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ABSTHACT 

A finite set A of N X N nilpotent commutative matrices that have one-dimen- 
sional joint kernel is considered. The theorem (due to Suprunenko and Tyshkevich) 
that the algebra LZ’ generated by A and the identity matrix has dimension equal to N 
is proved. A canonical basis for & is given, and related structure constants are 
discussed. 0 Elsevier Science Inc.. 1997 

0. INTRODUCTION 

In this article we continue to study the structure of commutative matrices 
that we began in [II]. N ow, our main results are extensions of results of 
Kravchuk, Suprunenko, and Tyshkevich (see [LS, #2.6-71). Our motivation 
comes from multiparameter spectral theory [l]. Similarly to the way results of 
[ll, Section 21 are used to construct bases for root subspaces of nonderoga- 
torv eigenvalues in [12], the results of this paper are used to find the 
corresponding bases for simple eigenvalues (see [lo]). We will present this 
application to multiparameter spectral theory separately. 

In [II] we considered an n-tuple A = {A,, i = 1,2, . . . , n} of commuta- 
tive nilpotent N x N matrices over the complex members. Now we also 
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consider the algebra zz! generated by A and the identity matrix. For the most 
part we make a further assumption that A is simple, i.e., that the joint kernel 
of matrices in A is one-dimensional, Then we show that the algebra AY has 
(vector-space) dimension equal to N. This result is found in [18, p. 62, 
Theorem 131. We also describe a canonical basis Y for the algebra JV’. When 
72 = 2 the basis 7 coincides (possibly after a change of basis for cN > with 
bases given in [2, 13, 201. 

In [ll] we viewed A also as a cubic array. The matrices in an array were 
brought by a simultaneous similarity to a special block upper triangular form 
called the reduced form. The reduced form has two important properties: the 
column cross sections of the blocks on the first upper diagonal are linearly 
independent, and the products of row and column cross sections are symmet- 
ric. (See Proposition 1 and Corollary 1 of [ll].) The main result of [ll] tells us 
how to reconstruct a commutative array from two sets of matrices, one of 
which is a set of symmetric matrices. Now we show, that when A is simple, 
the symmetric matrices are determined by the canonical basis and their 
entries are precisely the structure constants for multiplication in ti. 

We proceed with a brief overview of the setup of the paper. In the next 
section we recall notation from [ll], and in Section 2 we discuss some further 
properties of the general commutative array A. We also obtain an upper 
bound for the dimension of the algebra JY in terms of N and the dimension 
of the joint kernel of matrices in A. In the remaining Section 3-5 we study 
the simple case. In Section 3 we show that the dimension of JZ’ is equal to N. 
Next, in Section 4, we introduce a canonical basis for the algebra & and the 
associated set of structure constants. We show that a simple array A is 
determined by the structure constants and a set of coefficients that depend 
only on the joint kernel of Aj. This is a minimal set required to describe A. 
In Section 5 we illustrate the discussion with two examples, and we consider 
the relation of our results with [2, 13, 201. 

We conclude the introduction with some remarks on related literature. 
Finite sets of commutative matrices, algebras they generate, and their re- 
duced forms under simultaneous similarity were studied, among others, by 
Trump [19] and Rutherford [17]. (See [14] f or earlier references.) It was show 
by Gel’fand and Ponomarev [5] that to find a canonical form for general 
n-tuples of commuting matrices is as hard as to find a canonical form for an 
arbitrary n-tuple of matrices. In Section 4 we briefly touch on this problem in 
the case when A is simple. While elementary properties of (nilpotent) 
commutative matrices are usually exhibited in monographs on linear algebra 
(e.g. [4,6, 151) our main reference is the book by Suprunenko and Tyshkevich 
[181. 

It was pointed out by the referee that the results of Corollary I and 
Theorem 2 are related to the problem of finding good bounds for the 
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dimension of the algebra LX!. A satisfactory solution to the problem has not yet 
been found. Most authors have attempted to get a bound as a function of n 
and N. For instance, there are now several proofs (e.g. [2, 13, 201) that if 
n I 2 the dimension of & is at most N and that, if the algebra LX’ is maximal 
commutative subalgebra of the full matrix algebra, it has dimension exactly N. 
(This is the case in our setup when A is simple.) Our Corollary 1 provides a 
bound of a different type which involves N and the dimension d, of the joint 
kernel of A; more precisely, we show that dim _w’ I 1 + d,( N - d, 1. This is 
closer to a result of Gustafson [8], who used the joint cokemel (rather then 
the joint kernel) of matrices in A. The approach in [8] is module-theoretic; in 
the language of linear algebra the fact that 8 in [S, $21 is a monomorphism 
implies that dim @ I 1 + r,(N - ri), where r1 (denoted by n in [8]) is the 
dimension of the joint cokemel. 

After the paper had been submitted, we came across another module-the- 
oretic paper [16] by Neubauer and Saltman, where the structure of two 
generated commutative matrix algebras is studied and several characteriza- 
tions of algebras for which dim .ti = N are given. 

1. COMMUTATIVE ARRAYS 

We first recall notation and definitions from [Ill. In addition, we now 
denote the set of integers {1,2, . . . , n) by n. A set of commutative nilpotent 
N X N matrices A = {A,, s E E} is viewed also as a cubic array of dimen- 
sions h’ X N X n. Such an array is called commutative. For i 2 1 we write 

ker A” = n ker( A’;lAiz ... A:). 
k,+..-+k,,=i 

Suppose that M = min,(kerA’ = C”]. Then 

{0} c kerAr c kerA2 c ... c kerA = CM (1) 

is a filtration of the vector space C”. Further we write 

D, = dimkerA” and d, = Di - Di_l (2) 
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for i E &4. Here D, = 0. Then there exists a basis 

529 = [z;, z;, . . . ) z;,; 212, z;, . . . ) zjz; ... ; zy, z2”, . . .) Zf”] 

for @” such that for every i E _M the set 

q=(z:,z; )...) z;,;z;,z; )...) z;,;*-;z;,z; )...) z;,,) 

is a basis for ker A". Such a basis 9 is said to be filtered. A set of 
commutative nilpotent matrices A is then simultaneously reduced to a special 
upper triangular form and viewed as a cubic array 

where 

A13 . . . A’% M 

A23 . . . A2, M 

. . 

0 . . . AM- 1, M 

0 . . . 0 

(3) 

akl cl,, 1 a$“,,2 ... a:;, d, 

is a cubic array of dimensions d, X d, X n, and A:: E C”. The roow and 
column cross sections of Akl are 

and 

(C,““)’ = [a’;: ai: .-a aii,i], j E d,. (6) - 

These are matrices of dimensions n X dl and n X d,, respectively. 
The array A is the form (3) is called reduced if the matrices Cjk, k+ ‘, 

_i E dk+17 are linearly independent for k E M - 1. 
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By [ll, Proposition I] it follows that the array (3) is reduced. Further- 
more, a commutative cubic array (3) is reduced if and only if it is written in a 
filtered basis. 

We call a matrix A symmetric if A = Ar. In [ 11, Corollav I] we 
observed that A is commutative if and only if certain products of row and 
column cross sections are symmetric. The main result of [ll], Theorem :3, 
tells us how to construct the column cross sections of AZ3 from the row cross 
sections of k2 and a set of symmetric matrices. 

2. KRAVCHUK-TYPE THEOREM FOR A SET OF 
COMMUTATIVE MATRICES 

For k = 2,3, . . . , M we denote by pk the linear span of the set 

(ati;l=2,3 ,..., k,i~ d,,j~ di}. 
- - 

PROPOSITION 1. For k = 2,3, . . . , A4 - 1, 1 = k + 1, k + 2,. . . , M, 
i E d,, j E d,, one has ai; ES‘_~+~. - - 

Proof By the construction of column cross sections of the array 4" in 
the proof of [ll, Theorem 31 (in particular see the first displayed formula in 
[ 11, p. 1761) it follows that a:; E Yz. In a similar way, we apply the 
construction of [ll, Theorem 31 to the arrays Ak-l,k and Ak. k+', k = 
2,3, . . . ) M - 1, to obtain that 

where plk = Span{Akyl,k; i ~2 dk_l, j E d,, 1}. Then it follows that 

Next we apply the construction of [ll, Theorem 31 to the arrays 

(y $) and (5) 
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(see [ll, p. 1771). This shows that a; E?~. As in the case atik+’ we show 
inductively that atj k + 2 E Y3 for k 2 2. Proceeding in the above manner for 
1 - k + 1 = 3,4,. . . , M - 1, we obtain that a;; E q_ k + 1 for all possible 
choices of i, j, k, and 1. ??

Suppose that M,(C) is the algebra of all N X N matrices over @ and that 
& is the subalgebra generated by the set of commutative matrices A and the 
identity matrix Z = I,. As a vector space, XJ’ is spanned by Z and all the 
products of elements of A, and in particular every element in & is of the 
form A = aZ + B, where CK E @ and B is nilpotent. Furthermore, A has a 
block upper triangular form A = [ Ak’]zl= 1, where Ak’ is a d, X d, matrix 
block, Akk = aZn,, and Ak’ = 0 for k > 1. 

The following is a version of Kravchuk’s theorem (see 118, p. 571). 

THEOREM 1. If A = [Ak’]fl=, E& is such that A” = 0 fir I E_M, 
then A = 0. 

Proof. Since A l1 = 0 it follows that Akk = 0 for all k E M, and so A is 
nilpotent. Let A,, I = A and A = { Ai; i E N + 1). Then i can be viewed 
as a commutative cubic array of dimensions N X N X (n + 1). Since A,, 1 E 
d it follow: that A = [A”‘]&+ is in the reduced form (3). Proposition 1 
applied to A implies th?t each entry of the block arrays tik” is in the linear 
span of the entries of A”. Since Ai’+ i = A’” = 0, it follows that AZ’+, = 0 
forallkandl,andsoA,+,=A=O. ??

The next result follows immediately from Theorem 1. 

COROLLARY 1. Each element A = [ Ak’]&= i in LX’ is uniquely dcter- 
mined by its first (block) row, i.e. by the entries in Al,‘, 1 E &4. Further- 
more, dim & < 1 + d,( N - d,). 

3. THE SIMPLE CASE 

As we already mentioned in Section 1, we view A as a set of commutative 
matrices and also as a commutative array. A commutative array A is called 
simple if d, = 1, i.e., if dim fl fii ker Ai = 1. 

The result of this and the next section are a generalization of results in 
[18, 92.71. The authors in [18] study maximal commutative algebras of 
nilpotent matrices, whereas we arrive at these results while studying n-tuples 
of nilpotent matrices. Also we work with the complete filtration (1). 
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THEOREM 3. lf the array A is simple, then dim d = N. 

P?-OOj-. Since d, = 1, it follows by Corollary 1 that 

dim& < N. (7 

To prove the converse inequality, we consider, for j E M - 1, the set A., of 
all products of j elements of A as a cubic array Aj = [A;’ ]I;“fl= , . Then it 
follows that A;’ = 0 for k > 1 - j. Since dim ker AJ = qj = C;l= , di, it fol- 
lows that the nonzero column cross sections of A are linearly independent: 

1 ,+r’ in particular, the column cross sections of Aj are linearly independent. 
Thus, it follows that we can find in .d elements Ti = [Tik’],M,=, such that 
Tjlk’ = 0 for k > I - j and 

Tjl,j+l = 
.I [O ... 0 1 0 ..* 01, 

where 1 is in hth position. The element ThJ, j E M - 1, h E dj+ ,, together 

with the identity matrix I, are clearlv linearly independent, and there are 

k- I 

1+ Cdj+,=N 
j=l 

of them. Therefore dim &’ 2 N, and so with (‘7) we have that dim .ti = X. ??

COROLLARY 2. The algebra .d is a maximal commutative subalgebra qf 
M,(C). 

Proof. Suppose that B E M,(C) is such that AB = BA for all A E&. 
Write B = [ Bij]yj=, and B,, = [b,,]. Let matrices Tf’, j E M - 1, h E cl,+ ,, 

be defined as in the proof of Theorem 2. Because T/B = BT/ for all j and h, 
we first obtain that B is upper triangular, and furthermore, we see that 

'jj = ‘ll’d 
I 

(8) 

Now, let A,,+, = B - b,, Z and A’ = {A,; s E n + I). Then A’ is a commu- 
tative array, and it is simple. Thus Theorem 2 implies that the algebra &’ 
generated by A’ and I has dimension equal to N. Since M CL& and 
dim&‘= N, it follows that & =&‘. Then B = A,,+, + b,,l is in &, and 
hence & is maximal. ??
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COROLLARY 3. lf a set A of N x N commutative matrices is such that 
the eigenspace at each joint eigenvalue is one-dimensional, then the dimension 
of the algebra generated by A (and the identity matrix) is N. 

Proof. Since @ N is the direct sum of all joint spectral subspaces of 
matrices of A, the result follows if we show it for each joint spectral subspace. 
For each joint eigenvalue A = (A,, A,, . . . , A,) of A let &k be the algebra 
generated by the restrictions of elements of A and the identity to the joint 
spectral subspace V, of A at h. The algebra & generated by A and I is a 
direct sum of the algrebras ti* as A ranges over all the joint eigenvalues of 
A. But then it follows by Theorem 2 that dim &A = dim V,, and thus 
dim&= C,dimdA = C,dimV, = N. ??

4. CANONICAL BASIS AND STRUCTURE CONSTANTS 
FOR THE ALGEBRA & IN THE SIMPLE CASE 

Here we still assume that A is simple. Then Corollary 1 and Theorem 2 
imply that for g E M - I and h E d,, 1 there exist matrices Tf = 
[T$k’l,M,=, E& such that 

(9) 

ifeitherk<l-gork=IandZ#g+l,and 

,f14+1 = [O . . . 0 1 0 *** 01, (10) 

where I is in the hth position. Moreover, the matrices Thg are uniquely 
determined by the conditions (9) and (lo), and 

F= {I} u (T$; g E A4 - 1, h E d,,,) 

is a (canonical) basis for &. We write Thgkl = [t gk!] ds 1 ;‘I= 1 , Then we have hya 1 

that 

M-l %+I M-I %+I 

qkTJ1 = c c t,$hgTf = c c t;$T,f. 
g=k+l h=l g=k+l h=l 

(11) 
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Since Tf are linearly independent, the relation (11) implies that t!f = t$F. 
Note also that (11) implies that constants t,yf are the structure constants for 
multiplication in & expressed in the basis 97 

Since 7 is a basis for H, it follows that Ai = Cfz,' CfCi a;fiTf. Then 
we obtain that 

Thus we have proved the first of the following two theorems. The second 
then follows easily. 

THEOREM 3. lf t,$f are the structure constants for the multiplication in 
LY’ expressed in the basis x then a!; = C:=Z,’ PC+ ltk.‘“a:$. h-1 I/h 

THEOREM 4. A simple commutative array A in the reduced form (3) is 
uniquely determined by the arrays A’l, 1 = 2,3, . . . , M, and structure con- 
stants for AI’, the algebra generated by A. 

Note that if we write Xj = [t:if]&= 1, j E d,, then X, are symmetric and 
such that C&3 = R:‘X., where matrices R:” and CJ” are defined in (5) and 
(6). Thus ii follows t r: at the entries of the symmetric matrices XI in [ll, 
Theorem 21 are precisely the structure constants for multiplication in &. 
Similar construction can be obtained also for the column cross sections of 
arrays 

for k 2 3. 

Because t(;.‘f are the structure constants for multiplication in a commuta- 
tive algebra M, they satisfy high er or er s - d y mmetries. These symmetries arise 
because the products of three or more matrices in P-do not depend on the 
order of multiplication. We include the precise statement, since it is needed 
in the application to multiparameter spectral theory. First we introduce some 
further notation. 
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For m = 2,3,. . . , M and 2 I q < m we denote by a,,_ the set of 
multiindices {(k,, k,, . . . , k,); ki 2 1, Cq,,k, I m). Fork = (k,, k,, . . . , k4) 

E %,q we define a set 

xk = d, x d, x ... x d, . 
-2 2 

The set of all permutations of the set q is denoted by rq. For a permutation 
cr E ?T~ and multiindices k E Q,,, 4 &d i = (i,, i,, . . . , i4) we write k, = 
(k k a(l), U(Z)> * . . > k,,,,) and i, = (i,(,+,(,), . . . , i,(,)). Then we define recur- 
sively numbers sikhg: for k E a,,, 2 and i E xe we write sib kg = ti”,:$g, and for 
q > 2 and k E a,,, 9 and i E xk we write 

m-k,-. .,--kc, d, 
kg = 

‘ih c 
l=k,+k, 

COROLLARY 4. For k E a,,,, p and i E xk the constants s$ 
ric in k and i, i.e. 

Sib 
kg = &g 

b 

are symmet- 

02) 

for any permutation ff E vq. 

We remark that the relations (12) are the matching conditions (in the 
simple case) mentioned at the end of Section 4 in [ll]. 

A canonical form for a simple commutative array would be obtained if we 
replaced the basis LB by another filtered basis 9 so that the matrix 

Zj = [ q2 q3 . . . fiy] 

is in a canonical form. This reduces to finding a canonical form for Z? by 
multiplying by permutation matrices on the left (if A is considered as a set 
only, i.e., the matrices Ai are not considered in any particular order) and by 
invertible block upper triangular matrices on the right. The first immediate 
reduction we can achieve is that the nonzero columns in R are linearly 
independent. 

Then in a particular case d, = n we can assume that R:’ = 0 for I 2 3. If 
we replace the vectors zj 2 b vectors ?,? = Cp= ,a$ z,f in the basis ~8, then y 
Ri2 = I, and A, = T,f for h E r_z is a canonical form for A. In the general 
simple case a block version of the row reduced echelon form (see [9, $2.51 for 
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the standard version and [3, $11 for some generalized versions) applied to R 
yields toward a canonical form for A. However, this requires an extensive 
case-by-case analysis, and we do not proceed with it. Rather we consider 
some examples. 

5. EXAMPLES 

EXAMPLE 1. Suppose n = 2. Then sets of matrices that span the algebra 
&, generated by a pair of matrices A = {A,, A,] and the identity matrix I, 
are described in [2,13] (see also [7,20]). In general the sets of matrices given 
there are not a basis; their elements may be linearly dependent. For example, 
if 

Ar=[i i i i] and Az=[i i i i], (13) 

then neither {I, A,; A,, A,A,] nor {I, A,; A,; AT] are linearly independent, 
since A,A, = Af = 0. 

However, if A is a simple then dim JX? = N by Theorem 3, and so the sets 
given in [2,13] are a basis. For instance, if 

Ai=[i i i i] and Az=[i i i il (14) 

then S’ = Sp{Z, A,, AT, A,). Furthermore, if {e,; i E 3) is the standard basis 
for C4, then in the basis 9 = {ei; e2, e4; es] the reduced form for the array 
A is 

Next we find that T,f = A,, h = 1,2, and Tf = A:, and so 9= (Z, A,, A:, 
A,) is a basis for &. 
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EXAMPLE 2. We consider a commutative array 

(9 (:I M (:I 

*= ii) (9 (9 M 

(8) (8 (9 i:) ’ 

(15) 

which is already in the reduced form (3). The columns of the first row of the 
array (15) are not linearly independent. To make them so, we substitute the 
vector e4 - ie, for the vector e4 in the basis 9. (Here we assume that 
9’ = (e,, i E 3} is the standard basis of C4.> Note that the new basis is still 
filtered. The array A in the new basis is 

To find a canonical form for A we finally replace vectors 2; and 22” by 
21” + 22” and 2&j, respectively. The new basis is still filtered, and we find that 

A= 

0 ( i 0 

0 i 1 1 

1' 

i I 1 
-2 

0 
( 1 _ 0 

(16) 

So we have that Ti = A,,, h = 1,2; Tf = AT; and (16) is a canonical form 
for A. ??
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