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Abstract This paper proposes a generic high-performance and low-time-overhead software control

flow checking solution, graph-tree-based control flow checking (GTCFC) for space-borne commer-

cial-off-the-shelf (COTS) processors. A graph tree data structure with a topology similar to com-

mon trees is introduced to transform the control flow graphs of target programs. This together

with design of IDs and signatures of its vertices and edges allows for an easy check of legality of

actual branching during target program execution. As a result, the algorithm not only is capable

of detecting all single and multiple branching errors with low latency and time overheads along with

a linear-complexity space overhead, but also remains generic among arbitrary instruction sets and

independent of any specific hardware. Tests of the algorithm using a COTS-processor-based on-

board computer (OBC) of in-service ZDPS-1A pico-satellite products show that GTCFC can detect

over 90% of the randomly injected and all-pattern-covering branching errors for different types of

target programs, with performance and overheads consistent with the theoretical analysis; and beats

well-established preeminent control flow checking algorithms in these dimensions. Furthermore, it

is validated that GTCGC not only can be accommodated in pico-satellites conveniently with still

sufficient system margins left, but also has the ability to minimize the risk of control flow errors

being undetected in their space missions. Therefore, due to its effectiveness, efficiency, and compat-

ibility, the GTCFC solution is ready for applications on COTS processors on pico-satellites in their

real space missions.
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1. Introduction

Single event upset (SEU) was first discovered in 1962.1 Since
then, SEU-induced soft errors have been known as one of

the major threats to functionality and reliability of space-borne
computers and their host spacecrafts.2 Soft errors may be ex-
plicit bit flips in latches or memories, or glitches in combina-

tional logics that can propagate and be captured in latches.3

One of the major consequent problems is control flow
errors in programs running on the computers. If not handled
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properly, such errors can cause illegal accesses to peripherals,
memory overflow, data corruption, false and sometimes fatal
data or action outputs, and so on. Therefore, it is necessary

to detect and correct errors in control flows hopefully before
damages are caused. This is especially true for the commercial-
off-the-shelf (COTS) processors without radiation hardening,

whose space application is witnessing rapid growth nowadays.4

Researchers have reported various attempts to solve the
problem. Almost all of them are based on the idea of partition-

ing target programs into blocks with no branch instructions
other than the last one (basic blocks), acquiring characteristics
of legal control flows (usually signatures of basic blocks and
branching among them), and carrying out control flow legiti-

macy checking during target program execution via compari-
son of such characteristics to those of the runtime branching.
According to their resorts, the solutions fall into two catego-

ries, namely hardware-assisted and software.
Hardware-assisted solutions supervise program control

flows making use of dedicated external devices like watchdog

processors to target processors running the programs. Such de-
vices calculate and pre-store signatures of legal branching out
of binary codes or memory addresses of related instructions,

and compare them to their regenerated versions at runtime.
For example, control flow checking by execution tracing
(CFCET)5 employed execution tracing features within COTS
processors and an external watchdog processor to monitor ad-

dresses of branches taken in programs. A watchdog processor
monitoring scheme6 based on discrete cosine transformation
was also developed for very long instruction word length pro-

cessors. Meanwhile, Michel et al.7 went even further to build
two levels of control flow checking capabilities within applica-
tion-specific microprocessors.

On the other hand, software solutions turn to extra embed-
ded checking instructions in target programs instead of dedi-
cated hardware, so as to have the target processors do

checking jobs themselves. Specifically, there are several ways
to do so:

(1) Assign signatures to basic blocks and regenerate them

during program execution for comparison to perform
branching legality checking. Control-flow checking by
software signatures (CFCSS)8 assigned and embedded

a unique signature in each basic block, regenerated it
deductively at runtime, and revealed control flow errors
through comparing the two. Control-flow checking

using assertions (CCA)9 identified branch-free intervals
of target programs, fortified their entry and exit points
through pre-inserted assertions, and carried out the
checking via similar comparison. Enhanced control-flow

checking with assertions (ECCA)9 assigned signatures
making use of prime number characteristics, and
exposed control flow errors with divide-by-zero excep-

tions of target processors. Some other examples are:
structural integrity checking (SIC)10, block signature
self-checking11, and versatile assign signature checking

(VASC).12

(2) Derive basic block signatures from their traits like
instruction codes and memory addresses, and implement

checking by means of comparison similar to that
described in Way (1). Examples include continuous sig-
nature monitoring (CSM)13, on-line signature learning
and checking (OSLC)14, region-based control flow
checking (RCF)14, edge control flow checking technique

(EdgCF)15, and control-flow checking in the end (CFC-
End).16

(3) Track program control flow path and check its legiti-

macy. Yau and Chen17 introduced a control flow check-
ing scheme that stored information of all possible
control flow paths and checked the runtime path against
it. Meanwhile, control-flow checking via regular expres-

sions18 assigned each basic block a unique string,
acquired a regular expression for all possible string com-
positions, and checked the consistency of that of the

runtime path with it for errors.

Existent hardware-assisted and software solutions have

shown apparent shortcomings that lower their values of appli-
cation. The formers called for specific extra hardware for con-
trol flow checking, so they had hardly any compatibility
among different processors, although they usually required

far less time and memory overheads than their software coun-
terparts or none at all.5–7,19 As for the latters, most of them
could not detect all branching errors, especially the multiple

ones. While among the few that could, most employed sophis-
ticated mathematics. Such strategies imposed either enormous
calculation overhead, or use of specific hardware like multipli-

ers9, also sacrificing the generality of the solutions. In addition,
it has become a mainstream for pico- and other modern small
(including micro- and nano-) satellite engineering to resort to a

great variety of COTS processors as major components of on-
board computers (OBCs), thanks to their costs and attainabil-
ity.4,20,21 Therefore, the demand for generic software control
flow checking solutions for space-borne COTS processors

has been craved.
In fulfilling such a demand, this paper proposes a generic

high-performance and low-time-overhead software solution

for control flow checking, graph-tree-based control flow check-
ing (GTCFC). GTCFC works out the problem by transform-
ing control flow graph of programs into an equivalent graph

tree notation with an exclusive-parent topology similar to com-
mon trees. By doing this, control flow checking is also trans-
formed into checking whether each vertex or virtual vertex is
arrived at via its exclusive parent. GTCFC partitions a target

program into basic blocks and builds its control flow graph
as most algorithms.8,9 Instead of applying to conventional
graph storage schemes, the new graph tree data structure is

introduced to transform the control flow graph. A graph tree
has each of its (virtual) vertices have only one parent as stated
above, so it can be stored with a linear space complexity. IDs

of graph tree (virtual) vertices and signatures of control flow
branches are correspondently designed to allow for easy regen-
eration and comparison. Along with the execution of the target

program, the runtime signatures are generated at the entrance
and the exit, and checked at the exit of each basic block. As a
result, GTCFC not only has the capability of detecting all sin-
gle and multiple branching errors with low latency and time

overheads along with a linear-complexity memory overhead,
but also remains generic among arbitrary instruction sets
and independent of any specific hardware. Moreover, it can

be easily accommodated into COTS processors and ease
threats posed by SEU-induced control flow errors to a minimal
level throughout life expectancies of common pico-satellites.

Therefore, it is applicable to and useful for such processors
on pico-satellites during their space missions.
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2. Theory and realization

GTCFC transforms control flow graph of a target program
into its graph tree notation that can be stored with a linear

space complexity, assigns each (virtual) vertex in the graph tree
(denoting a basic block in the program) a specific ID and each
edge a signature, and performs checking of branching by com-

paring the pre-stored signatures to their runtime-generated
counterparts. This section gives the details of the algorithm.
Fig. 1 Generation of a graph tree.
2.1. Definition

To start with, definitions of relevant concepts (partly inherited
from Oh et al.8) are provided, despite that some of them have
already been referred to as follows.

Basic block: a maximal set of ordered instructions that exe-
cutes from the first to the last, with no branching except possibly
the last. Vertex: basic blocks are denoted by vertices vi (i 2 {1, 2,

. . .,N}) in the control flow graphG, whereN is the total number
of basic blocks.V: {vi; i 2 {1, 2, . . .,N}}, a set of vertices denoting
basic blocks. suc(vi): a set of successors of vi inG. pred(vi): a set of

predecessors of vi in G. Virtual vertex: vvi,p (i 2 {1, 2, . . ., N},
p 2 {1,2, . . ., Pi}, card(pred(vi)) P 1), where card(pred(vi)) is
thenumber of the elements of the set pred(vi) and Pi the number
of virtual vertices divided from vi; logical mirrors of divided ver-

tices for use in building the graph tree notation of the control
flow graph gtG. VV: V [ {vvi,p; i 2 {1, 2, . . ., N}, p 2 {1,2, . . .,
Pi}, card(pred(vi))P1}, a set of vertices and virtual vertices in

gtG. Edge: a legal branching from one basic block to another
is denoted by a directed edge between the two correspondent
(virtual) vertices in G. E: {ei,p; j,q; i, j 2 {1, 2, . . ., N}, p 2 {1,2,

. . ., Pi}, q 2 {1,2, . . ., Pj}, vj 2 pred(vi)}, a set of edges denoting
legal branches. Virtual edge: vei,p (i 2 {1, 2, . . ., N}, p 2 {2, 3,
. . ., Pi}), circuits in G are substituted by virtual edges in gtG.

VE: E[{vei,p; i 2 {1, 2, . . ., N}, p 2 {2, 3, . . ., Pi}}, a set of edges
and virtual edges in gtG.G: control flow graph {V,E}. From the
definitions ofV andE, a programcanbe represented bya control
flow graph, G. gtG: the graph tree notation of the control flow

graph {VV, VE}. aID_vi (i 2 {1, 2, . . ., N}): assigned ID of vi.
aID_vvi,p (i 2 {1, 2, . . ., N}, p 2 {2, 3, . . ., Pi}): assigned ID of
vvi,p. s_ei,p; j,q: signature of ei,p;j,q. bri,p;j,q: a branch from one (vir-

tual) vertex to another. rs_bri,p; j,q: runtime signature of a branch
from one (virtual) vertex to another. Branching error/illegal
branching: vj is in suc(vi) and vi is in pred(vj) if and only if bri,j
is included in E. If a program is represented by its G= {V, E},
bri,j is illegal if it is not included in E. Illegal branches can result
in various errors as stated above.
2.2. Graph tree

Control flow graphs are transformed into their graph tree
notations in order to allow each (virtual) vertex an exclusive

parent as in common trees. The fundamental idea of this trans-
formation is to divide a vertex with multiple predecessors into
equally multiple virtual vertices. Fig. 1 shows an example of a

control flow graph and the result of the transformation, or its
graph tree notation gtG, in its left and right halves, respec-
tively. In the figure, the solid circles represent the vertices in

both G and gtG, while the dashed circles represent the virtual
vertices in gtG. Similarly, the solid and dashed arrows repre-
sent the edges in both G and gtG, and the virtual edges in

gtG, respectively.

Theorem 1. A control flow graph G can be transformed

into a notation where each vertex bears an exclusive prede-
cessor (the graph-tree notation).

Proof. A vertex within a graph has to bear one of the four
patterns of in-degrees, namely with no, a single, or multiple

predecessors, and a loop. With the process stated below, all
four types of vertices either have only one predecessor in the
first place, or can be transformed into a set of (virtual) vertices

where each does so. As a result, the process yields a notation
of the original graph where each vertex bears an exclusive
predecessor. Such a notation of the graph is its graph-tree

notation.

At compilation time, the control flow graph of the target

program is acquired as in most control flow checking algo-
rithms, and the following process is performed to obtain its
graph tree notation gtG.

(1) Vertices with no or one predecessor remain unchanged.
Examples are v10, v3, v4, v5, v6, and v8 in Fig. 1.

(2) Vertices with more than one predecessor are divided into

the same number of virtual vertices as that of its prede-
cessors. For convenience, virtual vertices of one vertex
are always labeled in the ascending sequence of integers,

and in correspondence to the same order of the labels of
its predecessors. Each virtual vertex then has one of the
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predecessors of its original vertex as its exclusive parent,

while those labeled ‘‘1’’ additionally inherit the relation-
ship with the successors of their original vertices. Bear in
mind that the virtual vertices are logical mirrors existent

only in gtG, instead of physical copies of the vertices.
For example, v7 in Fig. 1 bears three predecessors, thus
are divided into three virtual vertices, vv7,1 through
vv7,3. Each of the virtual vertices inherits a parent of

the original vertex v7 as its exclusive parent, i.e., v5, v6,
and v8, respectively. Additionally, vv7,1 branches to
vv1,2 as a heritage of the edge from v7 to v1.

(3) Vertices with loops, i.e., edges pointing from the vertices
to themselves, cannot be directly transformed in the
same manner as Process (2), otherwise the loop would

still be present in gtG to damage the tree nature. Thus
for each vertex with a loop, a null vertex filled with
one NOP and one branching to the entrance of the ori-
ginal vertex instructions is added upon compilation.

Meanwhile, the original vertex need be altered to branch
to the entrance of the null one with an extra edge. Such a
pre-processing changes the loop into a circuit while

retaining the original actual control flow. Afterwards,
the graph tree notation generation for that vertex is
the same as for others. For example, in Fig. 1, the gen-

eration process of the gtG has a null vertex v11 inserted
between the vertex v9 (with a loop) and its successor v1,
and v11 in turn branches back to v9. Then v9 is divided

into two virtual vertices as Process (2) does.
(4) Virtual edges connecting virtual vertices are introduced

into gtG to resemble circuits among vertices in G. Each
virtual vertex but the one labeled ‘‘1’’ (for convenience)

divided from a vertex bears one virtual edge towards the
latter. Virtual edges indicate that as execution of their
origins completes, control flow continues from their ter-

minals. In other words, they are indicators of the logical-
mirror relationship between virtual vertices, instead of
true edges in trees. Therefore, they do not damage the

tree nature that every (virtual) vertex bears only one par-
ent. For example, in gtG of Fig. 1, virtual vertices vv2,2,
vv7,2, and vv9,2 have virtual edges pointing to vv2,1, vv7,1,
and vv9,1, respectively.

As a result, the graph tree notation of the control flow
graph takes on the topology that every (virtual) vertex has only

one parent.

2.3. (Virtual) vertex IDs and branching signatures

To each undivided vertex and virtual vertex labeled ‘‘1’’, a un-
ique integer between 1 and card(V) is assigned as its ID (aID_vi
or aID_vvi,1), which can also be considered as IDs of the basic

blocks. Similarly, to each virtual vertex with a label other than
1, a unique integer between card(V) + 1 and card(VV) is as-
signed as its ID (aID_vvi,p, p> 1). Thus a unique signature
(s_ei,p;j,q) composed of the IDs of the (virtual) vertices on both

of its ends for each edge (excluding virtual edges) is also born.
Note that for faster memory access of runtime signature check-
ing, it is recommended that the length of the IDs be shorter

than or equal to the word length W of the target processor.
However, under circumstances of card(VV) larger than 2W, it
is necessary and applicable to apply IDs longer than W.
2.4. Control flow checking

GTCFC makes use of the graph tree data structure established
above by checking whether a (virtual) vertex is arrived at via its
exclusive parent. It generates the runtime edge signature at

both the entrance and the exit of each basic block, and com-
pares it to its pre-stored counterpart at the exit for control flow
legality check.

IDs of (virtual) vertices and the relativity information of

parents (RIP) are generated and pre-stored as constants
and an array of (card(VV) + 1) constant elements respec-
tively in the target program, along with the generation of

the graph tree during the compilation of the target program.
For RIP, IDs of (virtual) vertices are indices and IDs of their
exclusive parents are elements; ID of the parent of the root

(virtual) vertex of gtG is defined as 0; and a zero-indexed ele-
ment is reserved for checking for special types of branching
errors.

Two variables cVID and pVID for caching IDs of the
current and previous vertices respectively are defined. These
variables are meant to keep track of the last branching. An
array of (card(V) + 1) elements cVVID for current virtual

vertex IDs is also defined, with IDs of undivided vertices
and virtual vertices labeled ‘‘1’’ being indices, and elements
filled dynamically with IDs of the current virtual vertex

along with the program execution. The zero-indexed ele-
ment is left void. The introduction of this array aims at
preserving the information of the origin and destination

of the expected branching right before it takes place, and
having the correspondent information of the branching that
actually has taken place checked against the former for its
correctness.

With such preparations, control flow checking is carried out
in four steps at the entrances and exits of the basic blocks, as
described below.

Step 1 Initialize the correspondent element of cVVID to the
root (virtual) vertex of gtG as its ID, and the rest of its ele-
ments, cVID and pVID as 0.

Step 2 At the entrance of each basic block, update
pVID with cVID, and cVID with the ID of the current
vertex. This step is to identify the branching to the basic

block (s epVID;cVVID½aID vi �; symbolizing the current basic
block or vertex with vi) with its signature for the checking
in Step 3, and preserve the ID of the current vertex for
its successors.

Step 3 Before branching to one of its successors at the exit
of each basic block, check whether RIP[cVVID[aID_vi]], which
is the ID of the exclusive parent of the current (virtual) vertex,

is equal to pVID. That is, check whether rs_brpVID;cVVID[cVID]

is equal to s epVID;cVVID½aID vi �. A non-equality result suggests
that a control flow error has occurred, and the program execu-

tion has to be terminated for error handling.
Step 4 At the exit of each basic block, a conditional branch-

ing (if there is) has to be altered into the pattern of decision of
branching, or the succeeding vertex and virtual vertex, fol-

lowed by clearing cVVID[aID_vi], updating the correspondent
element to the succeeding vertex of cVVID with the ID of the
decided succeeding virtual vertex, and the correspondent

unconditional branching consecutively. This step is to identify
the branching expected to take place next with its runtime sig-
nature (rs_brpVID;cVVID[cVID]).
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Or in C-Language pseudo-code, the checking scheme can be
described as follows:

{
. . .
unsigned int cVID = 0, pVID = 0;

unsigned int cVVID[card(V) +1] = {The element for the
entrance virtual vertex equals to its ID, and all other equal
to 0};

unsigned int const RIP[card(VV) + 1] = {Each element
equals to the assigned ID of its exclusive parent};
. . .
void func(){

. . .
// basic block i (vi in G)
// R1: Current Runtime Signature Generation

L1: pVID = cVID;
L2: cVID = aID_vi;
// R2: Original Codes

Original codes except those branching to the succeed-
ing basic block
// R3: Runtime Signature Checking

L3: if (RIP[cVVID[aID_vi]] ! = pVID) goto
ERROR_HANDLING;
// R4: Branching Decision (if there is)
Branching decision

// R5: Succeeding Runtime Signature Generation
L4: cVVID[aID_vi] = 0;
L5: cVVID[ID of the succeeding vertex] = ID of the suc-

ceeding virtual vertex;
// R6: Branching:
Branching to the succeeding basic block

// End of basic block i (vi in G)
. . .

}

. . .
ERROR_HANDLING:
. . .
}

The pseudo-code of the hardened basic block i(vi) is par-
titioned into six regions. R1 is for generating the runtime

signature of the branching that has taken place right before
its execution. R2 includes the original codes of the basic
block except the branching decision instructions. R3 checks

the runtime signature of the last branching (before the exe-
cution of R1). R4 includes the altered codes of the basic
block for branching decision (if there is). R5 generates the
runtime signature of the branching about to be made by

the basic block. Note that if the branching from the basic
block is unconditional, R4 is vacant and R5 follows R3 di-
rectly up, and then R6 kicks out the branching. Meanwhile,

the inserted lines for control flow checking are labeled L1
through L5.

It should be added that if a checking line of Step 3 (L3) is in-

serted after Step 2 (R1) too, the detection latency could be under-
standably shorteneddue to the control flowchecking in advance.
This would be accompanied by the instruction and execution

time overheads beingmagnified sincemore redundancy has been
introduced, and the detection capability remaining the same.
Thus, it is reasonable not to make such an insertion.
3. Detection capability

Before proving the detection capability of GTCFC, several
assumptions have to be made. Data errors are assumed to be

handled by other schemes. This can be paraphrased into that
all data should be correct. Moreover, since branching errors
within one basic block and incorrect conditional branching

decisions can also be perceived as data errors9, only cross-
boundary errors are taken into consideration here.

If a branching from vi to vj is legal, i.e., it originates from the
last instruction of basic block i(vi) and terminates at the first of

basic block j(vj), and the latter is a legitimate successor of the for-
mer, pVID equals to aID_vi, cVVID[aID_vj] equals to the ID of
the virtual vertex divided from vj as the child of vi, and RIP[cV-

VID[aID_vj]] equals to pVID at L3 of vj. Thus the branching is
checked to be legal. Otherwise, the branching is illegal.

In the last section, a hardened basic block is partitioned

into six regions. Correspondently, branching errors can be
classified according to their different original and terminal re-
gions within basic blocks, and the detection capability of

GTCFC for cross-boundary branching errors can be proven
via enumerating their combinations.

Theorem 2. GTCFC is able to detect all single and multiple
cross-boundary branching errors.

Proof. Suppose basic block i(vi) erroneously branches to
basic block j(vj), and basic block j is arrived at via a presumably
legal branching (otherwise, it would have been detected in the
manner proven below) from basic block k(vk). If the error is:
(1) From regions before L5 of vi to regions before L4 of vj:
since L5 of vi has not been executed, cVVID[aID_vj]
remains 0 at L3 of vj. This makes RIP[cVVID[aID_vj]]
0 and not equal to pVID. Therefore, the branching error

from vi to vj is detected at L3 of vj.
(2) From L5 of vi to L1 of vj: L5 of vi has updated the cor-

respondent element to the succeeding vertex of cVVID

with the ID of the succeeding basic block. If vj is the
expected successor of vi, the branching error only skips
the branching instruction from vi to vj, so no control

flow error occurs in reality. If it is not, cVVID[aID_vj]
remains 0. This allows the error to be detected at L3
of vj in a similar manner to (1).

(3) From L5 of vi to L2 of vj: at L3 of vj, pVID remains
aID_vk, while cVVID[aID_vj] has been updated to the
ID of the succeeding virtual vertex of vi. This results in
an inequality between RIP[cVVID[aID_vj]] and pVID.

Thus the error is detected at L3 of vj.
(4) From L5 of vi to L3 of vj: this type of branching errors

bears the same pVID and cVVID[aID_vj] values as in

(2). As a result, the error is detected at L3 of vj.
(5) From all regions of vi to regions of vj after L3: as the exe-

cution of the remainder of vj results in a branching to the

runtime successor of vj, such errors can be perceived as
ones from vi to it. Therefore, they can be detected at
L3 of the runtime successor of vj as explained above.

(6) In conclusion, GTCFC has the capability of detecting all

single (categories (1) through (4)) and multiple (Cate-
gory (5)) cross-boundary branching errors.
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4. Performance and overheads analysis

The performance and overheads of certain algorithms can be
variable while retaining similar traits and relativities among

different architectures and instruction sets. Thus, although
the analysis for performance (detection latency) and overheads
(memory, instruction, and execution time) of GTCFC has to

be instantiated, it is logically significant in a general sense.
Here and later, the analysis and tests are based on the realiza-
tion of the algorithm on OBCs of in-service ZDPS-1A pico-
satellites and their proposed successive products.22 The OBC

is mainly responsible for handling (including acquisition, for-
matting, storage, and distribution) of onboard data of its host
satellite. It utilizes an 8052-compatible COTS processor,

ADuC841 from Analog Devices. The processor possesses a
Princeton architecture, with an on-chip random access mem-
ory (RAM) for data of 2 kbytes (including its register file),

and a non-volatile floating-gate read-only memory (ROM)
for programs of 62 kbytes. Like most micro-controllers, its
program is executed directly on the ROM, without having to

be loaded into a program RAM. The processor runs at a core
frequency of 4 MHz. Yet unlike most 8052-compatible ones
that take 12 clock cycles to accomplish an instruction cycle,
it executes one instruction per clock cycle. That is to say, it exe-

cutes roughly 4 million instructions per second (MIPS). Addi-
tionally, the processor carries peripherals of a timer and a
serial port as included in standard 8052 processors. As seen la-

ter, they allow for a great convenience for the tests to be de-
scribed in Section 5.

Theplatform for instantiating the solution is chosen based on

the following reasons. Firstly, one of the major purposes of this
paper is to validate the adequacy of application of GTCFC in
COTS processors on pico-satellites in their real space missions.

Secondly, such 8052-compatible processors have seen wide
applications in small satellite projects.4 Thirdly, as an important
part of the product line of the authors’ research institutes, the
OBCs have successfully fulfilled all their engineering tasks and

scientific goals in the pico-satellites’ real space missions since
launched in September 2010, and have their on-orbit life expec-
tancies well extended. Thus, they are considered qualified as

standard equipment on successive satellite products under devel-
opment. Last but not least, the goals andmissions of these satel-
lites comprise the research of this paper.

Suppose gtG of the target program has no more than 255
(virtual) vertices, i.e., card(VV) 6 255. This makes the lengths
of the assigned IDs no longer than the word length of the plat-
form (8 bits). Thus the demand for the fast processing recom-

mendation in Section 2.3 is fulfilled.

4.1. Detection latency

Detection latency can be quantified in processor cycles, and is
defined as the number of processor cycles to run between the
terminal of the illegal branching and the line detecting the er-

ror here. As pointed out in Section 3, the detection of single
branching errors in GTCFC takes place at the checking line
L3 of the terminal basic block of the error, and that of multiple

ones at the same line of the runtime successor of the terminal
basic block. Given that the terminal lines of branching errors
can be considered to submit to the even probability distribu-
tion, the expectation of the detection latency of single branch-
ing errors (DL s) is the average of the average detection
latency of such errors terminating at each basic block, or:

DL s ¼
XN
i¼1

Lði; 1; 3Þ
2

� Lði; 1; 3Þ
LT

ð1Þ

where L(i, p, q) is the number of processor cycles to run from

the pth to qth region of basic block i, and LT is the length of
the target program.Similarly, that of multiple branching errors
DL m is

DL m ¼
XN
i¼1

Lði; 3; 6Þ
2

þ Lði; 1; 3Þ
cardðVÞ �

Lði; 3; 6Þ
LT

� �
ð2Þ

Thus, the overall average detection latency DL is

DL ¼ DL s�
XN
i¼1

Lði; 1; 3Þ
LT

þDL m�
XN
i¼1

Lði; 3; 6Þ
LT

ð3Þ

It can be reasonably observed that the expectancy of detec-
tion latencies is in positive correlation to the average length

of basic blocks. Additionally, it can be easily validated that
the sample average of the detection latencies is an unbiased
estimation of DL, and converges to the latter as the sample
volume of branching error detection escalates.

4.2. Memory overhead

Each of the variables pVID and cVID takes up a memory

space of the length of the assigned IDs, or 1 byte under the
assumption above. In the meantime, arrays cVVID and RIP
take up memory spaces of (card(V) + 1) and (card(VV) + 1)

times the assigned IDs respectively. Thus, the memory over-
head of GTCFC is of a linear complexity.

4.3. Instruction and execution time overheads

Statistics show that it takes the target program 19 more
instructions, 32 more bytes for instruction storage, and 41
more cycles of execution time per basic block to be hardened

by GTCFC on the OBC. For the whole program, the over-
heads are those times card(V) respectively. Note that the in-
equivalence among the three figures is due to the CISC nature

of 8052.

5. Test results and discussion

Tests of GTCFC for various target programs, including bub-
ble sort, insertion sort, matrix multiplication, and binary
search are carried out on the OBC. Despite that they are pro-

cessor-specific, their results are mostly significant in a general
sense for the same reason given in Section 4.

Four target programs are chosen for the tests for a certain

series of reasons. Firstly, they present certain varieties of con-
trol flow graph patterns. Bubble and insertion sorts and binary
search take a lot of branching among relatively simple calcula-
tions, leaving more substantial overheads. While matrix multi-

plication carries out a lot of time-consuming multiplying and
much less branching. At the same time, these target programs
make use of almost all instructions available for 8052, includ-

ing those for arithmetic and logic calculations, and branching.
Comparisons of the targets to the real program of the OBC for
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its current space mission shows that the formers take similar
control flow graph patterns and apply to merely the same
instruction sets as the latter. Therefore, the formers are ade-

quate representatives for the latter in such senses. Meanwhile,
the target programs are merely the most common standardized
algorithms that see a great deal of applications. This allows

them being even more representative.
The tests are composed of four steps, namely benchmark

generation, tests for detection capability, performance and

overhead with and without injections, and comparison tests.
Details of the steps are given below.

Step 1 An original target program executes, with a timer
interrupt measuring its execution time as benchmark.

Step 2 The GTCFC-hardened target program executes with
the same timer interrupt measuring its execution time for cal-
culating the execution time overhead.

Step 3 The GTCFC-hardened target program executes with
error injections. Two interrupt processes are introduced in this
step. A timer interrupt is used similarly as in the previous two

steps for measuring the execution time of the hardened pro-
gram and detection latencies of errors, while a serial-port inter-
rupt serves as a software runtime injector for branching errors.

It does so by receiving injection commands from a host com-
puter, and making correspondent jumps upon its exit to the
designated addresses by the commands within the memory
occupied by the hardened target program. Instead of formaliz-

ing the compositions and structures of the pools of the injected
errors, they are generated in a randomized pattern to simulate
real branching errors to the fullest extent possible. The occur-

rence time of the injections is randomly given by the host. That
is to say, the original addresses of the branching errors are ran-
dom. Meanwhile, the terminal addresses given by the injection

commands are generated randomly. Furthermore, a sample
volume of 10000 injections is obtained for each test to ensure
their statistical credibility.

Step 4 Comparison tests of GTCFC versus two preeminent
algorithms with well-established high performance and low
time overheads among the enumerated previous work, ECCA
and CCA,9 are also carried out. Insertion sort and matrix mul-

tiplication are chosen as targets due to their radically different
patterns of control flow graphs and lengths of basic blocks.
For these tests, basic block designations, error handling, and

benchmarking and testing schemes are all the same as those
for GTCFC (and as in the previous three steps). Meanwhile,
the same statistical parameters are extracted from the results.

The results of the first three steps of the tests are given in
Table 1, in which an overhead rate means the ratio of the extra
resource used by GTCFC compared to that used by the origi-
nal target program before hardening. Note that although the

injected errors are randomized despite their classifications, sta-
tistics of the results show that all five types of injected errors
have been successfully detected by GTCFC for each target

program. Additionally, the results are actually uncorrelated
with the workloads of the target programs. This is because
the figures of detection capability, performance and overhead

are either irrelevant to or measured in proportion to them.
The three steps show that GTCFC can detect over 90% of

all the randomly injected branching errors. There are several

reasons for the minority of the injected errors not being de-
tected. Firstly, since the errors can cause incomplete execution
of the multiple-instruction checking lines, correspondent detec-
tion omissions are possible although highly unlikely. Addition-
ally, injections can result in no branching errors, or incorrect
conditional and intra-basic-block branching errors. The first
case poses no errors, while the latter two are considered as data

errors and not supposed to be detected by GTCFC as stated
above. Yet none of these cases are excluded from the tests.

Memory, instruction, and execution time overheads are tar-

get-sensitive parameters. For the tested programs, approxi-
mately 20 bytes of memory are spent on storing the extra
data structures. Instruction and execution time overheads vary

due to the differences in control flow graph patterns and
lengths of basic blocks. Due to the differences in control flow
graph patterns of the target programs stated above, it takes
significantly lower ratios of instructions and execution time

for GTCFC to harden matrix multiplying than bubble and
insertions sorts. The average of branching error detection
latencies of different programs are in proportion to the average

lengths of their basic blocks, as Section 4.1 suggests. Therefore,
it is reasonable that it takes GTCFC a much longer average la-
tency to detect branching errors in matrix multiplication than

in others.
The results of the Step 4 (comparison tests) are shown in

Table 2.

Observably from the statistics, it takes ECCA more time
(instruction and time overheads, and detection latencies) to
achieve lower error detection rates than GTCFC for both tar-
gets. This is mainly because the former employs multiplication

and division for signature transfers. Such operations are time-
and instruction-consuming on processors without multipliers
like the one in question, and bring out higher error probabili-

ties in executing the inserted instructions. CCA projects a
slightly higher detection capability and less overhead for inser-
tion sort than GTCFC. But for matrix multiplication, more

overheads (although less than ECCA) are cost to yield a lower
detection rate than for GTCFC. This reflects its lousier detec-
tion capability of certain categories of errors.9 Yet for both

target programs, GTCFC needs more memory space than
the others as expected.

Such results suggest that GTCFC not only offers a high
detection capability of errors and performs steadily well for

different types of targets, but also does so with low latency
and time overheads, and without having to rely on specific
hardware. Meanwhile, its major requirement is only a memory

space with complexity of O(card(V) + card(VV)) as explained
earlier. On the contrary, although both ECCA and CCA take
up roughly no extra memory spaces, the former resorts to

hardware multipliers to realize its high performance and low
time overheads, or decays to a slow and weak one when work-
ing without them, while the detection capability, and perfor-
mance and time overheads of the latter are drastically

variable and often worse than GTCFC.
The test results also show that GTCFC is adequate for

application on COTS processors on pico-satellites in their real

space missions. The current space missions of the ZDPS-1A
pico-satellites take on a lot of similarities to those of other
pico-satellites developed across the globe23–27 in capabilities,

workloads, and resource consumptions and margin levels of
OBCs, orbital conditions and life expectancies. Therefore,
the profile of its current space missions with significance in a

general sense is chosen here as a grounding for the validation.
On one hand, GTCFC can be appended into the OBCs of

the ZDPS-1A pico-satellites conveniently with still sufficient
system margins left. The capability of the processor of the



Table 1 Results of the Steps 1–3 of the tests of GTCFC.

Target program Injected error Detected error Detection rate (%)

Bubble sort 10000 9057 90.57

Insertion sort 10000 9092 90.92

Matrix multiplication 10000 9425 94.25

Binary search 10000 9042 90.42

Target program Memory

overhead (byte)

Instruction overhead

rate (%)

Average execution time

overhead rate

Average detection

latency (cycle)

Bubble sort 20 205.13 70.88 117.92

Insertion sort 26 222.56 60.73 95.38

Matrix multiplication 20 26.75 19.32 142.96

Binary search 20 30.37 60.21 116.26
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OBC has been described in Section 4. It takes roughly 30% of
its time to run the real program for the current space mission,

waiting for tasks to come by running NOP instructions for the
other 70% of time. Thus, even if the maximum execution time
overhead tested of 71% is imposed, the processor still has an

approx. 49% overall idle time. The real program uses approx.
1 out of the 2 kbytes data memory. The graph tree notation of
its control flow graph shows that it has approx. 150 vertices

and 250 virtual vertices. Thus, it can be calculated that the
data memory can still bear a 30% spare space with GTCFC
hardening the program. A space of 18 kbytes out of the
62 kbytes program memory is used by the real program. Thus,

the worst-case instruction overhead tested will have the pro-
gram space expense enlarged to approximate 60 kbytes.
Although the margin left is not significant, it can be accepted

since the onboard programs in pico-satellite space missions
are usually firm. Even if they are not, the program memory
of the OBC can be easily expanded off their processors. More-

over, since GTCFC imposes the need of neither utilizing any
external hardware to the processors, nor speeding them up
to compensate the execution time overhead, it does not in-
crease the power consumption of the OBC, or ruin the overall

energy balance of the pico-satellites.
On the other hand, GTCFC has the ability to minimize the

risk of control flow errors being undetected to the space mis-

sion of the pico-satellites. The ZDPS-1A pico-satellites, like
most others do, operate on low-earth orbits (with altitudes
of approximate 650 km). The rate of SEU in RAMs on that
Table 2 Results of comparison tests of GTCFC vs ECCA and CC

Target program Hardening algorithm Injected error D

Insertion sort GTCFC 10000 9

ECCA 10000 7

CCA 10000 9

Matrix multiplication GTCFC 10000 9

ECCA 10000 7

CCA 10000 7

Target program Hardening

algorithm

Memory

overhead (byte)

I

o

Insertion sort GTCFC 26 2

ECCA 1 5

CCA 3 2

Matrix multiplication GTCFC 20 2

ECCA 1 4

CCA 3 3
altitude was measured on orbit to be 4.21 · 106/(bit · day)
by SAMPEX from Godard Space Flight Center of National

Aeronautics and Space Administration (NASA).28 Whilst it
is reported that the rate for floating-gate ROMs is five orders
of magnitude lower than that of the RAMs under the same

radiation input.29 Therefore, during the expected on-orbit life
of 90 days of the ZDPS-1A pico-satellites, the 2 kbytes
(16 kbits) data RAM of the OBC would experience a total of

6.0624 upsets, while that figure of the program ROM is a neg-
ligible 1.88 · 103. Since GTCFC can detect at least 90% of all
control flow errors, even if all of the upsets are prone to cause
such errors, GTCFC can reduce the total number of them to

0.6 during the 90 days. This means that the GTCFC-hardened
OBC can operate mostly safely with at most one control flow
error unattended throughout the on-orbit life of its host pico-

satellite.
Nevertheless, there are certain limitations within the

GTCFC solution. GTCFC requires a memory space of a linear

complexity as has been mentioned. In cases of the target pro-
grams having extremely abundant branching, such an over-
head will be more of a significant drawback compared to
other software solutions with fixed memory overheads. Addi-

tionally, GTCFC cannot handle branching errors that jump
to unused program memory. However, in fact, such errors
are not in the domain of the software control flow checking

solutions, thus not meant to be handled by them, including
the ones presented in the Introduction Section. Instead, in
space missions, a technique called interrupt trapping is usually
A.

etected error Detection rate (%)

092 90.92

928 79.28

134 91.34

425 94.25

760 77.60

559 75.59

nstruction

verhead rate (%)

Average execution

time overhead rate (%)

Average detection

latency (cycle)

22.56 60.73 95.38

95.49 319.02 196.70

18.80 57.10 78.37

6.75 19.32 142.96

0.86 54.50 763.16

9.23 26.94 422.38
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applied to tackle these problems. The technique fills all the un-
used program memory with an unconditional branching
instruction to the entrance of the target program. Thus, when-

ever a branching error lands in the unused memory, the pro-
cessor is reset by such an instruction.

6. Conclusions

This paper proposes a generic high-performance and low-time-
overhead software control flow checking solution, GTCFC.

Firstly, a tree notation for graphs is introduced, and control
flow checking is made possible by making use of the tree char-
acteristic that each vertex has only one parent. Then the algo-

rithm is proven to bear the capability of detecting all single and
multiple errors while remaining generic, or applicable in arbi-
trary instruction sets and independent of any specific hard-

ware. Additionally, a detailed analysis reveals its low
detection latency and time overheads, and linear-complexity
memory overhead. In the test phase, GTCFC not only per-
forms in consistency with the theory to detect over 90% of

the randomly injected and all-pattern-covering branching er-
rors with low detection latency and time overheads, but beats
two well-established preeminent control flow checking algo-

rithms, CCA and ECCA, in these dimensions. The results
are further analyzed to reach such a conclusion that GTCFC
not only can be accommodated in pico-satellites conveniently

with still sufficient system margins left, but also has the ability
to minimize the risk of control flow errors being undetected in
their space missions. At the same time, limitations of the solu-
tions are also pointed out. Although the analysis and tests are

instantiated on COTS-processor-based OBC of in-service
ZDPS-1A pico-satellite products, they logically stay generally
significant. Therefore, due to its effectiveness, efficiency, and

compatibility, GTCFC is theoretically proven and experimen-
tally validated ready for applications on COTS processors on
pico-satellites in their real space missions. Future work mainly

lies in mitigating its limitations, and experimenting and apply-
ing it in proposed space missions of ZDPS-1A pico-satellites
and their successors.
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