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Abstract

We introduce a q-deformation of the classical Möbius function and investigate its properties in connection
with q-deformed truncated necklace rings. Also, we study the strictly natural isomorphism of q-deformed
necklace rings.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Möbius function; Cyclotomic identity; Necklace ring; Restricted Lie p-algebra

1. Introduction

The necklace ring was first introduced by Metropolis and Rota [8] to explain the structure of
the ring of big Witt vectors due to Cartier [2]. It has close connections to various areas such as
combinatorics, group theory and ring theory. For example, it can be realized as the Burnside–
Grothendieck ring of almost finite cyclic sets over Z and turns out to be isomorphic to the ring
of big Witt vectors over rings satisfying suitable conditions. For more details, see [3,4,8,11,12].

Recently, it has been shown that truncated necklace rings have a q-deformation when q varies
over the set of integers (see [12]). Let N be the set of positive integers. Also, we let N be a
nonempty subset with the property that if n ∈ N , then every divisor of N is also contained
in N . We then say that N is a truncation set. Given a commutative ring A and an integer q ,
the q-deformed N -truncated necklace ring over A is given by Nrq

N(A). Here, Nrq
N represents a

unique covariant functor from the category of commutative rings to itself characterized by the
following conditions:
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(1) As a set, it is AN.

(2) For any ring homomorphism f :A → B , the map Nrq
N(f ) : x �→ (f (xn))n∈N is a ring homo-

morphism.
(3) The map,

ϕ
q
N : Nrq

N(A) → ghN(A), x �→
(∑

d|n
dq

n
d
−1xd

)
n∈N

,

is a ring homomorphism. Here, ghN(A), called the ghost ring over A, is just AN with addi-
tion and multiplication defined componentwise.

Given q and r , we say that Nrq
N is strictly-isomorphic to Nrr

N if there exists a natural iso-
morphism, nr

q : Nrq
N → Nrr

N satisfying ϕ
q
N = ϕr

N ◦ nr
q . In this case, nr

q is called a strict natural

isomorphism. It was shown in [12] that Nrq
N is classified up to strict natural isomorphism by the

set of prime divisors of q contained in N . However, the explicit form of the strict isomorphism
has not been provided there. This was the initial motivation of this paper. We will provide it in
Section 2. Nrq

N also has a very natural functorial property. To be more precise, if M and N are
truncation sets with M ∩ N = {1}, then there exists a functorial isomorphism

Nrq
N ◦ Nrq

M
∼= Nrq

MN (1.1)

satisfying a suitable condition. This result was published in [12, Theorem 25], but we found that
there is a gap in the final step of the original proof since Nrq

N(Z) is no longer a binomial ring.
This led us to reprove Eq. (1.1). We expect that this method is also applicable to the q-deformed
Witt–Burnside ring and the Burnside–Grothendieck ring of a profinite group (refer to [10]).

From an aspect of combinatorics, q-necklace rings are closely related to q-Möbius functions.
The natural transformation ϕ

q
N , when N = N, is given by the left multiplication by an N × N

matrix λq defined by

λq(i, j) =
{

jq
i
j
−1 if j | i,

0 otherwise.

Motivated by this fact, we introduce a q-deformation of the classical Möbius function, which can
be defined as follows: Let q be an indeterminate and let ζq be an N × N matrix given by

ζq(i, j) =
{

q
i
j
−1 if j | i,

0 otherwise.

Since ζq is lower triangular with 1 on the diagonal, there exists its inverse, say μq . Letting μq(n)

be μq(n,1) for all n ∈ N, it recovers the classical Möbius function when q = 1. In Section 3, we
derive a relation between the q-Möbius function and the classical Möbius function utilizing the
q-necklace polynomial

Mq(x,n) = 1

n

∑
μq

(
n

d

)
qd−1xd
d|n
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and the q-cyclotomic identity

1

1 − qxt
=

∏
n�1

(
1

1 − qtn

)Mq(x,n)

.

In contrast with the classical Möbius function, μq is no longer multiplicative except the case
q = 1,0,−1. Instead it has the following type of pseudo-multiplicative property which can be
deduced from Eq. (1.1) (see Section 5):

For positive integers m, n which are relatively prime, we have

μq(mn) =
∑

d|m,e|n
fd,e(q)μq(d)μq(e),

where fd,e(q) ∈ Q[q] are subject to the conditions:

(1) fm,n(q) = 1,
(2) fd,e(q) are numerical polynomials in q , that is, it takes integer values at every integer argu-

ment, and
(3) q(q2 − 1) divides fd,e(q) unless de = mn.

Finally, we remark that μq has deep connections to the Möbius function due to Petrogradsky
[13] which appeared in the context of restricted Lie p-algebras. This will be studied extensively
in connection with necklace rings in Section 4.

2. The explicit form of strict natural isomorphism

This section provides the explicit form of the strict natural isomorphism between Nrq
N and

Nrr
N when q, r have the same set of prime divisors in N . To begin with, we deal with the case

N = N.1 Assume that q, r be indeterminates. Let us introduce an N × N matrix λq defined by

λq(i, j) =
{

jq
i
j
−1 if j | i,

0 otherwise.

Since ϕq (respectively ϕr ) represents the left multiplication by λq (respectively λr ), nr
q(A)

should be defined by the left multiplication by (λr )
−1λq in case A = Q[q, r]. It is not difficult to

show that each entry of (λr)
−1λq is contained in Q[q, r].

Lemma 2.1. (See [12].) Suppose that q ranges over the set of integers. Then Nrq
N is classified up

to strict natural isomorphism by the set of prime divisors of q contained in N . The set of prime
divisors of 0 is assumed to be the set of all primes in N.

1 In this case, the suffix N will be omitted.
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The proof of Lemma 2.1 shows that every entry of (λr )
−1λq takes integer values if and only

if the set of prime divisors of q contained in N coincides with that of r . In this case, (λr)
−1λq

can be defined over arbitrary commutative rings since Z is a universal object in the category of
commutative rings. For the computation of the explicit form of the isomorphism, we need the
following generalization of necklace polynomials.

Definition 2.2. Suppose that x, q are indeterminates. For each positive integer n, we define
Mq(x,n) ∈ Q[x, q] recursively via the following relations:

∑
d|n

dMq(x, d)q
n
d
−1 = qn−1xn, ∀n � 1.

When q = 1, Mq(x,n) is called a necklace polynomial since it counts primitive necklaces of
length n out of x-letters. Similarly, Mq(x,n) has a very natural combinatorial meaning. It counts
primitive q-necklaces of length n out of x-letters, which was due to Lenart [7]. In this sense,
Mq(x,n) will be called a q-necklace polynomial. Put

B = {
nMq(x,n): n � 1

}
and B ′ = {

qn−1xn: n � 1
}
.

Since B and B ′ are Q(q)-basis of the polynomial ring xQ(q)[x], ζq is nothing but the transition
matrix from B to B ′ and μq the transition matrix from B ′ to B . It is easy to show that

(λq)−1(n, d) = 1

n
μq(n, d)

and

Mq(x,n) = 1

n

∑
d|n

μq(n, d)qd−1xd. (2.1)

For convenience, we will use the notation

An = qMq(rx,n), Bn = rMr(qx,n), ∀n � 1.

Since

∑
d|n

dAdq
n
d
−1 =

∑
d|n

dBdr
n
d
−1 = (qrx)n, ∀n � 1, (2.2)

we have

ϕq(A1,A2, . . .) = ϕr(B1,B2, . . .).

We can rewrite this equation as

(B1,B2, . . .)
t = (λr)

−1λq(A1,A2, . . .)
t .
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Here, the superscript t denotes the transpose of a matrix. Set

C = {An: n � 1}, C′ = {Bn: n � 1}.
Note that C and C′ are Q(q, r)-bases of xQ(q, r)[x] and (λr)

−1λq denotes the transition ma-
trix from C to C′. Denote by gi,j (q, r) the (i, j)th entry of (λr)

−1λq . Then, for each positive
integer n, it holds

Bn =
∑
d|n

gn,d(q, r)Ad, n � 1.

Theorem 2.3. Under the above notation, the followings hold:

(a) For each positive integer n and a divisor d of n,

gn,d(q, r) = r

q
Mr

(
q

r
,
n

d

)
.

Moreover, if q , r are integers with the same set of prime divisors, then

gn,d(q, r) ∈ Z

for every n � 1 and d | n.

(b) Assume that q, r are integers with the same set of prime divisors. Then nr
q is given by the left

multiplication by the transition matrix from C to C′ whose entries are given as follows:

nr
q(i, j) =

⎧⎨
⎩

r

q
Mr

(
q

r
,

i

j

)
if j | i,

0 otherwise.

Proof. (a) From [11, Section 3.2] it follows that if q , r have the same set of prime divisors, then
gn,d(q, r) are numerical polynomials in q and r taking integer values for all integer arguments.
Now, let us now find the explicit form of gn,d(q, r) with d | n. To this end, transform Eq. (2.2)
into

−(Bn − An) = 1

n

∑
e|n
e 
=n

e
(
Ber

n
e
−1 − Aeq

n
e
−1), n � 1. (2.3)

It is straightforward that gn,n(q, r) = 1. Now, assume that d < n. Comparing the coefficient of
Ad on both sides of Eq. (2.3) yields

−ngn,d(q, r) =
∑
d|e|n
d<e

er
n
e
−1ge,d(q, r) − dq

n
d
−1.

Put n = n′d and e = d ′d . Also, we put

Gn′ = gn′d,d(q, r).
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Then the above equation is simplified to

∑
d ′|n′

d ′r
n′
d′ −1

Gd ′ = qn′−1. (2.4)

Observe that the left-hand side of Eq. (2.4) coincides with the n′th component of ϕr(G1,G2, . . .)

and the n′th component of

r

q
ϕr

(
Mr

(
q

r
,1

)
,Mr

(
q

r
,2

)
, . . .

)

is given by qn′−1. Since ϕq is a ring isomorphism over a Q-algebra, it follows that

Gn′ = r

q
Mr

(
q

r
,n′

)
, n′ � 1.

Therefore we can conclude

gn,d = Gn
d

= r

q
Mr

(
q

r
,
n

d

)
.

This completes the proof.
(b) It follows from (a). �
In some special cases, (λr)

−1λq can be computed so easily. Here are such examples.

Example 2.4.

(a) Let r = −q. Utilizing

M−q(−1, n) =
{−1 if n = 1,

0 if n is odd and n 
= 1,

we obtain

gn,d =

⎧⎪⎪⎨
⎪⎪⎩

1 if d = n,

−M−q

(
−1,

n

d

)
if

n

d
is even, and d | n, d 
= n,

0 otherwise.

(b) Let q = 1 and r = −1. Combining (a) with the fact

M−1(−1, n) =
{−1 if n = 2k with k � 0,

0 otherwise,
(2.5)

we obtain

gn,d(1,−1) =
⎧⎨
⎩

1 if d = n,

1 if n is even, and n
d

= 2k with k � 0,
0 otherwise.
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(c) Let q = −1 and r = 1. From

M(−1, n) =
⎧⎨
⎩

−1 if n = 1,

1 if n = 2,

0 otherwise,

(2.6)

we obtain

gn,d(−1,1) =
⎧⎨
⎩

−1 if d = n,

1 if 2d = n,

0 otherwise.

By the restriction of index from N to N we can establish an analogous result for truncated
q-necklace rings.

Corollary 2.5. Assume that q , r are integers with the same set of prime divisors in N . Then the
strict natural isomorphism nr

q : Nrq
N → Nrr

N is given by the left multiplication by an N × N -
matrix whose entries are given as follows:

nr
q(i, j) =

⎧⎨
⎩

r

q
Mr

(
q

r
,

i

j

)
if j | i,

0 otherwise.

3. q-Möbius function and q-necklace polynomial

The classical Möbius function, μ : N → N, is given by

μ(n) =
⎧⎨
⎩

1 if n = 1,

(−1)ω(n) if n is square free and n > 1,

0 otherwise.

Here, ω(n) denotes the number of distinct prime divisors of n. It can be better understood in the
context of matrices. Let ζ be an N × N matrix defined by

ζ(i, j) =
{

1 if j | i,
0 otherwise.

Note that ζ is lower triangular with 1 on the diagonal. By abuse of notation we denote by μ the
inverse of ζ , and let f,g : N → Q be functions satisfying

f (n) =
∑
d|n

g(d), n � 1,

equivalently

⎛
⎜⎝

...

f (n)
...

⎞
⎟⎠ = ζ

⎛
⎜⎝

...

g(n)
...

⎞
⎟⎠ .
n�1 n�1
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The Möbius inversion formula is then nothing but the relation

μ(i, j) =
⎧⎨
⎩μ

(
i

j

)
if j | i,

0 otherwise.

Let q be an indeterminate. As in Introduction, μq denotes the inverse of ζq . Note that the relation
μqζq = δ is equivalent to

μq(i, i) = 1, for all i � 1,

μq(i, j) = −
∑
j |k|i
j<k

q
k
j
−1

μq(i, k), ∀j < i. (3.1)

Definition 3.1. Let q be an indeterminate. The q-Möbius function, denoted by μq , is defined to
be the function

μq : N → Z[q], n �→ μq(n,1), ∀n � 1.

From Eq. (3.1) it follows that μq(i, j) = μq(i′, j ′) if i/j = i′/j ′. Thus, we have

μq(n) = μq(nk, k), ∀k ∈ N.

Applying this result to Eq. (3.1) again yields

μq(1) = 1,

μq(n) = −
∑
d|n
d 
=1

qd−1μq

(
n

d

)
, ∀n > 1.

As in the classical case (more precisely, q = 1), q-necklace polynomials due to Eq. (2.1) play a
crucial role in the study of q-Möbius function. By the definition of μq , it is straightforward that

Mq(x,n) = 1

n

∑
d|n

μq

(
n

d

)
qd−1xd.

If q = 1, we will omit the superscript q in Mq(x,n) and μq . The following theorem shows the
relation between the q-Möbius function and the classical Möbius function.

Theorem 3.2. Let n ∈ N.

(a) If n has the prime factorization p
n1
1 pn−2

2 · · ·pnk

k with ni � 1 (1 � i � k), then

μq(n) = q
∑
d|n

dMq

(
1

q
, d

)
μ

(
n

d

)

= qn
∑

d|p1···pk

(−1)ω(d)

d
Mq

(
1

q
,
n

d

)
. (3.2)

Here, ω(1) is assumed to be 0.
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(b) For every n ∈ N we have

μ(n) = 1

q

∑
d|n

dM(q, d)μq

(
n

d

)
. (3.3)

Proof. Since (b) can be proved in the exactly same way as (a), we will prove only (a). Replace r

and q by q and 1, respectively. Then, Theorem 2.3 yields

qMq(x,n) = q
∑
d|n

Mq

(
1

q
,
n

d

)
M(qx,d), ∀n � 1. (3.4)

Let d be a divisor of n. Comparing the coefficient of x in both sides of Eq. (3.4) yields the
equality

q

n
μq(n,1) = q

∑
d|n

Mq

(
1

q
,
n

d

)
1

d
μ(d,1)q.

Replacing μq(n,1) and μ(d,1) by μq(n) and μ(d), respectively, gives the first equality. The
second equality follows from the definition of μ. �
Example 3.3.

(a) Put q = −1 and n = 2kn′ with n′ odd. From Eqs. (2.5) and (3.2) we have

μ−1(n) =
{

μ(n) if k = 0,

2k−1μ(n′) if k � 1.
(3.5)

It is easily seen that μ−1 is multiplicative, i.e.,

μ−1(mn) = μ−1(m)μ−1(n)

in case where m and n are relatively prime. Nevertheless, this is not the case in gen-
eral. For example, if p, p′ are distinct primes, then μq(pp′) = −qpp′−1 + 2qp+p′−2, but
μq(p)μq(p′) = qp+p′−2. This can be verified by Corollary 3.2. Indeed, μq is multiplicative
only in case where q = 1,−1,0.

(b) Substitute −1 for q in Eq. (3.3). Then, by Eq. (2.6) we come to have

μ(n) =
⎧⎨
⎩

μ−1(n) if n is odd,

μ−1(n) − 2μ−1

(
n

2

)
otherwise.

(3.6)

Next, we investigate the properties of q-necklace polynomials when q = −1 in detail. It is
well known that the necklace polynomial has deep connection with the celebrated cyclotomic
identity,

1

1 − xt
=

∏(
1

1 − tn

)M(x,n)

,

n�1
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which was due to Gauss [5]. Here, if we replace negative sign in the denominators by positive
sign, then we obtain a dual version of the cyclotomic identity such as

1 + xt =
∏
n�1

(
1 + tn

)N(x,n)
. (3.7)

This identity was first introduced in [1,6], and has been called the cocyclotomic identity. It is well
known that the exponent N(x,n) is given by

N(x,n) =

⎧⎪⎨
⎪⎩

M(x,n) if n is odd,

−
∑
k�0

M

(
−x,

n

2k

)
if n is even.

Conventionally, we assume that M(x,n) is zero for non-integral values n. More simply, we can
write

N(x,n) = −
∑
k�0

M

(
−x,

n

2k

)
(3.8)

since M(x,n) = −M(−x,n) if n is odd. The cocyclotomic identity can be understood more
naturally in the context of the q-cyclotomic identity which was first introduced in [11]. The
explicit form of the q-cyclotomic identity looks as follows:

1

1 − qxt
=

∏
n�1

(
1

1 − qtn

)Mq(x,n)

. (3.9)

Plugging q = −1 into Eqs. (3.7) and (3.9) gives rise to the formula

N(x,n) = M−1(x,n), n � 1. (3.10)

Assume that n is even, say n = 2kn′ where k � 1 and n′ is odd. In [1], it was shown that

N(x,n) = −
k∑

i=1

M
(
x,2in′),

which implies

k∑
i=1

M
(
x,2in′) =

∑
i�0

M

(
−x,

n

2i

)
.

Now, we will provide a relation between M(x,n) and M(−x,n). To this end, we will compute
the transition matrix from {M(x,n): n � 1} to {M(−x,n): n � 1}. More generally, put

D = {
Mq(x,n): n � 1

}
, D′ = {

Mq(−x,n): n � 1
}
.

It is easy to show that D and D′ are Q(q)-bases of xQ(q)[x].



Y.-T. Oh / Journal of Algebra 320 (2008) 1599–1625 1609
Proposition 3.4.

(a) For every n � 1, Mq(−x,n) is given as follows:⎧⎪⎪⎨
⎪⎪⎩

−Mq(x,n) if n is odd,

Mq(x,n) +
∑
d|n

d is odd

Mq

(
q,

n

2d

)
Mq(x, d) if n is even. (3.11)

(b) The transition matrix Q from D to D′ is given as follows:

Q(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if i = j is odd,

1 if i = j is even,

Mq

(
q,

i

2j

)
if i is even and j is odd,

0 otherwise.

(c) Q = Q−1.

Proof. (a) This can be proven in a similar way as in Theorem 2.3.
(b) It follows from (a).
(c) The transition matrix from D′ to D can be obtained by switching x and −x into each

other in Eq. (3.11). One can observe that this matrix is also given by Q. This forces Q be equal
to Q−1. �

In particular, if q = 1, we can establish the following formula.

Corollary 3.5. For every positive integer n

M(−x,n) =

⎧⎪⎪⎨
⎪⎪⎩

−M(x,n) if n is odd,

M(x,n) if 4 | n,

M(x,n) + M

(
x,

n

2

)
if 2 | n, but 4 � n.

Finally we close this section by remarking that Eq. (3.9) gives rise to a general cyclotomic
identity

∏
n�1

(
1

1 − qtn

)Mq(rx,n)

=
∏
n�1

(
1

1 − rtn

)Mr(qx,n)

,

where q , r , x, t are indeterminates.

4. Petrogradsky’s Möbius function and necklace rings, and its relation with μq

In 2003, Petrogradsky [13] introduced a function analogous to the classical Möbius function
in the context of restricted Lie p-algebras. It is parametrized by the prime integers p.
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Remark 4.1. He denoted the above function by μp , but it is completely different from our μp .
To avoid confusion, we will use μ(p) to denote Petrogradsky’s μp throughout this paper.

In this section, we show how μ(p) appears in the context of necklace rings and how it is related
with our q-Möbius function μq . We start with introducing isomorphic copies of the classical
necklace ring. To do this, for each positive integer r , we introduce the r th Verschiebung operators
(r ∈ N)

Vr : Nr(A) → Nr(A), (bn)n∈N �→ (b n
r
)n�1

with bn
r

= 0 if n/r /∈ N. Let A be a commutative ring with identity. For each positive integer k

we define

θk : Nr(A) → AN, b �→
∑
i�0

Vki b, b = (bn)n�1.

Proposition 4.2. θk is bijective.

Proof. Define a map

ψk : AN → Nr(A), c �→ c − Vkc, c = (cn)n∈N.

Then,

ψk ◦ θk(b) =
∑
i�0

Vki b −
∑
i�1

Vki b = b,

θk ◦ ψk(c) =
∑
i�0

Vki c −
∑
i�1

Vki c = c.

This implies the bijectiveness of θk . �
From the above proof it is obvious that the inverse of θk is ψk. Let us make AN into a ring

via ψk . We denote it by Nr(k)(A). By definition θk and ψk are ring isomorphisms. Composing
ψk with ϕ, we obtain a map

ϕ(k) : Nr(k)(A) → gh(A).

Proposition 4.3. As a functor from the category of commutative rings with identity to itself,
Nr(2) coincides with Nr−1.

Proof. Put k = 2. For our purpose it is enough to show that θ2 = nr
q , where q = 1 and r = −1.

And, to prove this, we have only to show

θ2
(
M(x,1),M(x,2), . . .

) = nr
q

(
M(x,1),M(x,2), . . .

)
. (4.1)
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The nth component of the left-hand side of Eq. (4.1) is given by

∑
i�0

M

(
x,

n

2i

)
,

which coincides with −M−1(−x,n) by Eq. (3.10). On the other hand, by Eq. (2.2) we know that
the nth component of the right-hand side should is given by −M−1(−x,n), too. This completes
the proof. �

Let us investigate ϕ(k) in more detail. For each positive integer k let us introduce the function

1k(n) =
{

1 if k � n,

1 − k if k | n.

We define an N × N matrix ζ (k) by

ζ (k)(n, d) =
⎧⎨
⎩1k

(
n

d

)
if d | n,

0 otherwise.

With this notation one can see that

ϕ(k)(x1, x2, . . .) = ζ (k)

⎛
⎜⎝

...

nxn
...

⎞
⎟⎠

n�1

.

Note that ζ (k) is invertible since it is a lower triangular matrix with 1 at the diagonals. Denote by
μ(k) its inverse. From the relation μ(k)ζ (k) = δ it follows that

μ(k)(i, i) = 1, for all i � 1,

μ(k)(i, j) = −
∑
j |d|i
j<d

μ(k)(i, d)ζ (k)(d, j), for all j < i. (4.2)

Exploiting Eq. (4.2) one can show easily that μ(k)(i, j) = 0 unless j | n, and μ(k)(i, j) =
μ(k)(i′, j ′) if i/j = i′/j ′.

Definition 4.4. Let k be a positive integer. For every positive integer n, we define

μ(k) : N → N, n �→ μ(k)(n,1), ∀n � 1.

By virtue of Eq. (4.2) we have the following recursive form:
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μ(k)(1) = 1,

μ(k)(n) = −
∑
1<d
d|n

μ(k)

(
n

d

)
1k(d), ∀n > 1.

Theorem 4.5. Fix a positive integer k. Then we have

(a) For every n ∈ N write it as mks , where k � m. Then

μ(k)(n) =
{

μ(n) if s = 0,

ksμ(m) + ks−1μ(mk) otherwise.

(b) Let k ∈ N − {1}. Then μ(k) is multiplicative if and only if k is a prime.

Proof. (a) Consider the element x = (x, x2, x3, . . .) ∈ gh(Q[x]). Then the inverse image of x
for ϕ is given by (M(x,n))n�1. On the other hand, the inverse image of x for ϕ(k) is given by
(M(k)(x, n))n�1, where

M(k)(x,n) = 1

n

∑
d|n

μ(k)

(
n

d

)
xd.

Thus,

M(k)(x,n) =
∑
i�0

M

(
x,

n

ki

)
.

Comparing the coefficient of x in the both sides of the above identity gives rise to the formula

1

n
μ(k)(n) =

∑
i�0

ki

n
μ

(
n

ki

)
.

If k � n, then μ(k)(n) = μ(n). If not, write it as mks , where k � m and s � 1. Then,

∑
i�0

kiμ

(
n

ki

)
=

∑
i�0

kiμ
(
mks−i

) = ksμ(m) + ks−1μ(mk).

(b) It is not difficult to show “if”-part (see Example 4.6). For the converse, let k be a compos-
ite, say k1k2 with (k1, k2) = 1. Then μ(k)(k1k2) = k, but

μ(k)(k1)μ
(k)(k2) = μ(k1)μ(k2) = μ(k).

This shows that μ(k) is not multiplicative. �
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Example 4.6. Let k be a prime, say p. Then

μ(p)(n) =
{

μ(n) if (p,n) = 1,

μ(m)
(
ps − ps−1

)
if n = mps , (p,m) = 1, s � 1.

So, in view of Eq. (3.5), we can conclude that

μ(2) = μ−1.

5. Pseudo-multiplicative property of μq and functorial property of truncated q-necklace
rings

Contrary to the classical Möbius function, our q-Möbius function μq is no longer multiplica-
tive in general. However, we show that it has a pseudo-multiplicative property, which can be
deduced from a functorial isomorphism of q-deformed necklace rings.

Theorem 5.1. For positive integers m,n which are relatively prime, we have

μq(mn) =
∑

d|m,e|n
fd,e(q)μq(d)μq(e),

where fd,e(q) ∈ Q[q] are subject to the conditions

(1) fm,n(q) = 1.
(2) fd,e(q) are numerical polynomials in q , that is, it takes an integer value at every integer

argument.
(3) q(q2 − 1) divides fd,e(q) unless de = mn.

The proof of Theorem 5.1 will appear in Section 5.2. Note that μq is still multiplicative in
case where q = 1,0,−1.

5.1. Functorial property of truncated q-necklace rings

To prove the above theorem, we first deal with a functorial property of truncated q-necklace
rings. Let M,N be truncation sets, and let MN := {mn: m ∈ M, n ∈ N}. Then MN is also a
truncation set. In particular, if M ∩ N = {1}, then MN ∼= M × N . Assume that q is any integer.
In [12], it was shown that we have isomorphisms of functors,

Nrq
N ◦ Nrq

M
∼= Nrq

MN,

for coprime truncation sets M and N . However, we found that there exists a gap in the final step
of the original proof. In this section, we will reprove it in a different way.

Let A be any commutative ring. Applying the functoriality of ϕ
q
N , we have the commutative

diagram
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Nrq
N(Nrq

M(A))
ϕ

q
N (Nrq

M(A))

Nrq
N (ϕ

q
M(A))

ghN(Nrq
M(A))

ϕ
q
N (A)M

Nrq
N(ghM(A))

ϕ
q
N (ghM(A))

ghN(ghM(A)).

Now, assume that M ∩ N = {1}. Then ghN ◦ ghM can be identified with ghMN . Under this
identification, let us obtain the ring homomorphism

ϕ
q
M,N(A) : Nrq

N

(
Nrq

M(A)
) → ghMN(A),

which sends X = (Xmn)m∈M
n∈N

to (X
q

(m,n))m∈M
n∈N

, where

X
q

(m,n) :=
∑
d|n

dq
n
d
−1

(∑
c|m

cq
m
c
−1Xc,d

)
.

Theorem 5.2. Let q be any integer, and M , N be truncation sets with M ∩ N = {1}. Then there
is a unique functorial isomorphism

n
q
M,N : Nrq

N ◦ Nrq
M → Nrq

MN

satisfying ϕ
q
M,N = ϕ

q
MN ◦ n

q
M,N .

Before proving our theorem, we prove a lemma. Given n ∈ N, the set of all positive integral
divisors of n can be made into a poset Dn by defining i � j in Dn if j is divisible by i. If
otherwise stated, we enumerate Dn in the natural order. Let q be an indeterminate, and let m,n

be positive integers which are relatively prime. In this case, Dmn = {cd: c | m, d | n}. From now
on, we will fix m,n which are relatively prime. Consider Dmn × Dmn matrices λq |m,n, λq |mn

defined by

λq |m,n(ab, cd) =
{

cdq
a
c
+ b

d
−2 if c | a, d | b,

0 otherwise

and

λq |mn(ab, cd) =
{

cdq
ab
cd

−1 if c | a, d | b,

0 otherwise.

It should be remarked that λq |mn is the matrix from λq by restricting the index set from N to
D(mn). Also, λq |m,n and λq |mn are lower triangular.

Lemma 5.3. Let m, n be positive integers which are relatively prime. Then every entry of
(λq |mn)

−1λq |m,n has an integral value if q is an integer.
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Proof. Let X = (Xcd) c|m
d|n

, Z = (Zcd) c|m
d|n

, and

λq |mnZ = λq |m,nX.

Our claim is equivalent to saying that Zab is a polynomial in Xcd ’s with integer coefficients for
all a | m and b | n. We will justify our argument by the induction on ab. Note that Z11 = X11.
Put R = Z[Xcd : c | m, d | n]. Applying the induction hypothesis, we can derive that Zcd ∈ R

for all c | a, d | b with cd < ab. Now, we will show that Zab ∈ R. For a prime p dividing ab, we
denote by vp the p-adic discrete valuation on Q	 with values in Z, and let ν := vp(ab). From
λq |mnZ = λq |m,nX

∑
d|b

dq
b
d
−1

(∑
c|a

cq
a
c
−1Xcd

)
=

∑
c|a
d|b

cdq
ab
cd

−1Zcd. (5.1)

According to the induction hypothesis, we find that abZab ∈ R. Hence, since p is an arbitrary
prime dividing ab, we are done if we can show that pν | abZab . For simplicity, assume that p | b.
Based on Eq. (5.1) let us proceed the following computation:

abZab ≡
∑

c|a,d|b
vp(cd)=ν

cdq
ab
cd

−1Zcd

(
mod pν

)

=
∑

c|a,d|b
cdq

ab
cd

−1Zcd −
∑

c|a,d| b
p

cdq
ab
cd

−1Zcd

=
∑
d|b

dq
b
d
−1

(∑
c|a

cq
a
c
−1Xcd

)
−

∑
c|a,d| b

p

cdq
ab
cd

−1Zcd

≡
∑
d| b

p

dq
b
d
−1

(∑
c|a

cq
a
c
−1Xcd

)
−

∑
c|a,d| b

p

cdq
ab
cd

−1Zcd

(
mod pν

)
. (5.2)

Set b = pνb′ and d = psd ′ with (p, b′) = (p, d ′) = 1 and s < ν. In case where p divides q ,

dq
b
d
−1 ≡ 0

(
mod pν

)
since q

b
d
−1 ≡ 0 (mod pν). Similarly, dq

ab
cd

−1 ≡ 0 (mod pν). Therefore, abZab ≡ 0 (mod pν).
On the other hand, in case where (p, q) = 1,

dq
b
d ≡ dq

b
dp

(
modpν

)
since d ≡ 0 (mod ps) and q

b
d ≡ q

b
dp (mod pν−s). Furthermore, since q is a unit in Z/pνZ, it

follows that

dq
b
d
−1 ≡ dq

b
dp

−1 (
mod pν

)
.
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Similarly, we can verify that dq
ab
cd

−1 ≡ dq
ab
cdp

−1
(mod pν). Applying this data to Eq. (5.2) yields

abZab ≡
∑
d| b

p

dq
b
dp

−1
(∑

c|a
cq

a
c
−1Xcd

)
−

∑
c|a,d| b

p

cdq
ab
cdp

−1
Zcd

(
mod pν

)
. (5.3)

Due to ζmnZ = ζm,nX we have

∑
d| b

p

dq
b
dp

−1
(∑

c|a
cq

a
c
−1Xcd

)
=

∑
c|a,d| b

p

cdq
ab
cdp

−1
Zcd

(
mod pν

)
,

which implies that the right-hand side of Eq. (5.3) is zero. This completes the proof. �
Proof of Theorem 5.2. Note that Nrq

N ◦ Nrq
M , Nrq

MN , and ghMN are represented by the polyno-
mial ring

R := Z[Xmn: m ∈ M, n ∈ N ]

with variables Xmn. Set X = (Xmn)m∈M
n∈N

. By Yoneda’s Lemma, a functorial map

n
q
M,N : Nrq

N ◦ Nrq
M → Nrq

MN

satisfying ϕ
q
M,N = ϕ

q
MN ◦ n

q
M,N corresponds to an element

Z = (Zmn)m∈M
n∈N

∈ Nrq
MN(R),

where ϕ
q
M,N(X) = ϕ

q
MN(Z). Now, the uniqueness of n

q
M,N is obvious since such a Z is uniquely

determined if exists. Furthermore, n
q
M,N is an isomorphism if and only if

R = Z[Zmn: m ∈ M, n ∈ N ]. (5.4)

It follows from

Zmn − Xmn ∈ Q[Xcd : c | m, d | n, and cd < mn],

and Lemma 5.3. So, we are done. �
Remark 5.4. When q = 1,0,−1, then λq |m,n = λq |mn. In this case, n

q
M,N turns out to be the

identity transformation.
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5.2. Proof of Theorem 5.1

Now, we are ready to show that Theorem 5.2 yields a pseudo-multiplicative property of μq

where q ∈ Z. From now on, all q-necklace rings are supposed to be defined over a Q-algebra.
Assume that m, n are positive integers which are relatively prime. Let M (respectively N ) be the
set of all divisors of m (respectively n). For simplicity of notation, we let

Xd =
⎛
⎜⎝

...

Xcd
...

⎞
⎟⎠

d∈N

and Yd =
⎛
⎜⎝

...

Ycd
...

⎞
⎟⎠

d∈N

for every d ∈ N . In addition, we let λq |M,N , λq |MN , λq |M , λq |N denote matrices representing
ϕ

q
M,N , ϕ

q
MN , ϕ

q
M , ϕ

q
N , respectively. Since

λq |M,N

⎛
⎜⎝

...

Xd
...

⎞
⎟⎠

d∈N

=
⎛
⎜⎝

...

Yd
...

⎞
⎟⎠

d∈N

is equivalent to

λq |N

⎛
⎜⎝

...

λq |MXd

...

⎞
⎟⎠

d∈N

=
⎛
⎜⎝

...

Yd
...

⎞
⎟⎠

d∈N

,

we obtain

⎛
⎜⎝

...

λq |MXd

...

⎞
⎟⎠

d∈N

= (λq |N)−1

⎛
⎜⎝

...

Yd
...

⎞
⎟⎠

d∈N

.

Comparing the nth component in both sides of the above equality gives rise to

λq |MXn =
∑
d|n

(λq |N)−1(n, d)Yd .

Equivalently,

Xn = (λq |M)−1
(∑

d|n
(λq |N)−1(n, d)Yd

)
.

Thus, the mth entry of Xn is given by

Xmn =
∑
c|m

(λq |M)−1(m, c)(λq |N)−1(n, d)Ycd . (5.5)
d|n



1618 Y.-T. Oh / Journal of Algebra 320 (2008) 1599–1625
On the other hand, from the commutativity relation ϕ
q
M,N = ϕ

q
MN ◦ n

q
M,N it follows that

n
q
M,N

⎛
⎜⎝

...

Xd
...

⎞
⎟⎠

d∈N

= (λq |MN)−1

⎛
⎜⎝

...

Ycd
...

⎞
⎟⎠

c∈M,d∈N

. (5.6)

Combining Theorem 5.2 with Eq. (5.5) we can show that the (m,n)th component of the left-hand
side of Eq. (5.6) is given by

∑
d|m,e|n

gd,e(q)
∑
i|d
j |e

(λq |M)−1(d, i)(λq |N)−1(e, j)Yij , (5.7)

for some polynomials gd,e(q) ∈ Q[q] taking integral values for all integer arguments. Obviously
it coincides with that of the right-hand side of Eq. (5.6), i.e.,

∑
c|m
d|n

(λq |MN)−1(mn, cd)Ycd . (5.8)

Compare the coefficient of Y1,1 of Eq. (5.7) with that of Eq. (5.8) to deduce

∑
d|m,e|n

gd,e(q)(λq |M)−1(d,1)(λq |N)−1(e,1) = (λq |MN)−1(mn,1). (5.9)

By applying the formulae

(λq |M)−1(d,1) = 1

d
μq(d),

(λq |N)−1(e,1) = 1

e
μq(e),

(λq |MN)−1(mn,1) = 1

mn
μq(mn)

to Eq. (5.9), we can deduce

μq(mn) =
∑

d|m,e|n

mn

de
gd,e(q)μq(d)μq(e). (5.10)

Letting fd,e(q) be mn
de

gd,e(q), it satisfies

(1) fm,n(q) = 1, and
(2) fd,e(q) are numerical polynomials in q , that is, it takes an integer value at every integer

argument.
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Furthermore, when q = 1,0,−1, n
q
M,N is the identity transformation (refer to Remark 5.4). In

this case, it holds

μq(mn) = μq(m)μq(n).

This implies that q(q2 − 1) divides fd,e(q) unless de = mn. So, we are done. �
Remark 5.5. Assume that m,n > 1, (m,n) = 1. Choose distinct primes p, p′ such that p | m,
p′ | n. We have already shown that 1,0,−1 are common roots of fd,e(q)’s for d | m, e | n,
de < mn. On the other hand, one can show

Zmn = Xmn + 0Xm
p

p′ + 0Xm n
p′ + qp+p′−2(1 − q(p−1)(p′−1))

pp′ Xm
p

n
p′ + · · · ,

and which implies

fm
p

, n
p′ (q) = qp+p′−2(1 − q(p−1)(p′−1)

)
and fm

p
,n(q) = fm, n

p′ (q) = 0, . . . .

Hence, we can conclude that the common roots are exactly 1, 0, −1. This implies that μq is
multiplicative if and only if q = 1,0,−1.

5.3. Multiplicativity of μ(p) and truncated aperiodic rings

In Section 4 we remarked that μ(p) is multiplicative for every prime p. In this section, we
show very briefly that it can be connected to a functorial property of certain truncated rings.
In [14], Varadarajan and Wehrhahn introduced the notion of the aperiodic ring and investigated
its properties and relations with the ring of Witt vectors over a torsion-free ring. The aperiodic
ring Ap(A) over a commutative ring A with identity can be characterized by the following prop-
erties:

(Ap1) As a set, it is AN.

(Ap2) For any ring homomorphism f : A → B , the map Ap(f ) : a �→ (f (an))n�1 is a ring
homomorphism for a = (an)n�1 ∈ Ap(A).

(Ap3) The maps ηm : Ap(A) → A defined by

a �→
∑
d|m

ad for a = (an)n�1

are ring homomorphisms.

Given a truncation set N and a positive integer k, we define Ap(k)
N by a unique covariant

functor from the category of commutative rings with identity into itself characterized by the
following conditions:

(1) As a set, Ap(k)
N (A) equals AN.

(2) For any ring homomorphism f : A → B , the map Ap(k)
N (f ) : (Xn)n∈N �→ (f (Xn))n∈N is a

ring homomorphism.
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(3) The map

η
(k)
N : Ap(k)

N (A) → ghN(A), (Xn)n∈N �→
(∑

d|n
ζ

(k)
N (n, d)X

n
d

d

)
n∈N

is a ring homomorphism. Here, ζ
(k)
N denotes the matrix induced from ζ (k) by the restriction

of index from N to N .

Given truncation sets M,N with M ∩ N = {1}, we let ϕ
(k)
M,N : Ap(k)

N ◦ Ap(k)
M → ghMN be the

natural transformation such that for any commutative ring A with identity

η
(k)
M,N(A) : Ap(k)

N

(
Ap(k)

M (A)
) → ghN

(
ghM(A)

)
sends X = (Xmn)m∈M

n∈N
to (X

(k)
(m,n))m∈M

n∈N
, where

X
(k)
(m,n) =

∑
d|n

ζ
(k)
N (n, d)

(∑
c|m

ζ
(k)
M (m, c)Xc,d

)
.

Since M ∩ N = {1} we can naturally identify ghN(ghM(A)) with ghMN(A).

Proposition 5.6. Let p = 1 or a prime, and let M,N be truncation sets with M ∩N = {1}. Then,
there is a unique functorial isomorphism

n
(p)
M,N : Ap(p)

N ◦ Ap(p)
M → Ap(p)

MN

satisfying η
(p)
M,N = η

(p)
MN ◦ n

(p)
M,N .

Proof. Let

R = Z[Xm,n: m,n � 1],
and let X = (Xm,n)m,n�1. We also let

Z = (Zm,n)m,n�1 := (
η

(p)
MN

)−1(
η

(p)
M,N(X)

) ∈ Ap(p)
MN(Q ⊗ R).

For our purpose it suffices to show that Z ∈ Ap(p)
MN(R). We will show that

Zm,n = Xm,n

for all m,n � 1. But, this is obvious since

ζ (p)(n, d)ζ (p)(m, c) = ζ (p)(mn, cd)

for c, d , m, n with c | m, d | n, and (m,n) = 1. �
With the above theorem, one can derive the multiplicativity of μ(p) by following the way

identical to the proof of Theorem 5.1.
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6. More on the natural transformation nr
q

6.1. nr
q and q-deformed Grothendieck’s formal power series ring

In 1956, Grothendieck introduced a functor Λ by endowing a ring structure on the set

1 + A�t�+ =
{

1 +
∞∑

n=1

ant
n: an ∈ A, ∀n � 1

}
.

As a set, Λ(A) is the same as 1 + A�t�+. To explain its ring structure let us introduce inde-
terminates x1, x2, . . . ;y1, y2, . . . . And then, we define si (respectively σj ) to be the symmetric
functions in variables x1, x2, . . . (respectively y1, y2, . . .), that is,

(
1 + s1t + s2t

2 + · · ·) =
∏
i�1

1

1 − xit
,

(
1 + σ1t + σ2t

2 + · · ·) =
∏
i�1

1

1 − yit
.

Set Pn(s1, . . . , sn;σ1, . . . , σn) to be the coefficient of tn in

∏
i,j

1

1 − xiyj t
.

Then, the ring structure on Λ(A)2 is given by the following rules:

(1) ⊕: Addition is just multiplication of power series.
(2) 	: Multiplication is given by

(
1 +

∑
ant

n
)

	
(

1 +
∑

bnt
n
)

= 1 +
∑

Pn(a1, . . . , an;b1, . . . , bn)t
n.

We now, if possible, define a symmetric map

st : Nr(A) → Λ(A), (b1, b2, . . .) �→
∏
n�1

(
1

1 − tn

)bn

.

From [9] it follows that st is a ring isomorphism if A has structure of a binomial ring. Here, a
binomial ring means a special λ-ring whose all Adams operations are identity, that is Ψ n = 1 for
all n � 1. Furthermore, in that case, the diagram

2 Indeed, Λ(A) has even more structure called special λ-ring. For more information refer to [9,12].
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Nr(A)
st

ϕ

Λ(A)

d
dt

log

gh(A)
ι

A�t�

commutes. Here,

ι(d1, d2, . . .) =
∑
n�1

dnt
n−1.

Let A be a commutative ring with 1 and assume that q · 1 is invertible in A. Consider the map

βq : Λ(A) → 1 + A�t�+, f (t) �→ f (t)q .

It is easy to show that βq is bijective. We define Λq(A) by the ring whose underlying set is
1 + A�t�+ and whose ring operations are transported from Λ(A) via the map βq .

Now, for a binomial ring A, consider the map

s
q
t : Nrq(A) → Λq(A), (b1, b2, . . .) �→

∏
n�1

(
1

1 − qtn

)bn

.

Proposition 6.1. (See [11].) Let q be a non-zero integer. If A is a binomial ring in which q · 1 is
a unit, then s

q
t is a ring isomorphism. Moreover, the diagram

Nrq(A)
s
q
t

ϕq

Λq(A)

d
dt

log

gh(A)
ιq

A�t�

commutes. Here,

ιq (d1, d2, . . .) = q ·
∑
n�1

dnt
n−1.

Suppose that A is a Z[ 1
q
, 1

r
]-algebra. Note that it is a binomial ring, and q · 1 and r · 1 are

invertible in A. It is almost straightforward that the map,

ιrq : Λq(A) → Λr(A), f (t) �→ f (t)
r
q ,

is a ring isomorphism since ιrq ◦ βq = βr . Letting

γ r
q := (

sr
t

)−1 ◦ ιrq ◦ s
q
t ,

we have the following commutative diagram:
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Nrq(A)
γ r
q

s
q
t

Nrr (A)

sr
t

Λq(A)
ιrq

Λr(A).

Letting

(yn)n�1 = γ r
q

(
(xn)n�1

)
,

it holds

∏
n�1

(
1

1 − qtn

) r
q
xn

=
∏
n�1

(
1

1 − rtn

)yn

.

Taking logarithm on both sides and then computing the coefficient of tn gives rise to the identity

∑
d|n

d

(
r

q
xd

)
q

n
d =

∑
d|n

dydr
n
d , ∀n � 1. (6.1)

Canceling q and r out in the both sides of Eq. (6.1), we obtain the relation

ϕq(x1, x2, . . .) = ϕr(y1, y2, . . .),

which is equivalent to

(yn)n�1 = nr
q

(
(xn)n�1

)
.

Thus we can establish the following result.

Theorem 6.2. Let q and r be non-zero integers. Suppose that A is a Z[ 1
q
, 1

r
]-algebra. Then,

nr
q = γ r

q .

6.2. μ(p) and restricted free Lie p-algebras

Finally, we investigate the relation between the Möbius function μ(p) and the denom-
inator identity of a restricted free Lie p-algebra. Note that, for any positive integer k,
st ◦ ψk : Nr(k)(A) → Λ(A) is given by the rule

b �→
∏(

1 − tkn

1 − tn

)bn

.

n�1
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For the definition of st see Section 6.1. Set s
(k)
t := st ◦ ψk. Obviously, s

(k)
t is a ring isomorphism

and st = s
(k)
t ◦ θk, that is,

∞∏
n=1

(
1

1 − tn

)bn

=
∞∏

n=1

(
1 − tkn

1 − tn

)b
(k)
n

, (6.2)

where b
(k)
n = ∑

i�0 bn/ki with bn = 0 for non-integral values n. In particular, if k = 2, Eq. (6.2)
gives rise to the following formula.

Proposition 6.3. Set

∞∏
n=1

(
1 + tn

)bn =
∞∏

n=1

(
1 − tn

)dn .

Then

(a) bn = −d(2)
n ,

(b) dn =
{−bn if n is odd,

−bn + bn
2

otherwise.

Proof. Let k = 2. Then Eq. (6.2) looks like

∞∏
n=1

(
1 − tn

)−bn =
∞∏

n=1

(
1 + tn

)b
(2)
n .

This proves our assertion. �
Proposition 6.4. For k ∈ N we have

1

1 − xt
=

∏
n�1

(
1 − tkn

1 − tn

)M(k)(x,n)

, (6.3)

where M(k)(x,n) = ∑
i�0 M(x, n

ki ).

Proof. This can be derived by combining the cyclotomic identity with Eq. (6.2). �
We observe that Eq. (6.3) has deep connection with the denominator identity of a restricted

free Lie p-algebras. To show this, let p be a prime and L = Lp(X) be the free Lie p-algebra
generated by the alphabet X = {x1, . . . , xm}. It is well known that the dimension of the nth
homogeneous component of L equals M(p)(m,n) and its denominator identity is given by

1

1 − mt
=

∏
n�1

(
1 − tpn

1 − tn

)M(p)(m,n)

.

One can see that the above identity can be obtained by the substitution of x = m in Eq. (6.3).



Y.-T. Oh / Journal of Algebra 320 (2008) 1599–1625 1625
Acknowledgment

The author would like to express his sincere gratitude to the referee for his/her valuable ad-
vices.

References

[1] H.L. Buchanan, A. Knopfmacher, M.E. Mays, On the cyclotomic identity and related product expansions, Australas.
J. Combin. 8 (1993) 233–245.

[2] P. Cartier, Groupes formels associés aux anneaux de Witt generalises, C. R. Acad. Sci. Paris Ser. A–B 265 (1967)
A49–A52.

[3] A. Dress, C. Siebeneicher, The Burnside ring of profinite groups and the Witt vectors construction, Adv. Math. 70
(1988) 87–132.

[4] A. Dress, C. Siebeneicher, The Burnside ring of the infinite cyclic group and its relation to the necklace algebra,
λ-ring and the Universal ring of the Witt vectors, Adv. Math. 78 (1989) 1–41.

[5] C.F. Gauss, Werke, Band II, Königliche Gesellschaft der Wissenschaften, Göttingen, 1863, pp. 219–222.
[6] G. Labelle, P. Leroux, An extension of the exponential formula in enumerative combinatorics, Electron. J. Com-

bin. 3 (2) (1996) 1–14.
[7] C. Lenart, Formal group-theoretic generalization of the necklace algebra, including a q-deformation, J. Algebra 199

(1998) 703–732.
[8] N. Metropolis, G.-C. Rota, Witt vectors and the algebra of necklaces, Adv. Math. 50 (1983) 95–125.
[9] Y.-T. Oh, Necklace rings and logarithmic functions, Adv. Math. 205 (2) (2006) 434–486.

[10] Y.-T. Oh, q-Deformation of Witt–Burnside rings, Math. Z. 257 (2007) 151–191.
[11] Y.-T. Oh, Classification of the ring of Witt vectors and the necklace ring associated with the formal group law

X + Y − qXY , J. Algebra 310 (1) (2007) 325–350.
[12] Y.-T. Oh, Nested Witt vectors and their q-deformation, J. Algebra 309 (2) (2007) 683–710.
[13] V.M. Petrogradsky, Witt’s formula for restricted Lie algebras, Adv. in Appl. Math. 30 (1–2) (2003) 219–227.
[14] K. Varadarajan, K. Wehrhahn, Aperiodic rings, necklace rings, and Witt vectors, Adv. Math. 81 (1990) 1–29.


