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In response to vascular injury, inflammation, oxidative stress, and cell proliferation often occur simultaneously in
vascular tissues.We previously observed that microRNA-155 (miR-155), which is implicated in proliferation and
inflammation is involved in neointimal hyperplasia; however, the molecular mechanisms by which it regulates
these processes remain largely unknown. In this study, we observed that vascular smooth muscle cell (VSMC)
proliferation and neointimal formation in wire-injured femoral arteries were reduced by the loss of miR-155
and increased by the gain of miR-155. The proliferative effect of miR-155 was also observed in cultured
VSMCs. Notably, expression of the miR-155-target protein mammalian sterile 20-like kinase 2 (MST2) was
increased in the injured arteries of miR-155−/− mice. miR-155 directly repressed MST2 and thus activated the
extracellular signal-regulated kinase (ERK) pathway by promoting an interaction between RAF proto-
oncogene serine/threonine-protein kinase (Raf-1) and mitogen-activated protein kinase kinase (MEK) and
stimulating inflammatory and oxidative stress responses; together, these effects lead to VSMC proliferation
and vascular remodeling. Our data reveal that MST2 mediates miR-155-promoted inflammatory and oxidative
stress responses by altering the interaction ofMEKwith Raf-1 andMST2 in response to vascular injury. Therefore,
suppression of endogenous miR-155 might be a novel therapeutic strategy for vascular injury and remodeling.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In response to vascular injury, vascular smooth muscle cells (VSMCs)
undergo a series of characteristic changes including phenotypic mo-
dulation, abnormal proliferation, migration, matrix synthesis, and
inflammation [1]; these events are crucial for the development and
progression of vascular remodeling diseases such as atherosclerosis,
hypertension, and restenosis after angioplasty. VSMCs are the principal
effector cells in this process; therefore VSMCs coordinate and synchro-
nize extremely complex inflammatory, proliferative, differentiation and
oxidative stress programs [2,3]. Although a few pathophysiological
mechanisms associated with VSMC proliferation, inflammation and
oxidative stress are known, the molecular mechanisms by which the
VSMC responses to injury are coordinated remain unclear.

MicroRNAs (miRNAs) regulate gene expression at the post-
transcriptional level by promoting mRNA degradation or by inhibiting
try and Molecular Biology, Key
of Education, Hebei Medical
ng 050017, China. Tel.: +86
translation and play a critical role in vascular inflammation and remod-
eling [4]. Several miRNAs such as miR-21, miR-126, miR-133, miR-143/
145, miR-146a, and miR-221/222 have been implicated in vascular in-
flammation and remodeling [5]. For example, miR-133 inhibits VSMC
proliferation by targeting transcription factor Sp1 [6], and miR-221/
222 promotes VSMC proliferation by targeting p27 and p57 [7]. miR-
143/145 are molecular keys that switch the VSMC phenotype [8]. miR-
126 inhibits vascular cell adhesion molecule 1 (VCAM-1) expression
and reduces leukocyte adherence to endothelial cells [9]. miR-155 is a
target of several inflammatory mediators. Recently, we found that
miR-155 is involved in neointimal formation in carotid arteries after
angioplasty [10]. miR-155 is a pleiotropic regulator of inflammation-
related diseases and is critical for various physiological and pathological
processes including inflammation, differentiation, carcinogenesis,
oxidative stress, and cardiovascular remodeling [11,12]. However, the
role of miR-155 in coordinating inflammation, oxidative stress and
vascular remodeling has not been elucidated.

The mammalian sterile 20-like kinase 2 (MST2), also called Ser/Thr
kinase 3 (STK3), and its close homolog MST1 (STK4) are members of
the germinal center kinase group II family which are mitogen-activated
protein kinase (MAPK)-related kinases [13]. As a core component of the
Hippo pathway in mammalian cells, MST2 regulates cell proliferation,
growth and apoptosis [14]. Proteomic analysis of RAF proto-oncogene

https://core.ac.uk/display/82750122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2015.04.012&domain=pdf
http://dx.doi.org/10.1016/j.bbadis.2015.04.012
mailto:wjk@hebmu.edu.cn
http://dx.doi.org/10.1016/j.bbadis.2015.04.012
http://www.sciencedirect.com/science/journal/09254439
www.elsevier.com/locate/bbadis


1478 Z. Yang et al. / Biochimica et Biophysica Acta 1852 (2015) 1477–1489
serine/threonine-protein kinase (Raf-1) signaling complexes revealed
that Raf-1 interacts withMST2 and counteracts apoptosis by suppressing
the activation of MST2 [15]. MST2 binds to Raf-1 at two distinct sites that
partially overlap with the mitogen-activated protein kinase kinase
(MEK)-binding domain on Raf-1 [16], suggesting that MST2 competes
with MEK to bind to Raf-1 and affects the MAPK signaling cascade. Fur-
thermore, the interaction between MST2 and Raf-1 regulates the ERK1/
2 pathway and inhibits the pro-apoptotic activation of MST2 [15,17]. Al-
thoughMST1/2 activates Ser/Thr protein kinases and regulates the Raf-1/
ERK pathway activity, the role ofMST2 in regulation of inflammation and
oxidative stress in VSMCs has not been studied.

In this study, we investigated whether and how MST2 mediates
miR-155-promoted inflammation and oxidative stress, which lead to
VSMC proliferation and vascular remodeling, through integrating in-
flammatory and oxidative stress signaling.

2. Materials and methods

2.1. Animal models

All animal studies were approved by the Institutional Animal Care
and Use Committee of Hebei Medical University (approval ID: HebMU
20080026) and all efforts were made to minimize suffering. Eight- to
12-week-old male wild-type C57BL/6 mice and miR-155−/− mice
(Jackson Laboratory, Bar Harbor, ME) were anesthetized with 1.5%
isoflurane. To reproducibly induce vascular remodeling, we performed
femoral arterywire injury as previously described [18]. Briefly, we care-
fully separated the left femoral artery and the accompanying femoral
nerve under anesthesia. A small branch of the femoral artery was isolat-
ed under the muscles. The femoral artery and the small branch were
looped with 6–0 silk sutures to temporarily stop blood flow during the
procedure. A spring wire (0.38-mm diameter, Cook Inc., Bloomington,
IN) was inserted into the femoral artery more than 5 mm and moved
in and out twice. The wire was then removed, and blood flow in the
femoral artery and branch was restored by releasing the sutures, and
the skin incision was closed with a 5–0 silk suture. The other femoral
artery was sham-operated and served as a control.

For the miR-155-overexpression model, femoral artery wire injury
was performed as described above. Immediately after injury, the femo-
ral artery was cannulated, and the biclamped segment was incubated
with 20 μl of adenovirus (1 × 1010 pfu/ml) encoding miR-155 or GFP
for 15 min. After 14 days, all animals were anesthetized and perfused
with cold 0.9% NaCl, and the tissues were harvested for analysis of
RNA, morphology, and histology.

2.2. Morphometry and histology

Mice were euthanized, perfused and then fixed with 4% parafor-
maldehyde in 0.9% NaCl for 3min through the left ventricle under phys-
iological pressure. The femoral arteries were harvested, fixed with
formalin and embedded in paraffin. Ten consecutive 5-μm-thick sec-
tions were prepared for hematoxylin and eosin staining; the sections
were prepared at intervals of 550 μm. Images were acquired using a
Leica microscope (Leica DM6000B, Switzerland) and digitized with
LAS V.4.4 (Leica). Morphometric analysis of the neointimal area and
measurement of the intima/media (I/M) ratio were performed in a
blind manner.

2.3. Immunofluorescence staining

Immunofluorescence staining was performed with 5 μm paraffin
cross-sections from the femoral artery. After deparaffinized with xylene
and rehydrated, the slides were pre-incubated with 10% normal goat
serum (710027, KPL, USA) and then incubated with primary antibodies
anti-SM22α (ab14106, Abcam), anti-MAC2 (60207-1, Proteintech),
anti-MST2 (ab52641, Abcam). Secondary antibodies were fluorescein-
labeled antibody to rabbit IgG (021516, KPL, USA) and rhodamine-
labeled antibody to mouse IgG (031806, KPL, USA), or fluorescein-
labeled antibody to mouse IgG (021815, KPL, USA), rhodamine-
labeled antibody to rabbit IgG (031506, KPL, USA). In each experiment,
DAPI (157574, MB biomedical) was used for nuclear counter staining.
Images were captured by confocal microscopy (DM6000 CFS, Leica)
and processed by LAS AF software.

2.4. In situ hybridization

Paraffin cross-sections (5-μm thick) from femoral arteries were
deparaffinized and rehydrated for in situ hybridization according to
user manual of miRCURY LNATM microRNA ISH Optimization Kit
(Exiqon). Hybridization was performed using fluorescence-labeled
miR-155 probes (50 nM) in hybridization buffer (Exiqon) by incubation
at 55 °C for 1 h in a thermoblock (Labnet). After stringent washingwith
SSC buffer, nonspecific binding siteswere blockedwith 10%normal goat
serum (710027, KPL, USA). The sections were then incubated for 1 h at
37 °C with anti-SM22α primary antibody (ab14106, Abcam) diluted
1:50 in PBS. After washing with PBS, the sections were incubated with
a rhodamine-labeled secondary antibody (031506, KPL, USA) at 37 °C
for 30 min. Images were acquired using a Leica microscope (Leica
DM6000B, Switzerland) and digitized with a software of LAS V.4.4
(Leica).

2.5. Isolation of mRNA and real time PCR

Total RNA was extracted from femoral arteries, which were ho-
mogenized with gentle MACSTM Dissociator (Miltenyi Biotec), and
cultured VSMCs using the Trizol (InvitrogenTM) according to the
manufacturer's instructions. The quality of the RNA was determined
using a Biospectrometer (Eppendorf). For microRNA: reverse tran-
scription and qRT-PCR was performed using the Taqman microRNA
Reverse Transcription kit and TaqMan Universal Master MixII (Ap-
plied Biosystems) with specific primers for mmu-miR-155 (Assay
ID: 001806) and internal control RNU6b (U6) (Assay ID: 001093) ac-
cording to the manufacturer's protocol. For large mRNA: cDNA was
synthesized using an M-MLV First Strand Kit (Life Technologies).
qRT-PCR of mRNAs was performed using Platinum SYBR Green
qPCR Super Mix UDG Kit (Invitrogen), and real-time PCR experi-
ments were carried on a ABI 7500 FAST system (Life Technologies).
Relative amount of transcripts was normalized with GAPDH and
calculated using the 2−ΔΔCt formula as previously described [19].
Supplementary Table I summarizes the primer sequences.

2.6. Cell culture, siRNA transfection and plasmid constructs

Vascular smooth muscle cells were isolated from the thoracic aorta
of male Sprague–Dawley rats (60–80 g) as previously described [19]
and cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco
Life Technologies, Rockville, MD) containing 10% fetal calf serum
(ABGENT), 100 units/ml of penicillin, and 100 μg/ml of streptomycin
under 5% CO2 atmosphere at 37 °C. VSMCs from passages 3 to 5 were
used in experiments. 293A cells were maintained in high-glucose
Dulbecco's modified Eagle's medium (DMEM, Gibco Life Technologies,
Rockville, MD) supplemented with 10% FCS. All cells were transfected
using Lipofectamine 2000 (Invitrogen) according to the manufacturer's
protocol. Small interfering RNAs (siRNAs) against the rat MST2 se-
quence (accession number Genbank: NM_031735.1) were designed
and synthesized by Sigma. The siRNA sequences used in these studies
were as follows: MST2 siRNA#1: 5′-GGG UCC GUU UCA GAC AUA Att-
3′; 5′-UUA UGU CUG AAA CGG AC CCtt-3′; MST2 siRNA#2: 5′-CGA
GGU AAU UCA AGA AAU Att-3′; UAU UUC UUG AAU UAC CUC Gtt-3′;
siControl: 5′-UUC UCC GAA CGU GUC ACG UTT-3′; 5′-ACG UGA CAC
GUU CGG AGA ATT-3′. Twenty hours after transfection, the VSMCs
were treated with 10% FCS. The cells were then harvested and lysed
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for Western blotting analysis and coimmunoprecipitation assays.
pCMV-Flag-MST2-MAT plasmid as a gift from Dr. YUAN (Chinese Acad-
emy of Sciences, Beijing). Genes 3′UTR containmiR-155 target site or its
mutant sequences (Supplemental Table II) were inserted into pmir-GLO
Dual-Luciferase miRNA Target Expression Vector (Promega).

2.7. Cell counting

The cell number was determined using a Countess™Automated Cell
Counter (Invitrogen) as previously described [20] after transfection
with Ad-miR-155 or Ad-GFP, or anti-miR-155, and or anti-miR-ctl in
different periods. Untreated cells were used for the baseline count;
each sample was counted three times, and the average value from
triplicate experiments was measured.

2.8. MTS assay

After appropriate treatment, viability of the VSMCs cultured in 96-
well plates was measured using the MTS assay, as previously described
[21]. In brief, the medium of cultured VSMCs was replaced with 100 μl
serum-free DMEM containing 10 μl of CellTiter 96 AQueous One Solu-
tion (Promega, G3582). Control reactions were performed in triplicate
using the same reagents without cells. The plates were then incubated
at 37 °C for 4 h. Then, 60 μl of medium from each well was transferred
to a new 96-well plate, and the absorbance was at 490 nm was mea-
sured using a Multiskan spectrum (Thermo). The control absorbance
at 490 nm was subtracted from the average absorbance to obtain the
corrected absorbance.

2.9. Western blot analysis

Proteins from femoral artery were homogenized and cultured VSMCs
were prepared with lysis buffer (1% Triton X-100, 150 mMNaCl, 10 mM
Tris–HCl, pH 7.4, 1 mM EDTA, 1 mM EGTA, pH 8.0, 0.2 mM Na3VO4,
0.2 mM phenylmethylsulfonyl fluoride, and 0.5% NP-40). Equal amounts
of protein were separated on 10% SDS-PAGE, and electrotransferred to a
PVDF membrane (Millipore). Membranes were blocked with 5% milk in
TTBS for 2 h at room temperature and incubated primary antibodies
overnight at 4 °C. Antibodies that were used are as follow: anti-SM22α
(1:1000, sc-50466), anti-PCNA (1:1000, sc-56), or anti-β-actin (1:1000,
sc-47778), anti-ERK1/2 (1:1000, sc-93), anti-phospho-ERK1/2 (Thr202/
Tyr204) (1:500, sc-81492), anti-Akt (1:1000, sc-4060), anti-phospho-
Akt (1:1000, sc-2985R), anti-Raf-1 (1:500, sc-7267), anti-phospho-Raf-
1 (Ser338/Tyr341) (1:500, sc-28005R) were purchased from Santa Cruz
Biotechnology; anti-JNK (1:500, #9252), anti-phospho-JNK (Tyr183/
185) (1:400, #4668), anti-p38 MAPK (1:500, #9212), anti-phospho-
p38 MAPK (Thr180/Tyr182) (1:400, #4511), anti-MEK1/2 (1:500,
#9126) and anti-phospho-MEK1/2 (Ser217/221) (1:400, #9154), anti-
caspase-3 (1:1000, #9662) were from Cell Signaling Technology; anti-
MST2 (1:1000, ab52641) from Abcam Biotechnology; anti-NF-κB p65
(1:500, NBP1-96139) from NOVUS Biologicals; anti-phospho-NF-κB
(Ser536) (1:400, AF2006) from Affinity Biotech; anti-p47phox (1:500,
B1171), anti-phospho-p47phox (Ser370) (1:400, BS4852) from Bioworld
Technology. Membranes were then incubated with the HRP-conjugated
secondary antibody (1:5000, Rockland) for 1 h at room temperature.
The blots were treated with the Immobilon™ Western (Millipore), and
detected by ECL (enhanced chemiluminescence) Fuazon Fx (Vilber
Lourmat). Images were captured and processed by FusionCapt Advance
Fx5 software (Vilber Lourmat). All experiments were replicated three
times.

2.10. Target prediction

Potential target genes of miR-155 were identified with following
miRNA target prediction algorithms: miRanda (www.microrna.org)
and RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
submission.html) [22,23].

2.11. Luciferase assays

293A cells were transfected with a miR-155 mimic (30 nM, Ambion
Pre-miR miRNA Precursor; Life Technologies), NC oligonucleotides
(30 nM), or anti-miR-155 (30 nM, miRCURY LNA Inhibitor; Exiqon)
combinedwith 100 ng of luciferase reporter or an empty vector. Lucifer-
ase activity was measured using a Dual-Glo Luciferase Assay System
(Promega, Madison, WI) with a Flash and Glow (LB955, Berthold Tech-
nologies) reader 24 h after transfection. The specific target activity was
expressed as the relative activity ratio of firefly luciferase to Renilla
luciferase.

2.12. Co-immunoprecipitation assay

Co-immunoprecipitation was performed as described previously
[24]. In brief, proteins from VSMCs were first pre-cleared with 30 μl
of protein A-agarose (50% v/v). The supernatants were immuno-
precipitatedwith 3 μg Raf-1 antibodies for 1 h at 4 °C and then incubated
with protein A-agarose overnight at 4 °C. Protein A–agarose–antigen–
antibody complexes were collected by centrifugation at 12,000 rpm
for 2 min at 4 °C. The pellets were washed four times with 600 μl of
IPH buffer (50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.5%
NP-40, and 0.1 mM phenylmethylsulfonyl fluoride) for 20 min at 4 °C.
The bound proteins were resolved using SDS-PAGE followed by West-
ern blotting using anti-MST2, anti-MEK and anti-Raf-1 antibodies.

2.13. Statistics

All of the data are presented as the means ± S.E.M. Differences be-
tween two groups were assessed using analysis of variance followed
by a Student's t-test. A value of P b 0.05 was considered statistically
significant.

3. Results

3.1. Loss and gain of miR-155 significantly decrease and increase
neointimal formation in wire-injured vessels, respectively

To examinewhethermiR-155 is a keymediator in vascular remodel-
ing, C57BL/6 mice were subjected to femoral artery wire denudation
injury and examined after 14 days. Notably, the injured vessels in
miR-155−/− mice showed decreased neointimal hyperplasia, intima-
to-media ratio and stenosis compared with WT mice (Fig. 1A, B). Next,
we examined miR-155 expression levels in injured femoral arteries of
WT and miR-155−/− mice. Quantitative real-time (qRT)-PCR analysis
revealed that miR-155 expression was elevated by 3.5-fold in the in-
jured arteries ofWTmice compared to uninjured arteries andwas bare-
ly detectable in miR-155−/− mice (Fig. 1C). The U6 small nuclear RNA,
as an internal control, was relatively unchanged in various groups of
mice (Supplementary Fig. 1A). In contrast, we overexpressed miR-155
using adenovirus (Ad)-mediated gene transfer; Ad-miR-155 was
administered intraluminally after wire-induced injury [25]. qRT-
PCR analysis revealed increased miR-155 expression in injured ves-
sels 14 days after Ad-miR-155 infection (Supplementary Fig. 2A). As
expected, miR-155 overexpression significantly increased neointi-
mal formation, the intima/media ratio, and stenosis (Supplementary
Fig. 2B, C).

To further confirm the role of miR-155 in vascular injury, wire-
injured femoral arteries were treated locally with an agomir or anta-
gomir ofmiR-155 toup-regulate or down-regulatemiR-155, respective-
ly. The results showed that treatment with the miR-155 agomir
increased neointimal hyperplasia, intima-to-media ratio and stenosis
compared with the control agomir. Conversely, miR-155 antagomir
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Fig. 1. Role of miR-155 in neointimal formation induced by wire injury in the femoral artery. A, Representative hematoxylin and eosin staining of cross sections from uninjured andwire-
injured arteries; n = 9 for C57BL/6 (WT) mice; n = 7 for miR-155 knockout (miR-155−/−) mice. Scale bar = 100 μm. B, The intima to media (I/M) ratio and stenosis. **P b 0.01 vs. WT
injured; ***P b 0.001 vs. WT. C, qRT-PCR analysis of miR-155 expression. **P b 0.01 vs. WT uninjured n = 3. D, Immunofluorescence staining using specific anti-MAC2 and anti-SM22α
antibodies. Scale bars = 50 μm. E, Analysis of SM22α-positive and MAC2-positive cells in the lesion area determined by immunofluorescence. *P b 0.05 vs. WT. F, In situ hybridization
of miR-155 (green) combined with VSMC-specific SM22α staining (red) in the injured arteries of WT and miR-155−/− mice 14 days after injury. Arrows indicate miR-155-positive
VSMCs. Scale bars = 32 μm.
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decreased neointimal formation, the intima/media ratio, and stenosis
compared with control antagomir (Supplementary Fig. 3A, B). These
results suggest that miR-155 plays a vital role in neointimal formation
induced by vascular endothelial injury.
Because VSMC proliferation and macrophage infiltration underlie
the pathogenesis of neointimal formation [10], we examined the
VSMC and macrophage contents in injured vessels. As shown in
Fig. 1D and E, 14 days after injury, SM22α-positive cells comprised
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73.9% of the lesion area within the neointima in WT mice but only
23.7% of the lesion area in miR-155−/− mice. However, the macro-
phage numbers in the lesion area (MAC2-positive cells) were not
significantly different in WT and miR-155−/− mice. These observa-
tions suggest that VSMCs are likely the primary cellular source of
miR-155 in injured vessels. To test this hypothesis, we performed
in situ hybridization of miR-155 probe combined with SM22α im-
munostaining and observed that miR-155 was expressed mainly in
the VSMCs but not the macrophages of the neointima (Fig. F). To-
gether, these results indicate that miR-155 mediates VSMC prolifer-
ation, leading to neointimal formation after wire-induced vascular
injury.
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expression of proliferating cell nuclear antigen (PCNA), a proliferation
marker (Fig. 2B). Cell-counting and MTS assays yielded similar results,
indicating that anti-miR-155 significantly decreased PDGF-BB-induced
VSMC proliferation (Fig. 2C, D). In contrast, infection of quiescent
VSMCs with Ad-miR-155 but not Ad-GFP significantly reduced the
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expression of SM22α (a differentiation marker) and increased the ex-
pression of PCNA (Fig. 2E). Cell-counting and MTS assays revealed that
miR-155 overexpression significantly promoted VSMC proliferation
(Fig. 2F, G). Together, these data indicate that miR-155 promotes
VSMC proliferation in vitro.
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3.3. MST2 is a direct target of miR-155 in VSMCs

To elucidate themechanismbywhichmiR-155 promotes VSMCpro-
liferation, eight potential targets related to VSMC proliferation or in-
flammation were tested using luciferase reporter assays; these targets
were selected using severalmiRNA-target prediction algorithms includ-
ing miRanda [22] and RNAhybrid [23]. Suppressor of cytokine signaling
1 (socs1), a target of miR-155, was used as a positive control, and the
empty vector pmirGLO was used as a negative control. Three among
the eight reporters were repressed by a miR-155 mimic (Fig. 3A).
MST2, a core component of the Hippo signaling pathway, regulates
cell proliferation, growth and apoptosis [14], and the E3 ubiquitin-
protein ligase TRIM39 has a pro-apoptotic effect by inhibiting APC/C-
Cdh1-mediated poly-ubiquitination [26]. Therefore, we mutated the
miR-155-binding site resides in the 3′UTR of the MST2 and TRIM39
mRNAs and performed luciferase reporter assays using a miR-155
mimic and a miR-155 inhibitor (Fig. 3B). We observed that in cells con-
taining wild-type (WT) MST2 3′UTR, luciferase activity was reduced by
31% upon treatment with the miR-155 mimic compared with control
microRNA (P b 0.01); mutation of the miR-155-binding site in the
MST2 3′UTR almost completely restored luciferase activity in the pres-
ence of the miR-155 mimic. Similar results were obtained with cells
containing WT and mutant TRIM39 3′UTR (Fig. 3C, D). To confirm
these observations in vitro, we transfected VSMCs with anti-miR-155
A
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cate that miR-155 directly targets MST2 in VSMCs via the miR-155-
binding site in the MST2 3′UTR.
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significant changes in PI3K/Akt, JNK and p38 phosphorylation (Fig. 4B).
These results suggest that additional mechanisms might regulate the
activation of PI3K/Akt in VSMCs overexpressingmiR-155. To further ex-
amine the role of MST2 in miR-155-mediated VSMC proliferation, we
designed two different siRNAs to specifically silence MST2 expression.
Western blotting analysis revealed that both siRNAs could efficiently
knock down MST2 expression compared with control siRNA. Notably,
MST2 knockdown also resulted in the activation of ERK1/2 but no signif-
icant change in PI3K/Akt phosphorylation (Fig. 4C). Subsequently, we
knocked down MST2 and treated VSMCs with miR-155 inhibitor anti-
miR-155. Western blotting analysis revealed that knockdown of MST2
in anti-miR-155-transfected cells rescued ERK1/2 but not PI3K/Akt
phosphorylation and increased the PCNA protein level (Fig. 4D). Con-
versely, knockdown of MST2 using a specific siRNA further promoted
ERK1/2 phosphorylation induced by miR-155 overexpression (Fig. 4E,
lane 4 versus lane 3). The downregulation of MST2 by miR-155 and
the ability of MST2 to block activation of ERK1/2 by miR-155 suggest
that MST2 is a crucial mediator of miR-155 in regulating ERK1/2 signal-
ing. Furthermore, we observed that pharmacological inhibition of the
ERK1/2 pathway by PD98059 abolished miR-155-overexpression-
induced upregulation of PCNA (Fig. 4F). In addition, wound-scratch
assay showed that overexpression of miR-155 markedly increased the
migration of VSMCs. However, the promoting action of miR-155 on
VSMC migration could be abolished by overexpressing MST2 (Supple-
mentary Fig. 4). Together, these results suggest that miR-155 regulates
VSMC proliferation and migration by targeting MST2 and activating
ERK1/2 signaling.

3.5. miR-155-mediated downregulation of MST2 increases NF-κB, p47phox,
and HO-1 expression

To further elucidate the role of MST2 in vascular remodeling, immu-
nofluorescent stainingwasperformed on sections of the injured femoral
arteries from WT and miR-155−/− mice. We observed that MST2 ex-
pression was significantly increased in the injured lesions of miR-
155−/− mice compared withWTmice (Fig. 5A). Furthermore, these re-
sults were consistent with Western blotting analyses performed on in-
jured arteries from WT and miR-155−/− mice; deletion of miR-155
significantly increased MST2 expression (Fig. 5B). Next, we examined
which physiological and pathological processes were involved in miR-
155-mediated downregulation of MST2. Using qRT-PCR, we examined
the expression of iNOS, HO-1, p47phox, p22phox, NF-κB, TNF-α, and IL-
1β in the injured arteries of WT, miR-155−/− and miR-155-
overexpressing mice. Notably, the iNOS, HO-1, p47phox, and NF-κB ex-
pression levels were significantly reduced in the injured arteries of
miR-155−/− mice compared with WT mice. Conversely, the expression
of these geneswas significantly higher inmiR-155-overexpressingmice
compared with Ad-GFP-infected mice. However, there was no signifi-
cant difference in p22phox, TNF-α, and IL-1β expression in the injured
arteries of miR-155-overexpressing mice compared with Ad-GFP-
infected mice (Fig. 5C–I). Together, these data suggest that miR-155-
mediated downregulation of MST2 increases inflammation and oxida-
tive stress, evidenced by upregulation of NF-κB and p47phox expression.

3.6. MST2 mediates miR-155-promoted inflammation and oxidative stress
responses through the Raf-1–MEK–ERK1/2 pathway

MST2 is a kinase and the core component of Hippo pathway, which
mediates diverse physiological and pathological processes [27–29]. To
elucidate the mechanism by which MST2 modulates inflammation
and oxidative stress, we downregulated MST2 expression in VSMCs
and monitored the expression of inflammation- and oxidative stress-
related genes. Notably, downregulation of MST2 caused increased ex-
pression of p47phox and NF-κB (Fig. 6A). To examine whether miR-155
was involved in these processes,we tested the effect ofmiR-155 overex-
pression and anti-miR-155-mediated functional inhibition of miR-155
activity on the expression and phosphorylation of p47phox and NF-κB
using Ad-miR-155- and anti-miR-155-transfected VSMCs. As shown in
Fig. 6B, miR-155 overexpression significantly increased phosphoryla-
tion of p47phox and NF-κB. By contrast, inhibition of miR-155 by anti-
miR-155 reduced phosphorylation of p47phox and NF-κB. These results
suggest that miR-155 participates in both inflammatory and oxidative
stress responses by downregulatingMST2 inVSMCs. To test the hypoth-
esis, we examined the functional roles of MST2 in miR-155-mediated
inflammatory and oxidative stress responses. Silencing of MST2 in
VSMCs transfected with anti-miR-155 increased the expression and
phosphorylation of p47phox and NF-κB compared with control groups
(Fig. 6C). Conversely, overexpression of MST2 in Ad-miR-155-infected
VSMCs reduced the expression and phosphorylation of p47phox and
NF-κB (Fig. 6D). Together, these results indicate that miR-155-
dependent regulation of p47phox andNF-κB byMST2 links inflammation
and oxidative stress.

To determinewhich pathwaymediatesmiR-155-induced inflamma-
tion and oxidative stress response, MST2 was downregulated in VSMCs,
and the cells were incubated with the PI3K/Akt, ERK1/2, NF-κB, and
NAD(P)H inhibitors LY294002, PD98059, CAY10576 and APOCYNIN, re-
spectively, for 2 h before exposure to 10% FCS. Notably, inhibition of
ERK1/2 blocked siMST2-induced phosphorylation of p47phox and NF-
κB (Fig. 6E). To confirm this observation, VSMCs (not transfected with
siMST2) were incubated with PD98059, and Western blotting was
used to analyze the phosphorylation of p47phox and NF-κB. As shown
in Fig. 6F, inhibition of the ERK1/2 pathway also reduced the phosphor-
ylation of p47phox and NF-κB. Interestingly, inhibition of NF-κB by
CAY10576 decreased the activation of p47phox in VSMCs transfected
with siMST2. Consistent with this observation, inhibition of NAD(P)H
using APOCYNIN also reduced the phosphorylation of NF-κB (Fig. 6E).
Together, these data indicate that miR-155 mediates the potential link
between inflammation and oxidative stress via the ERK1/2 signaling
pathway.

Alteration in theMST2–Raf-1 interaction affects the ERK1/2 pathway
[17]. Therefore, we examined how miR-155 impinges on MST2-
mediated regulation of the ERK1/2 pathway. Coimmunoprecipitation
analysis of the lysates from VSMCs infected with Ad-miR-155 revealed
a significant increase in MEK levels and decrease of MST2 levels in
anti-Raf-1-immunoprecipitates compared with Ad-GFP-infected cells.
By contrast, transfection with anti-miR-155 increased MST2 levels and
reduced MEK levels in the complexes (Fig. 6G). As expected, miR-155
overexpression also increased phosphorylation of MEK and ERK1/2,
whereas transfection with anti-miR-155 reduced their phosphorylation
(Fig. 6G). Together, these observations indicate that MST2 competes
with MEK to bind Raf-1; furthermore, downregulation of MST2 by
miR-155 alters the interaction of MEK with Raf-1 and MST2, leading to
activation of ERK1/2 signaling.

4. Discussion

In this study, we observed that in response to vascular injury, miR-
155 directly represses MST2 to promote VSMC proliferation and coordi-
nate inflammation and oxidative stress via the Raf-1–MEK–ERK1/2
pathways. The following observations support this conclusion: (1) Neo-
intimal formation in wire-injured arteries was decreased and increased
by loss and gain of miR-155, respectively; (2) miR-155 decreased MST2
expression in cultured VSMCs, whereas MST2 expression was elevated
in the neointima of miR-155−/− mice; (3) Downregulation of MST2
by miR-155 increased VSMC proliferation via the ERK1/2 pathway;
and (4) MST2 mediates miR-155-induced inflammatory and oxidative
stress responses through the Raf-1–MEK–ERK1/2 pathway.

Previously, we observed that miR-155 is significantly upregulated
during neointimal hyperplasia induced by carotid artery ligation [10].
However, the mechanisms by which miR-155 regulates vascular re-
modeling are unclear. miR-155 is an onco-miRNA and is overexpressed
in a number of human malignancies, and its oncogenic properties are
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Fig. 5. miR-155-mediated downregulation of MST2 increases expression of NF-κB, p47phox, and HO-1. A, Immunofluorescent staining was performed on sections from injured femoral
arteries of WT (C57BL/6) and miR-155−/− mice. Red, green and blue staining indicates MST2, SM22α and DAPI, respectively (scale bar, 50 μm). B, Western blotting analysis to measure
MST2 expression in injured arteries fromWT and miR-155−/− mice (n = 3 in each group). C-I, qRT-PCR analysis of iNOS, HO-1, p47phox, p22phox, NF-κB, TNF-α and IL1β expression in
injured arteries from WT and miR-155−/− mice (*P b 0.05, **P b 0.01, ***P b 0.001 vs. WT) as well as miR-155-overexpressing mice (*P b 0.05, **P b 0.01, ***P b 0.001 vs. Ad-GFP).
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attributed to stimulation of cellular proliferation, inhibition of caspase-3
activity, and targeting of pro-apoptotic molecules such as TP53BP1
[30–32]. In our study, TUNEL staining and caspase cleavage assay
showed that miR-155 overexpression significantly inhibited VSMC apo-
ptosis and the activation of caspase-3 induced by H2O2 (Supplementary
Fig. 5A, B). Furthermore, Eμ-mmu-miR-155 transgenic mice develop B-
cell malignancies [33]. These observations suggest that miR-155 has a
proliferative effect. In this study, we used gain- and loss-of-function ap-
proaches and observed that miR-155 promoted VSMC proliferation
in vivo and in vitro in response to vascular injury.
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This study identified that MST2 is significantly upregulated in in-
jured arteries of miR-155−/− mice and is negatively regulated by miR-
155 in cultured VSMCs; luciferase reporter assays andWestern blotting
analyses revealed that MST2 is a novel target of miR-155. By targeting
MST2,miR-155 promotes VSMCproliferation in response to vascular in-
jury. Genetic screens in Drosophila have shown that loss of function of
MST2 and its close homologueMST1 resulted in overgrown tissues con-
taining a greater number of normal-sized cells. These mutant cells
expressed elevated levels of cyclin E and underwent increased cell
growth and proliferation as well as impaired apoptosis [34]. Consistent
with this study, in mammals, deletion of both MST2 and MST1 in hepa-
tocytes resulted in significantly enlarged livers due to excessive prolifer-
ation [35]. Furthermore, silencing ofMST2 inmouse or human Raf-1−/−

cells causes reduced sensitivity to apoptosis, whereas overexpression of
MST2 induces apoptosis [15]. These observations suggest thatMST2 has
an important role in regulating proliferation and apoptosis.

ERK1/2 is activated in various animal models after vascular injury,
and VSMC proliferation and vascular remodeling in balloon-injured ar-
teries are attenuated by both ERK1/2 inhibitor and gene transfer of the
ERK1/2 dominant-negative mutant [36–38]. We previously showed
that overexpression of SM22α significantly inhibited the Ras–Raf–
MEK–ERK1/2 signaling cascade and reducedmitogen-stimulated prolif-
eration of VSMCs and injury-induced neointimal remodeling [39]. MST2
is a member of the germinal center kinase group II (GCK II) family of
mitogen-activated protein kinase (MAPK)-related kinases [13,40]. The
MAPK pathway can be regulated by the overall strength and duration
of the ERK signal [13]. Proteomic analysis of Raf-1 signaling complexes
revealed that Raf-1 interacted with MST2 [15], which enables Raf-1,
MST2 andMEK to signal the MAP kinases. MST2 binds Raf-1 at two dis-
tinct sites that overlap with the MEK-binding domains [16], suggesting
that MST2 competes with MEK to bind Raf-1 under certain conditions,
thus affecting MAPK signaling. Consistent with this observation, when
a disruptor peptide, i.e., stearoylated-MST2 was used to dissociate
MST2 from Raf-1, binding of MEK to Raf-1 as well as activation of MEK
and ERK1/2 was significantly increased [17]. We observed that miR-
155 activates the ERK1/2 pathway by directly repressing the expression
of MST2, consequently enhancing the interaction of between Raf-1 and
MEK and promoting VSMC proliferation as well as injury-induced neo-
intimal hyperplasia.
Fig. 7. Proposed model for miR-155-mediated crosstalk between inflammation and oxidative st
Raf-1 (MST2–Raf-1 accumulates at the expense of MEK–Raf-1), and activates ERK1/2 pathway
As the chief effector cell in vascular injury, VSMCs coordinate and
synchronize extremely complex inflammatory, proliferative, differenti-
ation and oxidative stress programs [1–3]. miR-155 is a typical multi-
functional microRNA with distinct expression profiles and plays a
critical role in various physiological and pathological processes such as
inflammation, proliferation, differentiation and oxidative stress [2,3].
miR-155 plays a critical role in the development of atherosclerosis;
here, vascular inflammation is sustained and amplified by repression
of BCL6-mediated inhibition of CCL2 expression [41]. Similarly, in
atherosclerotic lesions, miR-155 increased Nos2 expression in pro-
inflammatory macrophages by upregulating miR-342-5p-mediated
repression of Akt1 [42]. Interestingly, miR-155 expression in macro-
phages, but not cardiomyocytes, promoted cardiac inflammation and
hypertrophy [41], while another report showed that miR-155 induced
pathological cardiomyocyte hypertrophy in pressure overload-induced
hypertrophic hearts [43]. These data suggest that the deficit of miR-
155 facilitates protection from atherosclerosis and cardiac hypertrophy.
Conversely, some evidences have indicated that miR-155 modulated
angiotensin signaling in cardiovascular system. The angiotensin II type
1 receptor (AT1R) expressionwas positively correlatedwith blood pres-
sure and negatively correlated withmiR-155 expression level [44]. Loss
of miR-155-mediated depression of AT1R could be implicated in hyper-
tension and cardiovascular diseases [12]. However, our data showed
that there were no statistically significant differences between WT and
miR-155−/− mice in blood pressure (Supplementary Fig. 6). So, miR-
155-mediated vascular remodeling might be independent from blood
pressure under physiological condition.

It is not known whether miR-155 upregulation is correlated with
NF-κB activation. Although miR-155 expression and NF-κB activation
significantly elevated at early stages of hepatocarcinogenesis in a
mouse model [45], our observations reveal that miR-155 activates NF-
κB inflammatory pathways by downregulating MST2 via the ERK1/2
pathway. It is well established that TNF-α and IL-1β are major inflam-
matory factors. However, our result showed that overexpression of
miR-155 at wire-injured femoral artery did not affect TNF-α and IL-1β
mRNA levels. As a result, we performed an ELISA assay to determine
whether overexpression of miR-155 affected the protein levels of TNF-
α and IL-1β. As shown in Supplementary Fig. 7, overexpression of
miR-155 upregulated TNF-α expression but did not change IL-1β level
ress. miR-155 targets and downregulates MST2, which competes with MEK for binding to
, subsequently leading to the activation of NF-κB and p47phox.
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in tissue lysates. Consistent with our findings, Zhang et al. recently re-
ported that overexpression of miR-155 markedly increased TNF-α but
did not affect IL-1β level both in the ligated vessels and cultured
BMMs [10]. These data imply that additional mechanisms might be in-
volved in regulating the expression of IL-1β in the injured vessels.

Oxidative stress and inflammation are frequently involved in cardio-
vascular diseases simultaneously; these processes are a common fea-
ture at early stages of atherosclerosis in response to vascular injury
[46,47]. p47phox is an essential component of NAD(P)H oxidase, which
is the critical source of ROS in atherosclerotic lesions [48]. However,
reduced phosphorylation of SM22α abolishes Ang-II-induced ROS pro-
duction via the activated PKCδ-p47phox axis and inhibits VSMC hyper-
trophy and hyperplasia in vitro and in vivo. Consistent with p47phox-
mediated oxidative stress in VSMCs,we observed thatmiR-155 elevates
the total p47phox level and increased its phosphorylation; the latter
effect is mediated by MST2 via the ERK1/2 pathway [49]. Activated
NF-κB and oxidative stress are closely associated withmany risk factors
for atherosclerosis including vessel injury [46]. Notably, we observed
that the NF-κB inhibitor CAY10576 inhibited MST2-mediated ERK1/2
activation and p47phox-mediated oxidative stress; however, the
NAD(P)H oxidase inhibitor APOCYNIN reduced phosphorylation of NF-
κB. These data suggest that the inflammatory and oxidative stress
pathways are coordinated by miR-155-mediated regulation of MST2
via Raf-1–MEK–ERK1/2 signaling.

In summary, we identified that miR-155 promotes VSMC prolifera-
tion; this effect is partiallymediated by repression ofMST2, which alters
the interaction of Raf-1 with MST2 and MEK, leading to activation of
ERK1/2. Activation of ERK1/2 couples oxidative stresswith inflammato-
ry pathways and further increasesmiR-155 expression (Supplementary
Fig. 8); Interestingly, overexpression of miR-155 in the injured arterial
wall also enhanced PDGF expression (Supplementary Fig. 9). Totally, a
positive feedback loop is established to promote VSMC proliferation
(Fig. 7). Our in vivo and in vitro observations indicate that miR-155 is
an important mediator of neointimal hyperplasia and that inhibition
of endogenousmiR-155might be a novel therapeutic strategy in vascu-
lar injury and remodeling.
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