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Flower patterns are thought to influence foraging decisions of

insect pollinators. However, the resolution of insect compound

eyes is poor. Insects perceive flower patterns only from short

distances when they initiate landings or search for reward on

the flower. From further away flower displays jointly form larger-

sized patterns within the visual scene that will guide the insect’s

flight. Chromatic and achromatic cues in such patterns may

help insects to find, approach and learn rewarded locations in a

flower patch, bringing them close enough to individual flowers.

Flight trajectories and the spatial resolution of chromatic and

achromatic vision in insects determine the effectiveness of

floral displays, and both need to be considered in studies of

plant–pollinator communication.
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Introduction
Visual information is indispensable for insect pollinators

to locate, choose and interact with flowers. However,

insect vision is constrained by the poor optical resolution

of their small compound eyes, which is about a hundred

times lower than that of our single-lens eye [1]. Unlike

single-lens eyes, which are able to focus on objects at

different distances, insect eyes have the same angular

resolution at far and close distances. Therefore, insects

are unable to resolve spatial details of distant objects,

though they can use vision at extremely close distances.

Theoretical analysis of the optical resolution of insect

eyes demonstrates that most flower patterns can be re-

solved only when the insect is millimetres away [2]

(Figure 1). Hence small-sized flower patterns do not play
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a role when insects approach flowers from some distance,

as spatial details simply cannot be optically resolved.

Resolution of chromatic vision is predicted to be lower

than the eye’s optical resolution. Different spectral types

of photoreceptors that contribute to colour coding are

randomly located across the eye [3]. Hence, chromatic

vision requires that signals from more than one ommatid-

ium are integrated which reduces the resolution below

the limit set by the optics of the eye [4].

Under dim light conditions the spatial and temporal

resolution of insect vision decreases further in order to

improve contrast sensitivity. Many nocturnal insects, such

as moths and beetles, have compound eyes with super-

position optics, which confer higher sensitivity but lower

spatial resolution than the apposition eyes of most diurnal

insects. Several species of night-active bees are special in

possessing diurnal-type apposition eyes with sufficient

sensitivity to allow visually-guided foraging in twilight,

and even during the night [5��]. The contrast sensitivity

of such eyes can be enhanced by neural mechanisms, and

anatomical evidence suggests that nocturnal bees sum

signals from many ommatidia, albeit with the necessary

reduction in spatial resolution [6]. Vision becomes slower

under low light levels, due to temporal summation of

receptor and neural signals that can occur in both types of

eyes, and affect the insect’s flight speed and trajectories

[7,8,9��]. Interestingly, some nocturnal insects have not

sacrificed colour vision in order to increase their visual

sensitivity and can identify flowers on the basis of their

colours even during moonless nights [10,11].

Insect views of flowers differ fundamentally from ours,

and human observers usually overestimate the signalling

distance range and functions of floral displays [e.g. 12].

The low spatial resolution of insect eyes defines their

perception of flower colours, shapes and patterns. Beha-

vioural experiments confirm that insects cannot resolve

small objects or small-scaled variations of shapes and

patterns over long distances. For instance, the detection

limit for single-coloured discs is 58 of angular size in

honeybees, around 28 in large-sized bumblebees and 18
in swallowtail butterflies, which can be related to differ-

ences in eye size [13,14,15�]. For a 1 cm flower, this

corresponds to a viewing distance of 11–57 cm, respec-

tively. Dissectedness of the outline shape in flower-like

targets impairs the detection range [16], as predicted by

the optical model of the honeybee eye. The behavioural

resolution of chromatic vision is even worse — honeybees
www.sciencedirect.com
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Flowers through bee eyes. Shown are pattern displays of small flowers (1 cm scale) in human colours (first row) and ‘bee colours’ (second row,

high spatial resolution), for methods see [2,29]. From left to right: Traunsteinera globosa, Viola biflora, Helianthemum nummularium, Geranium

robertianum. Spectral sensitivities of the S, M and L-receptors of honeybees (peak sensitivities 344 nm, 436 nm, 556 nm) were used to calculate

quantum catches in each pixel of the multispectral images. To show ‘bee colours’ (second row) quantum catches were converted into RGB values

for the three primary monitor colours (see legend). The third row shows the images of single flowers projected onto the ommatidial lattice of the

honeybee eye at a close distance (2 cm). Images in the fourth and lowest row simulate views at distances where the flower subtends a visual

angle of 168, which is above the chromatic threshold, or 78, which is below the chromatic threshold (and approximately at the detection limit,

within the range of the achromatic (brightness) visual system). Note that above the chromatic threshold, at short distances, only larger-sized

patterns are optically resolved. Visually contrasting small ornaments or flower parts are visible when the insect is already on the flower and

invisible during its approach flight (shown here for a distance of 2 cm at which a bee prepares for landing).
cannot detect and discriminate targets on the basis of

chromatic cues if they subtend a visual angle less than

13–158 [17,18]. As viewing distances vary with an insect’s

movements, the appearance of flowers will change con-

siderably, and consequently the insect must be able to

rely on different visual cues when foraging and navigating

in flower patches. To evaluate the functions of floral

displays it is therefore not only important to know how

they are resolved and processed by the visual system of an

insect pollinator but to also consider an insect’s flight

trajectory at different distances from flowers.

Why are flower patterns so widespread and
diverse?
It is usually assumed that flower patterns increase the

diversity of floral displays and help pollinators to discrim-

inate between flowers and to identify the best-rewarding
www.sciencedirect.com 
ones. However, when taking into account the poor reso-

lution of compound eyes and typically small sizes of

individual floral displays, it is evident that flower patterns

can be seen by an insect and influence its behaviour only

when it is already close to the flower, initiating a sequence

of motor actions that lead up to landing and interactions

with the flower. In that phase flowers can use patterns to

exploit visuo-motor responses guiding an insect’s move-

ment [19,20] to optimise pollen transfer and reduce

potential damage from handling of the flower by the

insect.

To communicate with insect pollinators over a distance,

flowers must increase individual display sizes consider-

ably or contribute to shared displays in inflorescences,

mass displays or multi-species patches (Figure 2). Shared

displays in a scene can produce effective signals with
Current Opinion in Insect Science 2015, 12:64–70
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Figure 2

50cm32cm11cmDistance
Current Opinion in Insect Science 

Shared floral displays through bee eyes. Shown is a simulated flower patch. The single-coloured target flower (1 cm in diameter) is in the centre.

When the honeybee views the target flower from a distance of 11.4 cm it subtends a visual angle of 58, the minimum angle to be detected. Its

individual colour cannot be resolved at this distance. At a distance of 32 cm the target flower and other individual flowers in this patch are too

small to be individually detected, but the whole group forms a shared display which subtends a visual angle of 158. The mixed colour of this

shared display will be visible to the approaching bee, but from further away (50 cm), it cannot be resolved. This patch and neighbouring groups of

flowers form larger-sized patterns in the visual scene, with chromatic and brightness cues that can be used by the bee.

Box 1 Bees use colour (chromatic cues) to discriminate single-

coloured discs and two-coloured concentric patterns, but only from

close viewing distances (Figure 3). Bees are colour-blind while

detecting and discriminating objects from further away, when those

subtend small visual angles [13,17,18,67]. In this case they rely on

achromatic (brightness) cues, the signals of the L receptor alone.

However, the detection threshold does not depend on the

magnitude of L-receptor contrast. A critical parameter for the

detectability of patterns is the distribution of L-receptor contrasts

within the target [17,67] (Figure 3). An outer ring with a strong

L-receptor contrast (bright) surrounding a central disc with weak

contrast (dim) is detected over a shorter distance than a single-

coloured disc of the same colour and diameter. The detection

distance is even shorter for patterns composed of a dim ring

surrounding a bright disc [67]. When viewed through bee eyes such

patterns have blurred edges; the impaired detectability is therefore

likely to be a consequence of processing visual information by

detector neurons with centre-surround organisation of their

receptive fields [67]. These neurons are found in visual pathways of

many animals. The consequences of detecting objects through

such detectors vary for flowers of different sizes. Plants with

smaller-sized flowers could have evolved compensatory strategies

by sharing displays, without necessarily growing dense

inflorescences or high densities of conspecific flowers. Sharing

displays can also occur when different species grow in mixed

patches next to each other (Figure 2), by offering large-sized visual

features that inform an insect’s navigational decisions and guide it

towards a reward location with several flowers. In detection

experiments honeybees and bumblebees showed a slightly

improved detectability for groups of three discs that were placed at

sufficiently large inter-disc distances to prevent optical merging

when seen from a long distance [68]. This suggests that detector

neurons interact to evoke differential responses towards extended

distributions of objects across the visual scene.
variable features, suited to influence the insect’s approach

behaviour when it moves through the environment, de-

ciding where to go and which flowers to inspect and visit.

Foraging decisions are not limited to the final stage of a

floral visit. As the insect moves between flowers, the

success of its foraging efforts is influenced by spatial

memory processes and the cost of flight and interactions

with flowers [21–23], and thus also by the effective visual

guidance of the pollinator’s movements. It is therefore

important to consider the spatial scales, over which flower

signals engage with visual and learning mechanisms, to

understand the selective pressures that insect behaviour

exerts on colour and pattern features of floral displays.

Chromatic and achromatic processing in
insect vision
The perception of colour patterns depends on the spatial

distribution of contrast edges in an individual or shared

display. These are processed by colour-blind edge detec-

tion and pattern discrimination mechanisms [24] that are

segregated from a low-resolution chromatic system in

insect vision [25,26��,27]. Achromatic and chromatic neu-

ral pathways operate in parallel and process, respectively,

high and low-frequency components of visual scenes and

objects.

Repetitive elements in pattern design found across

angiosperms [28] point towards evolutionary selection

of feature-dependent functions that target visually-

guided behaviours of insects. Such behaviours are me-

diated in different ways by chromatic and achromatic

visual mechanisms. For example, many flowers display

a concentric (or ‘bulls-eye’) pattern that consists of a

central disc surrounded by a contrasting outer ring.

Patterns that have a bright (for bees) outer ring sur-

rounding a dim disc can be detected from further

distances than those having a bright disc surrounded

by an outer dim ring. It appears that flowers with a

bright outer ring are more common and tend to be

smaller than those having a bright central disc and dim
Current Opinion in Insect Science 2015, 12:64–70 
outer ring, suggesting that this arrangement may have

been selected by insect vision [29]. Nevertheless, the

overall detectability of both types of concentric pat-

terns is worse than that of single-coloured discs (see

Box 1), which suggests that these patterns have not

evolved to simply attract pollinators. Instead they may

be effective for flight control and stabilisation  during

landing and direct the insect towards the centre of the

flower that contains the nectar and pollen rewards.
www.sciencedirect.com
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Spatial resolution of the honeybee’s chromatic and achromatic visual system. Two parallel visual systems in the honeybee are tuned to objects of

different sizes [13,17,18,67]. At short distances when coloured discs subtend large visual angles, bees predominantly use chromatic cues to

detect and discriminate coloured targets. The colour vision system receives input from all three receptor types (S, M, L). At longer distances, the

achromatic visual system mediates detection and discrimination through the L-receptor contrast (achromatic or brightness contrast). The detection

limit for a single-coloured disc presented individually is 58. It does not vary with contrast strength. Signals from several adjacent ommatidia are

processed, presumably by detector units with centre-surround receptive fields [68]. When the bee approaches the target, the angular size

increases; above the chromatic threshold of 13–158 the target’s colour will be resolved and chromatic cues determine the visual perception of

bees. There is sensitivity for achromatic L-contrast but it is low; from short distances bees are able to detect very bright [69], but not less bright

[68] achromatic discs. The distance range for detecting concentric patterns is shorter than for single-coloured discs of the same size and varies

depending on the spatial arrangement of the pattern elements with different brightness contrasts (white – higher L-contrast, grey – lower L-

contrast ).
It is well known that insects discriminate a wide range of

patterns and shapes, from simple to complex, artificial and

naturalistic patterns in objects or visual scenes [e.g.

24,30,31]. After extensive training, bees can learn to

perform difficult tasks such as pattern grouping and

categorisation [32]. Pattern vision is predominantly me-

diated by achromatic mechanisms; in bees by the L (long-

wavelength sensitive or ‘green’) photoreceptor [e.g. 24].

Motion vision in insects is also colour-blind. Movement-

derived visual information helps the insect to avoid

collisions, negotiate narrow gaps, land on a surface, or

locate the nest and foraging sites [recently viewed by33].

Motion parallax and looming cues can improve the de-

tection range for an object placed in front of a background

[34], facilitate landing manoeuvres at flowers with shapes

of distinct depths, or positioning of the proboscis [35].

Movement causes motion blur, but its effect on pattern

vision is negligible in visual systems that acquire visual

information by fixating on objects. Although theoreti-

cally, it is plausible that insects reconstruct the image

from temporal variations of the signal caused by motion,
www.sciencedirect.com 
insects, such as flies and bees, fixate on objects, that is,

acquire visual information in a similar way to verte-

brates. To stabilise gaze they control the orientation

of their body, which sometimes can deviate from their

flight direction, and display saccadic movements which

include fast body turns when changing the direction of

gaze. Gaze stabilisation  is supported by head move-

ments [36,37]; however, these are minute and extremely

fast as the mobility of the head is limited by the insect’s

morphology.

Flight trajectories influence foraging
responses and learning
Since gaze direction is closely coupled with body orien-

tation in insects, the viewing conditions, for example,

distances and directions, during approach and landing on

flowers will strongly depend upon the flight behaviour

and navigational decisions. Thus, flight trajectories influ-

ence the perception and learning of sensory information

by insects. When foraging insects navigate, their routes

and approach trajectories are largely determined by the

availability of suitable visual cues [38,39]. Insects can, to
Current Opinion in Insect Science 2015, 12:64–70
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some degree, flexibly adjust their flight behaviour for

solving navigational and spatial orientation tasks by

actively acquiring specific visual cues for spatial learning

[40,41]. This flexibility is influenced by the cost of

efficiently executing flight and landing movements. Fly-

ing insects obey the laws of aerodynamics, hence ap-

proach and landing manoeuvres during a flower visit

require a number of well-coordinated actions [42�]. To

initiate a landing sequence at short distance from the

flower the flying insect has to adjust the height of the

flight trajectory and reduce its speed significantly. It has

to maintain a good balance of its body to withstand

aerodynamic drag downwards [43]. Sophisticated motor

mechanisms rely on visual guidance allowing the insect to

land elegantly [44��], rather than to crash into a flower,

which is not a trivial task as flowers often move [45].

Flowers exploit the tight connection between vision and

flight trajectory throughout the different phases of the

approach flight and landing sequence. For example,

field observations commonly describe the strong direc-

tionality of bumblebees foraging on vertical inflores-

cences, starting at the bottom and moving upwards

[22,46]. Flower orientation varies, and vertically-pre-

sented flowers on slopes tend to adaptively face

down-slope, receiving more visitation as they offer con-

venient petal orientation for landing of bees moving

preferentially upwards [47]. Observations on flowers

reveal that flower orientation influences the landing

behaviour of pollinators [48��]. It is beneficial for flowers

to guide pollinator movement in a way that enhances

pollen transfer [49], and field observations suggest that

small patterns (‘nectar-guides’) help pollinators to orient

on flowers [50–52].

Colour and multimodal learning at the flower
The presence of colour in flower patterns is often

suggested to attract insects towards the flower based

on innate colour preferences and reflexive feeding

responses [e.g. 52,53]. However, experience may be

equally if not more important: insect pollinators quickly

learn positive associations between food rewards and

colour cues [for reviews see54–56]. The ability to mem-

orise and discriminate diverse colour and pattern cues is

well established for many insect pollinators, and conse-

quently flower choices are strongly influenced by the

sensory experience acquired during foraging and previ-

ous flower visits [e.g. 57–62]. Once the insect arrives at

the flower and is able to see and recognise the contrast-

ing colours of pattern elements, chromatic cues are

likely to reinforce the decision to finalise a landing

sequence or to follow contrast contours. Some colour

elements in flower patterns may however present little

or no chromatic contrast to the insect eye (Figure 1), and

examples are best found among orchids which evolved

an extreme diversity of colour patterns to accurately

manipulate the insect’s movements at the flower for a
Current Opinion in Insect Science 2015, 12:64–70 
single opportunity to deposit pollinia on a specific body

part of the insect.

Whilst at the flower, insects may combine cues for multi-

modal guidance, such as sensory information provided by

the shape of the surface, texture, odours, and electrostatic

forces [e.g. 63�,64–66]. As visual patterns help to make

landing and reward localisation on a flower easier (alone or

in combination with multimodal cues), the perceived

reward value will be enhanced and learning improved;

and consequently pollinators will show preferences for

flowers with patterns.

Conclusions
Pollinating insects forage in a three-dimensional envi-

ronment and look at flowers from different distances and

directions. What they see depends on the spatial reso-

lution of the compound eye and visual mechanisms that

process object information, however, it is also influenced

by their flight trajectories and viewing conditions. What

they choose depends on their vision and visual learning

capabilities and is strongly influenced by navigation and

spatial learning mechanisms. It remains to be under-

stood how decisions are made and behavioural responses

coordinated at far and near distances, as a pollinator

moves between flowers, approaches and visits them.

The underlying neural mechanisms involve basic sen-

sory and motor systems that are shared across different

taxonomic groups of insects. A wide range of flower

search and choice behaviours adopted by insects can be

explained by mechanistic models that take into account

constraints imposed by the optics of insect eyes and

aerodynamics of insect flight, rather than by models

based on the assumptions of higher order cognitive

processing of visual information.
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