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Macrophages are important for mounting inflammatory responses to tissue damage or infection by invading
pathogens, and thereforemodulation of their cellular functions is essential for the success of the immune system
aswell as for maintaining tissue homeostasis. Small non-coding RNAs are important regulatory elements of gene
expression andmicroRNAs are the most widely known to be fundamental for the proper development of cells of
the immune system. Macrophages can exhibit different phenotypes, depending on the cytokine environment
they encounter in the affected tissues. We have analyzed the microRNA expression profiles during maturation
of human primary monocytes into macrophages and polarization by pro- or anti-inflammatory cytokines. Here
we describe the analysis of next-generation sequencing data deposited in EMBL–EBI ArrayExpress under acces-
sion number E-MTAB-1969 and associatedwith the study published by Cobos Jiménez and collaborators in Phys-
iological Genomics in 2014 (1). The data presented here contributes to our understanding of microRNA
expression profiles in humanmonocytes andmacrophages andwill also serve as a resource for novelmicroRNAs
and other small RNA species expressed in these cells.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Deposited data can be found here: http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-1969/
Experimental design, materials and methods

Monocytes are derived from common myeloid progenitors and cir-
culate in the blood stream. Once they migrate into the tissues, mono-
cytes start differentiating into macrophages and, depending on the
cytokine environment that they encounter, they can become polarized
into M1 macrophages (IFNγ + TNFα/LPS), M2a macrophages (IL-4)
or M2c macrophages (IL-10) [2,3]. Previously we have shown that the
incubation of freshly isolated monocytes under cytokine stimulation
for 5 days allows macrophages to differentiate into cells with polarized
phenotypes, which was demonstrated by the expression of characteris-
tic surface markers [4]. Therefore we isolated human primary mono-
cytes and allowed them to differentiate in vitro for 5 days, in the
presence or absence of cytokine stimulation. Subsequently, RNA was
isolated to prepare next generation sequencing libraries.
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Isolation of monocytes and cell culture

Monocytes were obtained from buffy coats from 4 healthy blood
donors. Written informed consents were obtained from all donors in
accordance with the ethical principles set out in the declaration of Hel-
sinki. This study was approved by the Medical Ethics Committee of the
Academic Medical Center and the Ethics Advisory Body of the Sanquin
Blood Supply Foundation in Amsterdam, The Netherlands. Peripheral
blood mononuclear cells (PBMCs) were isolated from buffy coats
using Lymphoprep (Axis-Shield, Oslo, Norway) density gradient centri-
fugation. Monocytes were isolated by adherence to plastic and cultured
in Iscove's modified Dulbecco's medium (IMDM; Lonza, Basel,
Switzerland) supplemented with 10% [v/v] heat-inactivated human
pooled serum (HPS), penicillin (100 U/ml; Invitrogen, Carlsbad, CA),
streptomycin (100 μg/ml; Invitrogen) and ciproxin (5 μg/ml; Bayer,
Leverkusen, Germany) for 5 days in the presence of different cytokines:
IFN-γ at 50 U/ml (Sigma-Aldrich), in combination with TNF-α at
12.5 ng/ml (Peprotech, Rocky Hill, NJ, USA), IL-4 at 50 ng/ml (Peprotech),
IL-10 at 50 ng/ml (Peprotech) or medium alone at 37 °C in a humidified
atmosphere supplemented with 5% CO2.

Library preparation and SOLiD sequencing

Total RNA was isolated from monocytes and 5-day cultured mac-
rophages (unstimulated or cytokine-polarized), using TriPure Isola-
tion Reagent (Roche) according to the manufacturer's instructions.
RNA quality was determined using NanoDrop® Spectrophotometer
(ThermoFisher Scientific, Waltham, Massachusetts, USA) and the
Agilent 2100 Bioanalyzer with the RNA6000 Nano kit and the Small
RNA Chip Kit (Agilent, Santa Clara, CA, USA). All samples used subse-
quently for sequencing had an A280/260 value higher than 1.8 and a
RNA integrity number (RIN) higher than 6. Library preparation was
carried out following the SOLiD™ Total RNA-Seq Kit Protocol (PN
4445374, Life Technologies, Carlsbad, CA, USA) according to the
manufacturer's protocol for Small RNA library preparation. Briefly,
RNA sampleswere first enriched for their small RNA fraction, by size se-
lection between 15 nt and 40 nt on 15% TBE-Urea acrylamide gels. The
small RNA-enriched sampleswere hybridized and ligated for cDNA syn-
thesis. cDNA libraries were further purified with the MinElute® PCR
Purification Kit (Qiagen, Venlo, The Netherlands). After a size-
selection step on 10% TBE-Urea gels, cDNA samples were amplified
on gel using 19 cycles instead of 15 recommended by the manufac-
turer. For multiplexing purposes, the cDNA samples were amplified
using the SOLiD™ 3′ Primers from the SOLiD RNA Barcoding Kit.
cDNA libraries were purified using the PureLink™ PCR Micro Kit
(Invitrogen, Carlsbad, CA, USA) and subjected to a second round of
size selection on gel and purification according to themanufacturer's in-
structions. The quality of the cDNA library was assessed with a smear
analysis using the Bioanalyzer 2100 software (Agilent).

cDNA libraries were pooled together at an equimolar ratio and used
for the emulsion PCR reaction. Workflow Analysis (WFA) Runs showed
that the bead preparation had titration metrics above 74% and Noise-
to-Signal ratio below 5%. The libraries were sequenced to 35 bp read
length in a 1-well deposition chamber using the Multiplex Fragment
Sequencing reagents and the SOLiD™ 4 Analyzer.

Analysis of raw sequencing data

Quality control

The raw data quality was analyzed with FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc), which determines var-
ious sequence characteristics to identify biases in the data. First, the raw
sequence color space data was converted to Fastq format, which com-
prises both the nucleotide sequence and the corresponding nucleotide
quality scores. Subsequently, FastQC was used to determine the per
base sequence quality (average quality at each nucleotide position in
the reads) and the per base sequence content (proportion of each base
at each nucleotide position for all reads; should be around 0.25).
These quality measures were helpful to decide which samples to omit
from further analysis. Several samples had a significantly lower quality
at specific nucleotide positions compared to the rest of the positions
in the reads. These samples also had an unbalanced base content at
many positions, up to 80% per base. We continued with 14 from the
24 samples which varied in size from 1,400,000 to 8,500,000 reads.

Trimming and mapping

To quantify all expressedmicroRNAs in the samples, wemapped the
reads directly against all mature microRNAs present in mirBase version
18 [5], which contained 1919 human microRNAs. We used BWA [6]
for themapping andmade a reference index based on the fasta file con-
taining all mature microRNAs, from which we selected the human
microRNAs. Subsequently, we replaced all uracils with thymines. Prior
to mapping our sequence data, we removed the remaining parts of
the P2 sequencing adapter in the reads with the use of FAR (Flexible
Adapter Remover, an unpublished legacy software tool based on the
Needleman Wunsch alignment algorithm [7]. This resulted in libraries
with reads of unequal lengths varying from16 to 34 bases. For this trim-
ming we required a minimum overlap of 8 bases between the read and
the P2 sequence, and a minimal read length of 15 bases. During align-
ment we allowed for one mismatch and no gaps. After removing reads
mapping to multiple microRNA and reads with a mapping quality of
zero, each sample contained around 12% uniquely mapping reads
which were used to produce an expression count for each microRNA.
Aligned reads were counted in R using the packages Rsamtools [8] and
ShortRead [9]. The counts served as input for the statistical analysis.

Statistical analysis

To identify significantly expressed microRNAs between different
stimulated cells compared with unstimulated macrophages or mono-
cytes, all pairwise comparisons were analyzed using DESeq [10], a
Bioconductor [11] package which uses a negative binomial distribution
for statistical testing. We let DESeq normalize the counts based on esti-
mated library sizes. Counts from technical replicates (2 sequencing
runs) were summed. We used samples with high quality and which
were all isolated from one individual. DESeq is capable of statistical test-
ing without replicates. The method is based on the assumption that the
mean is a good predictor for the dispersion. Given two samples from
different conditions, it is assumed that the majority of genes are not
influenced by the condition and the estimated dispersion between con-
ditions is used for the variance between replicates [10]. We also com-
pared IFNγ + TNFα, IL-4 and IL-10 versus D0 and medium. For further
analysis we plotted the log2 of the fold change (M) versus the average
expression (A) and a clustering of the top 100 most varying microRNAs.

Selection and characterization of miRNAs

From the 1919 human miRNAs reported in miRBase, we identified
779 miRNA sequences in our samples. In order to identify miRNAs
that were truly differentially regulated amongmonocytes and polarized
macrophages, we first selected those miRNAs that had normalized
counts higher than 10 in at least one of the samples analyzed (mono-
cytes, macrophages, M1, M2a or M2c) and resulted in 435 miRNAs.
These miRNAs were divided into two categories, depending on their
expression in monocytes; either higher than 10 normalized counts or
lower. In the first category, 123 miRNAs had normalized count values
below 10 and 312 miRNAs had normalized count values higher than
10 (Fig. 1). The first category would include a group of miRNAs that is
absent in monocytes but may have high expression levels in macro-
phages. Therefore in this category, miRNAs were selected if they
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Fig. 1. Selection ofmiRNAs. Schematic representation of the selection criteria used in this study to selectmiRNAs for further confirmation of their expression levels in humanmacrophages.
The selection criteria are indicated in italic font, and the number ofmiRNAs selectedwith each criterion is indicatedwith a line.miRNAswere considered expressed in a cell typewhen they
had counts higher than 10, and differentially expressed when their fold change was higher than 2, with an absolute difference higher than 10 counts.
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expressed normalized count values higher than 10 in unstimulated
macrophages (66 miRNAs, in purple, Fig. 1). From these, miRNAs
were only selected if changes in expression values after comparing
unstimulated cells (MΦ) with each polarized phenotype (M1, M2a
or M2c) were larger than 2 times (45 miRNAs) with an absolute dif-
ference in counts of more than 10.

The second category includes miRNAs that are highly regulated
during maturation of monocytes into macrophages, and therefore
miRNAs were selected if they showed changes in expression larger
than 2 times after comparing monocytes with unstimulated macro-
phages (MΦ) or polarized macrophages (M1, M2a or M2c), with an
absolute difference in counts of more than 10. These reduced the num-
ber of miRNAs in this category from 312 to 258 miRNAs (in green,
Fig. 1). In this group therewere 154miRNAs that increased their expres-
sion levels duringmaturation frommonocytes, and 104miRNAs whose
expression decreased during maturation.

From the two categories described above, a total of 50 microRNAs
were selected for further validation. The selected miRNAs had normal-
ized count values that represented thewide range of miRNA expression
of the entire dataset, i.e. some miRNAs displayed expression values of
less than 100, whereas some others had normalized count values of
more than one million. Several of these microRNAs were selected
because they have been described to be involved inmaturation of mono-
cytes, regulation of inflammatory responses in macrophages or to be
expressed upon cytokine polarization of macrophages. Furthermore,
other miRNAs were manually selected because they displayed large
variation in the normalized count values among monocytes and differ-
ent polarized macrophages, or because changes in expression when
comparing the different polarization conditions to monocytes or
unstimulatedmacrophages, were larger than 4 times. The expression
values, fold change and absolute change in expression and selection
based on reports from previous literature, are shown in Supplementary
table 1.

Discussion

In this study we have collected and described a unique dataset that
contains expression profiles of small RNAs in human primary mono-
cytes and macrophages. The initial analysis of this dataset resulted in a
comprehensive characterization of miRNA expression and it's relation
with monocyte maturation and macrophage polarization. This data
has revealed the tight relationship betweenmiRNA expression and con-
trol of innate immune responses by macrophages [1]. Further in-depth
analysis of this data set will reveal the expression of other small RNA
species and will also allow for the discovery of new small RNAs in
human monocytes and macrophages, and therefore the characteriza-
tion of novel regulatory elements in these cells.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.06.019.
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