} . \tag{11}
\end{equation*}
$$

Since T_{h}^{g} are linearly independent, the relation (11) implies that $t_{i j h}^{k l g}=t_{j i h}^{l k g}$. Note also that (11) implies that constants $t_{i j h}^{k l g}$ are the structure constants for multiplication in \mathscr{A} expressed in the basis \mathscr{T}.

Since \mathscr{T} is a basis for \mathscr{A}, it follows that $A_{i}=\sum_{g=1}^{M-1} \sum_{h=1}^{d} a_{1 h i}^{1 g} T_{h}^{g}$. Then we obtain that

$$
\mathbf{a}_{i j}^{k l}=\sum_{g=1}^{M-1} \sum_{h=1}^{d_{g+1}} t_{i j h}^{k l g} \mathbf{a}_{1 / h}^{l}
$$

Thus we have proved the first of the following two theorems. The second then follows easily.

Theorem 3. If $t_{i j h}^{k l g}$ are the structure constants for the multiplication in \mathscr{A} expressed in the basis \mathscr{T}, then $\mathbf{a}_{i j}^{k l}=\sum_{g=1}^{M-1} \sum_{h=1}^{d+1} t_{i j h}^{k l g} \mathbf{a}_{i j}^{1 g}$.

Theorem 4. A simple commutative array \mathbf{A} in the reduced form (3) is uniquely determined by the arrays $\mathbf{A}^{\mathbf{l}}, \mathrm{l}=2,3, \ldots, M$, and structure constants for \mathscr{A}, the algebra generated by \mathbf{A}.

Note that if we write $X_{j}=\left[t_{k l j}^{112}\right]_{k, l=1}^{d_{2}}, j \in d_{3}$, then X_{j} are symmetric and such that $C_{j}^{23}-R_{1}^{12} X_{j}$, where matrices R_{1}^{12} and C_{j}^{23} are defined in (5) and (6). Thus it follows that the entries of the symmetric matrices X_{j} in [11, Theorem 2] are precisely the structure constants for multiplication in \mathscr{A}. Similar construction can be obtained also for the column cross sections of arrays

$$
\left[\begin{array}{c}
\mathbf{A}^{k 2} \\
\mathbf{A}^{k 3} \\
\vdots \\
\mathbf{A}^{k, k+1}
\end{array}\right] \text { for } k \geq 3
$$

Because $t_{i j h}^{k l g}$ are the structure constants for multiplication in a commutative algebra \mathscr{A}, they satisfy higher-order symmetries. These symmetries arise because the products of three or more matrices in \mathscr{F} do not depend on the order of multiplication. We include the precise statement, since it is needed in the application to multiparameter spectral theory. First we introduce some further notation.

For $m=2,3, \ldots, M$ and $2 \leq q \leq m$ we denote by $\Phi_{m, q}$ the set of multiindices $\left\{\left(k_{1}, k_{2}, \ldots, k_{q}\right) ; k_{i} \geq 1, \Sigma_{i=1}^{q} k_{i} \leq m\right\}$. For $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{q}\right)$ $\in \Phi_{m, q}$ we define a set

$$
\chi_{\mathbf{k}}=\underline{d_{k_{1}}} \times \underline{d_{k_{2}}} \times \cdots \times \underline{d_{k_{q}}}
$$

The set of all permutations of the set \underline{q} is denoted by π_{q}. For a permutation $\sigma \in \pi_{q}$ and multiindices $\mathbf{k} \in \Phi_{m, q}$ and $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ we write $\mathbf{k}_{\sigma}=$ $\left(k_{\sigma(1)}, k_{\sigma(2)}, \ldots, k_{\sigma(q)}\right)$ and $\mathbf{i}_{\sigma}=\left(i_{\sigma(1)} i_{\sigma(2)}, \ldots, i_{\sigma(q)}\right)$. Then we define recursively numbers $s_{\mathbf{i} h}^{\mathbf{k} g}$: for $\mathbf{k} \in \Phi_{m, 2}$ and $\mathbf{i} \in \chi_{\mathbf{k}}$ we write $s_{\mathbf{i} h}^{\mathbf{k} g}=t_{i_{1} i_{2} h}^{k_{1} k_{2} g}$, and for $q>2$ and $\mathbf{k} \in \Phi_{m, q}$ and $\mathbf{i} \in \chi_{\mathbf{k}}$ we write

$$
\sum_{\mathbf{i} h}^{\mathbf{k} g}=\sum_{l=k_{1}+k_{2}}^{m-k_{3}-\cdots-k_{q}} \sum_{j=1}^{d_{l}} t_{i_{1} i_{2} j}^{k_{1} k_{2} l} s{\underset{c}{\left(, k_{3}, k_{4}, \ldots, k_{q}\right) g}\left(j, i_{1}, i_{2}, \ldots, i_{q}\right) h}_{(l,} .
$$

Corollary 4. For $\mathbf{k} \in \Phi_{m, q}$ and $\mathbf{i} \in X_{\mathbf{k}}$ the constants $s_{\mathbf{i} h}^{\mathbf{k} g}$ are symmetric in \mathbf{k} and \mathbf{i}, i.e.

$$
\begin{equation*}
s_{i h}^{\mathbf{k} \boldsymbol{g}}=s_{\mathbf{i}_{\sigma} h}^{\mathbf{k}_{g} \boldsymbol{g}} \tag{12}
\end{equation*}
$$

for any permutation $\sigma \in \pi_{q}$.
We remark that the relations (12) are the matching conditions (in the simple case) mentioned at the end of Section 4 in [11].

A canonical form for a simple commutative array would be obtained if we replaced the basis \mathscr{A} by another filtered hasis \mathscr{R}^{\prime} so that the matrix

$$
R=\left[\begin{array}{llll}
R_{1}^{12} & R_{1}^{13} & \cdots & R_{1}^{1 M}
\end{array}\right]
$$

is in a canonical form. This reduces to finding a canonical form for R by multiplying by permutation matrices on the left (if \mathbf{A} is considered as a set only, i.e., the matrices A_{i} are not considered in any particular order) and by invertible block upper triangular matrices on the right. The first immediate reduction we can achieve is that the nonzero columns in R are linearly independent.

Then in a particular case $d_{1}=n$ we can assume that $R_{1}^{1 l}=0$ for $l \geq 3$. If we replace the vectors z_{j}^{2} by vectors $\hat{z}_{j}^{2}=\sum_{k=1}^{d_{2}} a_{1 j k}^{12} z_{k}^{2}$ in the basis \mathscr{B}, then $R_{2}^{12}=I$, and $A_{h}=T_{h}^{1}$ for $h \in \underline{n}$ is a canonical form for \mathbf{A}. In the general simple case a block version of the row reduced echelon form (see [9, §2.5] for
the standard version and [3, §l] for some generalized versions) applied to R yields toward a canonical form for \mathbf{A}. However, this requires an extensive case-by-case analysis, and we do not proceed with it. Rather we consider some examples.

5. EXAMPLES

Example 1. Suppose $n=2$. Then sets of matrices that span the algebra \mathscr{A}, generated by a pair of matrices $\mathbf{A}=\left\{A_{1}, A_{2}\right\}$ and the identity matrix I, are described in $[2,13]$ (see also [7,20]). In general the sets of matrices given there are not a basis; their elements may be linearly dependent. For example, if

$$
A_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{13}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

then neither $\left\{I, A_{1} ; A_{2}, A_{1} A_{2}\right\}$ nor $\left\{I, A_{1} ; A_{2} ; A_{1}^{2}\right\}$ are linearly independent, since $A_{1} A_{2}=A_{1}^{2}=0$.

However, if \mathbf{A} is a simple then $\operatorname{dim} \mathscr{A}=N$ by Theorem 3, and so the sets given in $[2,13]$ are a basis. For instance, if

$$
A_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{14}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

then $\mathscr{A}=\operatorname{Sp}\left\{I, A_{1}, A_{1}^{2}, A_{2}\right\}$. Furthermore, if $\left\{e_{i} ; i \in \underline{4}\right\}$ is the standard basis for \mathbb{C}^{4}, then in the basis $\mathscr{S}-\left\{e_{1} ; e_{2}, e_{4} ; e_{3}\right\}$ the reduced form for the array \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{lll}
\binom{0}{0} & \binom{1}{0} & \binom{0}{1}
\end{array}\binom{0}{0}\right]\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{0} \quad\binom{1}{0} .
$$

Next we find that $T_{h}^{1}=A_{h}, h=1,2$, and $T_{1}^{2}=A_{1}^{2}$, and so $\mathscr{T}=\left\{I, A_{1}, A_{1}^{2}\right.$, A_{2}) is a basis for \mathscr{A}.

Example 2. We consider a commutative array

$$
\left.\mathbf{A}=\left[\begin{array}{lll}
\binom{0}{0} & \binom{1}{1} & \binom{0}{2} \tag{15}
\end{array}\binom{0}{1}\right]\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{2}\right]
$$

which is already in the reduced form (3). The columns of the first row of the array (15) are not linearly independent. To make them so, we substitute the vector $e_{4}-\frac{1}{2} e_{3}$ for the vector e_{4} in the basis \mathscr{B}. (Here we assume that $\mathscr{B}=\left\{e_{i}, i \in \underline{4}\right\}$ is the standard basis of \mathbb{C}^{4}.) Note that the new basis is still filtered. The array \mathbf{A} in the new basis is

$$
\left.\mathbf{A}=\left[\begin{array}{lll}
\binom{0}{0} & \binom{1}{1} & \binom{0}{2}
\end{array}\binom{0}{0}\right]\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{2}\right]
$$

To find a canonical form for \mathbf{A} we finally replace vectors z_{1}^{2} and z_{2}^{2} by $z_{1}^{2}+z_{2}^{2}$ and $2 z_{2}^{2}$, respectively. The new basis is still filtered, and we find that

$$
\mathbf{A}=\left[\begin{array}{ccc}
\binom{0}{0} & \binom{1}{0} & \binom{0}{1} \tag{16}
\end{array}\binom{0}{0} .\right]\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{0} \quad\binom{0}{1} .
$$

So we have that $T_{h}^{1}=\Lambda_{h}, h=1,2 ; T_{1}^{2}=\Lambda_{1}^{2}$; and (16) is a canonical form for \mathbf{A}.

REFERENCES

1 F. V. Atkinson, Multiparameter Eigenvalue Problems, Academic, 1972.
2 J. Barría and P. R. Halmos, Vector basis for two commuting matrices, Linear and Multilinear Algebra 27:147-157 (1990).
3 P. Gabriel and A. V. Roiter, Representations of finite-dimensional algebras, in Algebra VIII, Encyclopaedia Math. Sci. 73, Springer-Verlag, 1992.
4 F. R. Gantmacher, The Theory of Matrices, Vols. 1, 2, Chelsea, 1959.
5 I. M. Gel'fand and V. A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite-dimensional space, Funct. Anal. Appl. 3:325-326 (1969).
6 I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applications, Wiley-Interscience, 1986.
7 R. M. Guralnick, A note on commuting pairs of matrices, Linear and Multilinear Algehra 31:71-75 (1992).
8 W. H. Gustafson, On maximal commutative algebras of linear transformations, J. Algebra 42:557-563 (1976).

9 K. Hoffman and R. Kunze, Linear Algebra, 2nd ed. Prentice-Hall, 1971.
10 T. Košir, Commuting Matrices and Multiparameter Eigenvalue Problems, Ph.D. Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 1993.
11 T. Košir, On the structure of commutative matrices, Linear Algebra Appl. 187:163-182 (1993).
12 T. Košir, The finite-dimensional multiparameter spectral theory: The nonderogatory case, Linear Algebra Appl. 212/213:45-70 (1994).
13 T. J. Laffey and S. Lazarus, Two-generated commutative matrix subalgebras, Linear Algebra Appl. 147:249-273 (1991).
14 C. C. MacDuffee, The Theory of Matrices, Springer-Verlag, 1933.
15 A. I. Mal'cev, Foundations of Linear Algebra, Freeman, 1963.
16 M. G. Neubauer and D. J. Saltman, Two-generated commutative subalgebras of $M_{n}(F)$, J. Algebra 164:545-562 (1994).
17 D. E. Rutherford, On commuting matrices and commutative algebras, Proc. Roy. Soc. Edinburgh Sect. A. 62:454-459 (1949).
18 D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Academic, 1968.
19 P. L. Trump, On a reduction of a matrix by the group of matrices commutative with a given matrix, Amer. Math. Soc. Bull. Ser. II 41:374-380 (1935).
20 A. R. Wadsworth, The algebra generated by two commuting matrices, Linear and Multilinear Algebra 27:159-162 (1990).

[^0]: *Current address: Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.

