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a b s t r a c t

We say that a countable model M completely characterizes an infinite cardinal κ , if the
Scott sentence of M has a model in cardinality κ , but no models in cardinality κ+. If
a structure M completely characterizes κ , κ is called characterizable. In this paper, we
concern ourselves with cardinals that are characterizable by linearly ordered structures
(cf. Definition 2.1).

Under the assumption of GCH,Malitz completely resolved the problem by showing that
κ is characterizable if and only if κ = ℵα , for some α < ω1 (cf. Malitz (1968) [7] and
Baumgartner (1974) [1]). Our results concern the case where GCH fails.

From Hjorth (2002) [3], we can deduce that if κ is characterizable, then κ+ is
characterizable by a densely ordered structure (see Theorem 2.4 and Corollary 2.5).

We show that if κ is homogeneously characterizable (cf. Definition 2.2), then κ is
characterizable by a densely ordered structure, while the converse fails (Theorem 2.3).

The main theorems are (1) If κ > 2λ is a characterizable cardinal, λ is characterizable
by a densely ordered structure and λ is the least cardinal such that κλ > κ , then κλ is also
characterizable (Theorem 5.4) and (2) if ℵα and κℵα are characterizable cardinals, then the
same is true for κℵα+β , for all countable β (Theorem 5.5).

Combining these two theorems we get that if κ > 2ℵα is a characterizable cardinal,
ℵα is characterizable by a densely ordered structure and ℵα is the least cardinal such that
κℵα > κ , then for all β < α + ω1, κℵβ is characterizable (Theorem 5.7). Also if κ is a
characterizable cardinal, then κℵα is characterizable, for all countable α (Corollary 5.6).
This answers a question of the author in Souldatos (submitted for publication) [8].

© 2011 Elsevier B.V. All rights reserved.

1. Structure of the paper

Throughout the whole paper, we work with countable languages L and when we refer to a dense linear ordering we
mean a dense linear ordering without endpoints. Abusing language, we will say that a structure is linearly ordered even in
the case where only an infinite subset of the structure is linearly ordered. The first two sections provide some background
material for the characterizable cardinals and for the dense linear orderings, respectively. Section 4 contains the construction
that proves the following theorem.

Theorem 1.1. If κ is a characterizable cardinal, then κℵ1 is also a characterizable cardinal.

This appears as Theorem 4.18 in Section 4 and it will be easily generalized to other λ ≥ ℵ1 in the last section.

2. Characterizable cardinals

This section provides the necessary background on characterizable cardinals.
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Definition 2.1. We say that a Lω1,ω sentence φ characterizes ℵα , or that ℵα is characterizable, if φ has models in cardinality
ℵα , but not in cardinalityℵα+1. Ifφ is the Scott sentence of a countablemodelM (equivalently, ifφ is any complete sentence),
we say that M completely characterizes ℵα , or that ℵα is completely characterizable by M.

We say that a cardinal ℵα is characterized by a linear order, if there exists a countable model M and a linear order <
defined on (a subset of) the countable structure M, such that the Scott sentence of (M, <), say φ, characterizes ℵα and in
addition, φ has a model N where<N is of size ℵα .

We denote by CHω1,ω , the set of all completely characterizable cardinals.

Definition 2.2. If P is a unary predicate symbol, we say that it is completely homogeneous for the L-structure A, if PA
=

{a|A |= P(a)} is infinite and every permutation of it extends to an automorphism of A.
If κ is a cardinal, we will say that κ is homogeneously characterizable by (φ, P), if φ is a complete Lω1,ω-sentence, P a

unary predicate in the language of φ such that

• φ does not have models of power> κ ,
• if M is the (unique) countable model of φ, then PM is infinite and P is completely homogeneous for M and
• there is a model A of φ such that PA has cardinality κ .

If (φ, P) characterizes κ homogeneously and M, P are as above, we write (M, PM) |= (φ, P). Denote the set of all
homogeneously characterizable cardinals by HCHω1,ω . Obviously, HCHω1,ω ⊂ CHω1,ω , but the inverse inclusion fails
since ℵ0 ∈ CHω1,ω \ HCHω1,ω (cf. [3]).

In [7],Malitz proved that under the assumption of GCH, for every successorα < ω1,iα is homogeneously characterizable.
Baumgartner improved this result in [1] by eliminating the GCH assumption. Notice that this result is optimal in the sense
that if a Lω1,ω sentence has a model in iω1 , then it has models in all cardinalities (iω1 is the Hanf number for Lω1,ω). It
follows that under GCH a cardinal is characterizable (completely or not) if and only if it is one of the iα = ℵα for some
countable α.

Further work on characterizable cardinals was done by Knight [5] and Hjorth in [3]. Knight proved that ℵ1 is completely
characterizable, while Hjorth extended this result to all ℵα ’s, α countable.
Convention: For now on, we consider only completely characterizable cardinals, and we will refer to them as just
characterizable cardinals.

Theorem 2.3. If κ ∈ HCHω1,ω , then κ is characterized by a densely ordered structure.

Proof. Let (φ, P) witness the fact that κ ∈ HCHω1,ω and M be a countable model such that (M, PM) |= (φ, P). Extend
L(φ), the language of φ, to include a new binary symbol< and consider the new sentence φ′ which is the conjunction of φ
together with the sentence

< is a dense linear order on PM without endpoints.

Obviously, φ′ does not have any models of cardinality > κ . We will prove that φ′ is a complete sentence and that if M′

is the unique countable model of φ′, then (M′, <M′

) characterize κ:
Toward completeness, let M1,M2 be two countable models of φ′. Since the reducts of M1,M2 on the language of φ both

satisfy φ, they must be isomorphic. Call i such an isomorphism between M1 and M2 and let f be any bijection that maps
the elements of PM1 to the elements of PM2 . Then i−1

◦ f is a permutation of PM1 and by the homogeneity of P , it extends
to an automorphism of M1, say j. Then i ◦ j is a L(φ)-isomorphism between M1 and M2 and i ◦ j agrees with f on PM1 .
In other words, any bijection f between PM1 and PM2 extends to an L(φ)-isomorphism between M1 and M2. By the usual
back-and-forth argument there is a bijection f between (PM1 , <) and (PM2 , <) that preserves< and by extending this f we
get an isomorphism between M1 and M2 that preserves both L(φ) and<. This proves completeness.

Now, if A is a model of φ such that PA has size κ , then we can expand A to a L(φ) ∪ {<}-structure A′ by defining <
to be a dense linear order on PA without endpoints. By the definition of φ′, A′

|= φ′ and this proves that φ′ characterizes
κ . �

Notes: (1) The assumption κ ∈ HCHω1,ω is too strong, since ℵ0 is characterizable by (ω,∈), while ℵ0 ∉ HCHω1,ω .
(2) It follows by the proof that for an uncountable model A of φ we can define< on PA to be any dense linear order without
endpoints. I.e. the models of φ′ embed any dense linear ordering without endpoints of size up to κ .

In [3] Hjorth proves that every κ+ is characterized by a densely ordered structure, for all κ ∈ CHω1,ω . Hjorth is actually
concerned with the case that κ = ℵα and α countable, but his proof generalizes. The next theorems follows from his proof
of Theorem 5.1 in [3].

Theorem 2.4 (Hjorth). If κ ∈ CHω1,ω , then at least one of the following is the case:

(1) κ+
∈ HCHω1,ω or,

(2) there is a countable model M in a language that contains a unary predicate P and a binary predicate < whose Scott
sentence φM
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(a) has no models of cardinality κ++ and
(b) φM has amodelN where (PN , <N ) is a dense linear ordering without endpoints, it has size κ+, and every initial segment

of this linear ordering has size κ .

Cases 1 and 2 need not be exclusive the one to the other, but in either case we get

Corollary 2.5 (Hjorth). If κ ∈ CHω1,ω , then there is a countable densely ordered structure whose Scott sentence

(1) does not have any models in cardinality κ++, but
(2) does have a model which is densely ordered and has an increasing sequence of size κ+.

Proof. By Theorems 2.4 and 2.3. �

Using Corollary 2.5 for the successor stages and taking unions at the limit stages we can conclude that

Corollary 2.6 (Hjorth). If ℵα ∈ CHω1,ω , then ℵα+β is characterized by a densely ordered structure, for all 0 < β < ω1.
In particular, ℵβ ∈ CHω1,ω is characterized by a densely ordered structure, for all countable ordinals β .

The importance of characterizing cardinals by linearly ordered structures is emphasized by the next theorem. It is
theorem 35 from [8].

Theorem 2.7. Let φ be a complete sentence such that

(1) For every model M of φ,<M is a linear order.
(2) φ does not have any models of cardinality λ+.
(3) φ has a model M with an<M-increasing sequence of size λ.

Then 2λ is characterizable.

Next we describe briefly a Fraisse-type construction which we are going to use.

Definition 2.8. Let A be a structure that contains M and if A0 ⊂ A, then let ⟨A0⟩ be the substructure of A that is generated
by A0. We call finitely generated over M the substructures of A that have the form ⟨A0⟩ ∪ M, where A0 is a finite subset of
A \ M. We write finitely generated/M.

If B0 = ⟨A0⟩ ∪ M, B1 = ⟨A1⟩ ∪ M are finitely generated/M substructures of A, we write B0 ⊂ B1 and we say that B0
is a substructure of B1, if the same is true (in the usual sense) for ⟨A0⟩ and ⟨A1⟩. We also write B0 ∼= B1 if there exists an
isomorphism i : B0 → B1 such that i|M = idM .

It is straightforward to extend the above definition in the case were we have finitely many M0, . . . ,Mn.
Fraisse’s theorem hold even for ‘‘finitely generated/M’’ substructures (For a proof of Fraisse’s theorem one can

consult [4]).

Theorem 2.9 (Fraisse). Fix a countablemodelM and let K(M) be a countable collection of finitely generated/M structures (up to
isomorphism). If K(M) has the Hereditary Property (HP), the Joint Embedding Property (JEP) and the Amalgamation Property (AP),
then there is a countable structure F which we will call the Fraisse limit of K(M), such that

(1) F is unique up to isomorphism and contains M,
(2) K(M) is the collection of all finitely generated/M substructures of F (up to isomorphism), and
(3) every isomorphism between finitely generated/M substructures of F extends to an automorphism of F .

The converse is also true, i.e. if F is a countable structure such that every isomorphism between finitely generated/M
substructures of F extends to an automorphism of F , and K(M) is the collection of all finitely generated/M substructures of
F , then K(M) has the HP, the JEP and the AP.

Theorem 2.10 (Fraisse). Fix a model M. Assume that A,B are two structures (not necessarily countable) that contain M and
such that

• for every finitely generated/M substructures C ⊂ D of A (or of B), and every embedding f : C → A (f : C → B), there is
an embedding g : D → A (g : D → B) that extends f , and

• the collection of all finitely generated/M substructures of A is the same as the collection of all finitely generated/M
substructures of B .

Then A and B are back-and-forth equivalent, equivalently A ≡∞,ω B .

In the cases we will work with JEP follows from AP. We now give a slightly different version of the above theorem that
will be more fitting to work with

Theorem 2.11. Fix a countable model M. If K(M) is a countable collection of finitely generated/M structures (up to
isomorphism) and K(M) has the HP, the JEP and the AP, then there is a unique (up to isomorphism) countable structure F that
contains M and satisfies the conjunction of
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(I) Every finitely generated/M substructure of F is in K(M).
(II) For every A0 finitely generated/M substructure ofF , if A1 ⊃ A0 andA1 ∈ K(M), then there exists some finitely generated/M

substructure B ⊂ F and an isomorphism i : B ∼= A1, such that A0 ⊂ B and i|A0 = id.

Moreover, if there is some Lω1,ω sentence ψ such that A ∈ K(M) iff A |= ψ (as it will the case in our example), then the
conjunction of (I) and (II) can be written as a Lω1,ω-sentence which is equivalent to the Scott sentence of F and hence, it is
complete.
Proof. Existence follows from Theorem 2.9. If F1 and F2 are both countable structures that contain M and satisfy (I) and
(II), then a standard back-and-forth argument establishes the isomorphism of F1 and F2. �

Notation: In case we want to indicate which class we are talking about, we will write (I)K(M) and (II)K(M).
Corollary 2.12. If M is countable and M′ ∼= M, then lim K(M′) ∼= lim K(M).

Theorem 2.11 can be extended even in the case which M and K(M) have cardinality κ > ℵ0. The existence of F in this
case follows from the samediagonal argument as in the countable case, but the uniqueness of the Fraisse limit fails. However,
all models of (I)K(M) and (II)K(M) will be ≡ω1,ω-equivalent to each other (by Theorem 2.10). So, we get the following
Theorem 2.13. Let ψ be an Lω1,ω sentence. Assume that M is a countable model with Scott sentence φ and N is a model of φ
(possibly uncountable) and let K(M) be the collection of all finitely generated/M substructures that satisfy ψ and let K(N ) be
the collection of all finitely generated/N substructures that also satisfyψ . Moreover, assume that K(M) and K(N ) both have the
HP, the JEP and the AP. Then any model of (I)K(N ) and (II)K(N ) is ≡∞,ω-equivalent to lim K(M).
Proof. By Theorem 2.11, lim K(M) exists and it is unique, and by the comments above, K(N ) has a limit which satisfies
(I)K(N ) and (II)K(N ), but this limit may not be unique.

Since M and N satisfy the same Scott sentence φ, they are back-and-forth (or ≡∞,ω-) equivalent. For this it follows that
for any substructure A ∈ K(M) there is an substructure B ∈ K(N ) such that A and B are back-and-forth equivalent, and
vice versa. Using (I) and (II), for both K(M) and K(N ), we can establish a back-and-forth equivalence for the Fraisse limits
and this finishes the proof. �

This proves that any Fraisse limit of K(N ) satisfies the Scott sentence of lim K(M). IfM is a countablemodel whose Scott
sentenceφ characterizes a certain cardinalκ , wewill use the Scott sentence of lim K(M) to characterize some cardinalλ ≥ κ .
In order to construct a Fraisse limit of K(N )we will use
Theorem 2.14. Assume that M is a countable model whose Scott sentence φ characterizes an infinite cardinal κ , N is a model
of φ of cardinality ≤ κ , K(M) and K(N ) are as above and λ ≥ κ . Moreover, assume that:

(1) If A is a finitely generated/N structure, then there are ≤ λmany (non-isomorphic) structures in K(N ) that extend A, and
(2) If G is a structure such that

N ⊂ G, |G \ N | ≤ λ, G satisfies (I)K(N )
and for any A0, A1 are finitely generated/N structures with

A0 ⊂ G, A1 ⊃ A0 and A1 ∈ K(N ),

then there is another structure G′ that extends G and

|G′
\ N | ≤ λ, G′ satisfies (I)K(N )

and there is some finitely generated/N structure B ⊂ G′ and an isomorphism i : B ∼= A1, with A0 ⊂ B and i|A0 = id.

Under the assumptions 1 and 2, we conclude that there is a structure G∗ with N ⊂ G∗, |G∗
| = λ and G∗ satisfies (I)K(N ) and

(II)K(N ). Then G∗ also satisfies the Scott sentence of lim K(M).
Proof. We construct G∗ by a diagonal argument. If Gα is the structure at step α and Gα \N has size≤ λ, then by assumption
1, there are ≤ λ many structures in K(N ) that extend some finitely generated/N substructure of Gα . Using the second
assumption we can ensure that we include a copy of each one of them into some Gβ , for β > α. �

The following is Theorem 27 from [8].
Theorem 2.15. If λ ∈ CHω1,ω , then λ

ω
∈ HCHω1,ω .

Theorem 2.16. If κ is a cardinal in HCHω1,ω and P is a unary predicate in a countable language L, then there is a sentence χ
in Lω1,ω such that if N |= χ then ℵ0 ≤ |PN

| ≤ κ .
Moreover, if M is a countable L-model with |PM

| = ℵ0 and

L ∩ L(χ) = P,

where L(χ) is the language of χ , then there is a countable L ∪ L(χ)-model M′ that extends M and M′ satisfies χ .
If N is a countable model isomorphic to M and N ′ and M′ are the L ∪L(χ)-extensions of N and M respectively that satisfy

χ , then M with the additional L ∪L(χ)-structure that inherits from M′ and N with the L ∪L(χ)-structure that inherits from
N ′ are isomorphic. I.e. the structure that is added on M by M′ is unique (up to isomorphism).

We will say that χ witnesses the fact that |P(·)| ≤ κ can be expressed in Lω1,ω .
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Proof. Let M0 be a countable model with a homogeneous predicate PM0 that witnesses that κ ∈ HCHω1,ω . Let φ be the
Scott sentence ofM0 and letM(·) be a unary predicate not in L(φ). Then take χ to be the conjunction of:

(1) M(·) and P(·) are disjoint,
(2) P(·) is infinite,
(3) M(·) ∪ P(·) |= φ , and
(4) P(·) is the homogeneous predicate ofM(·) ∪ P(·) (cf. Definition 2.2).

SinceM(·) together with P(·) satisfy φ, this restricts the size of P(·) to at most κ .
If M is a countable model as in the assumption, then let M′

= M ∪ (M0 \ PM0) and require that (M0 \ PM0)∪ PM
|= φ.

Since P is a homogeneous predicate, any permutation of PM extends to an automorphism of the whole (M0 \ PM0) ∪ PM

structure and the result follows. �

Note: The above proof relies heavily on the homogeneity of P . If this assumption is taken away it is possible for two different
extensions (M0 \ PM0) ∪ PM not to be isomorphic.

The following theorem is from [6]. Before we state it we need a definition. The interested reader should look [6] for more
details.

Definition 2.17. Let (A, <) be a linear ordering. Then

• (A, <) is called scattered, if it does not embed (Q, <) (equivalently, (A, <) does not contain a dense subset).
• A subset B ⊂ A is called an interval if B contains at least two elements and

∀x, y ∈ B ∀z ∈ A, x < z < y ⇒ z ∈ B.

• (A, <) is called self-additive, if A ≡ω1,ω A+A, where A+A denotes the linear ordering that consists of two disjoint copies
of (A, <) placed the one on top of the other.

Theorem 2.18 (Landraitis). Let (M, <, Pi)i∈ω be a countable linearly ordered structure, Pi be a unary predicate for all i, and φM

be the Scott sentence of M. Then:

(1) φM does not have any uncountable models iff every orbit of M is scattered, and
(2) φM has a model of any cardinality iff M has a self-additive interval, and
(3) if neither case (1) nor case (2) happens, then φM has models in all cardinalities ≤ 2ℵ0 , but no model in any cardinality

above 2ℵ0 .

All three cases do occur.

With the above theorem Landraitis gives a complete characterization of all infinite cardinals characterized by linearly
ordered structures, but heworks under the assumption that the language contains only unary predicate symbols. Our results
do not use this restriction.

3. Dense linear orderings

In this sectionwe provide some background definitions and theorems about dense linear orderings that wewill use later.
Most of the material here follows [2]. The reader who is familiar with it can skip to the next section.

Definition 3.1. For infinite cardinals κ ≤ λ, let D(κ, λ) iff there is a linear ordering of size λ with a dense set of size κ and
we let D(κ, λ, µ) iff there is a linear ordering of size λ, character µ (see Definition 3.2 below for that) and with a dense set
of size κ .

Let

Ded(κ) = sup{λ|D(κ, λ) holds}

and

Ded(κ, µ) = sup{λ|D(κ, λ, µ) holds}.

Definition 3.2. For a linear order (M, <) and somem ∈ M , the left character ofm is the least cardinal κ such that there is a
cofinal function from κ to {n|n < m}, and the right character ofm is the least κ such that there is a coinitial function from κ
to {n|n > m}.

The character ofm denoted χ(m) is the least of the left and right character.
The character of (M, <) denoted χ(M, <) is the supremum of the cardinals {χ(m)|m ∈ M}. If (M, <) is a dense linear

ordering, then χ(M, <)will always be infinite.

Definition 3.3. If (M, <) is linear order and (L,U) is a partition ofM with the property

∀l ∈ L ∀u ∈ U, x < y,

then (L,U) is called a Dedekind cut. If neither L has a supremum, nor U an infimum, then the cut is also called a gap.
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Definition 3.4. A linear ordering (M, <) is complete if for every non-emptyM0 ⊂ M that has an upper bound,M0 has a least
upper bound.

The dense linear ordering (M,≺) is a completion of the dense linear ordering (M, <) if M contains M , M is complete, ≺
is an extension of < and M is dense in M , in the sense that for every x, y ∈ M with x ≺ y, there is some m ∈ M such that
x ≺ m ≺ y.

The completion of a linear order is unique up to isomorphism and it is easy to see thatχ(M, <) = χ(M,≺). We can redefine
D(κ, λ) (and D(κ, λ, µ)) using completions:

• D(κ, λ) holds iff there is a linear order of size κ whose completion has size ≥ λ and
• D(κ, λ, µ) holds iff there is a linear order of size κ and character µwhose completion has size ≥ λ.

The following theorem is from [2]:

Theorem 3.5. 1Let κ, λ be infinite cardinals.

• If µ is the least cardinal such that κ < λµ, then D(κ, λµ, cf (µ)) holds.
• If D(κ, λ, µ) holds, then λ ≤ κµ.

Corollary 3.6. If µ is a regular cardinal and µ is the least such that κµ > κ , then Ded(κ, µ) = κµ.

4. Powers of the form κℵ1

The main theorem in this section is

Theorem 4.1. If κ is a cardinal in CHω1,ω , then κ
ℵ1 ∈ CHω1,ω .

We will prove a seemingly weaker form of the theorem first.

Theorem 4.2. If κ is a cardinal in CHω1,ω and ℵ1 is the least cardinal such that κ < κℵ1 , then κℵ1 ∈ CHω1,ω .

Before we depart in proving this theorem we make some comments:

• The assumption that ℵ1 is the least cardinal such that κ < κℵ1 , is not as restrictive as it seems. If κ < κℵ0 = κℵ1 , then
κℵ1 is in CHω1,ω by Theorem 2.15. If κ ≤ κℵ0 < κℵ1 , then we can apply Theorem 4.2 to κℵ0 and conclude again that
κℵ1 ∈ CHω1,ω . So, Theorem 4.2 suffices to prove Theorem 4.1.

• If κ ∈ CHω1,ω and ℵ1 is the least cardinal such that κ < κℵ1 , then κ = κℵ0 and by Theorem 2.15, κ ∈ HCHω1,ω . We
will make use of this fact in the proof. Also, by the same theorem κℵ1 is also in HCHω1,ω .

• There is nothing special about ℵ1. If λ is a cardinal that is characterized by a densely ordered structure and λ is the least
such that κ < κλ, then we will prove in the next section that κλ ∈ CHω1,ω .

The first goal is to construct a linear order whose character is carefully controlled. In particular, we will require that it
stays bounded by ℵ1. Notice that the size of the linear order will not be bounded at this point.

The idea behind the construction is to try tomimic the behavior of the lexicographic order defined on κω1 . For x ≠ y ∈ κω1

let f be the function thatmaps (x, y) to the least ordinal α ∈ ω1 such that x(α) ≠ y(α). Thenwe can define the lexicographic
order:

x ▹ y iff x(α) < y(α), for α = f (x, y).

Under this definition, for three distinct elements x, y, z ∈ κω1 with x ▹ y ▹ z, we can have only three possibilities

(1) Either f (x, y) = f (x, z) = f (y, z), or
(2) f (x, y) = f (x, z) < f (y, z), or
(3) f (x, z) = f (y, z) < f (x, y).

This property is the one that drives the whole construction.
By Corollary 2.5, there is a linearly ordered structure M = (M, <, . . .) that characterizes ℵ1 and let φ its Scott sentence.

Let L be the language that extends the language of φ and contains the unary predicate symbols V ,M,N , the binary
predicate ▹, the binary function symbol f and let K(M) be the collection of all countable L-structures A that satisfies the
conjunction of:

(1) V (A) ∪ M(A) is a partition of the space. V (A) is finite, whileM(A) is infinite and M(A) = M.
(2) ▹ is a linear order on V (A), not to be confused with< the linear order onM(A) = M.

1 Although Theorem 3.5 appears in [2] the results are much older. Baumgartner attributes the first part of Theorem 3.5 to Sierpinski and the second part
to Tarski.
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(3) For every x, y ∈ V (A), x ≠ y, f (x, y) = f (y, x) ∈ M(A).
(4) If x ▹ y ▹ z are three distinct elements of V (A), then one of the three is the case:
4(a) f (x, y) = f (x, z) = f (y, z), or
4(b) f (x, y) = f (x, z) < f (y, z), or
4(c) f (x, z) = f (y, z) < f (x, y).

(5) For all x ∈ A, N(x) implies that x ∈ V (A). For some x ∈ V (A), we will say that it is 1-colored if N(x), and we will say
that it is 0-colored otherwise.

Before we proceed we need some work. We start by the following observation on property (4).

Observation 4.3. (a) Property (4) can be formulated equivalently as:
If x ▹ y ▹ z, then f (x, z) = min{f (x, y), f (y, z)}.
In many cases we will use this equivalent formulation.
(b) If f (x, y) = f (x, z) < f (y, z), then the only way to violate (4) is if either y ▹ x ▹ z, or z ▹ x ▹ y.

Definition 4.4. If A ∈ K(M), x, y ∈ V (A) and m ∈ M(A), define x ∼m y iff

x = y or f (x, y) > m.

Lemma 4.5. ∼m is an equivalence relation and if m1 < m2, then ∼m2 is a refinement of ∼m1 .

Proof. Transitivity is the only one that needs some work. Assume x ∼m y and y ∼m z. Then f (x, y) > m and f (y, z) > m.
Since the triplet x, y, z satisfies property (4), f (x, z) cannot be less than both f (x, y) and f (y, z) and the result follows.

If m1 < m2 and x ∼m2 y, then x = y or f (x, y) > m2 > m1. �

We will denote by [x]m the equivalence class of x under ∼m.

Lemma 4.6. If A ∈ K(M), x, y, y′
∈ V (A), x ≁m y and y′

∼m y, then

x ▹ y iff x ▹ y′.

Proof. Since ∼m is an equivalence relation x ≁m y′ and it suffices to prove that x ▹ y implies x ▹ y′. Assume otherwise, i.e.
y′

▹ x ▹ y. By property (4), f (y, y′) is equal to at least one of the f (x, y) and f (y′, x). Since y′
∼m y, f (y, y′) > m. Combining

these two we conclude that either f (x, y) > m or f (y′, x) > m, which means that x ∼m y or x ∼m y′. Contradiction. �

Definition 4.7. If x, y ∈ V (A), we write [x]m ▹ [y]m, if for some (all) x′
∈ [x]m and some y′

∈ [y]m, x′
▹ y′.

In view of the above lemma, the definition is well-defined and it makes the set of all equivalence classes {[x]m|x ∈ V (A)}
into a linearly ordered set. The linear order of V (A) and the linear order on the set {[x]m|x ∈ V (A)} are not the same, but
the one arises naturally from the other, so we will use ▹ for both of them.

Now we are ready to prove the following

Lemma 4.8. K(M) has the HP, the JEP and the AP.

Proof. HP is immediate and JEP follows from AP.
For AP, let A,B,C ∈ K(M) and A ⊂ B,C. We keep N(·) as it is on B and C. All the work is to extend ▹ and f

appropriately, so that B ∪ C becomes a structure in K(M). For all that follows fix some b ∈ V (B) \ V (A). Let

m0 = max{f (a, b)|a ∈ V (A)},
A0 = {a ∈ V (A)|f (a, b) = m0},

L = {a ∈ A0|a ▹ b} and l = sup L,
U = {a ∈ A0|b ▹ a} and u = infU .

Notice that L or U maybe empty, but at least one of them is not empty. If L for instance, is empty, then let l = −∞ and if U
is empty, then u = ∞. If both L,U are not empty, then f (l, u) = m0.

Case 1. If l ≠ −∞ and c ∈ V (C)with [c]m0 ▹ [l]m0 or [c]m0 = [l]m0 , then define

f (b, c) = min{f (l, c), f (l, b)}

and

c ▹ b.

If l ▹ c and f (l, c) < m0, then let

f (b, c) = f (l, c)

and

b ▹ c.
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Case 2. If u ≠ ∞ we work similarly. In particular, if [u]m0 ▹ [c]m0 or [c]m0 = [u]m0 , then define

f (b, c) = min{f (u, c), f (u, b)}

and

b ▹ c.

If c ▹ u and f (u, c) < m0, then let

f (b, c) = f (u, c)

and

c ▹ b.

Note: If both l ≠ −∞ and u ≠ ∞, then there is some overlap between case 1 and case 2. We will prove that the
definitions agree in this case (see Claim 1).

Case 3. The only elements of V (C) that were not considered in the above two cases are the c ∈ V (C) such that f (c, l) = m0
and/or f (c, u) = m0, and l ▹ c ▹ u. Let C0 be the set of all these c ’s. If C0 = ∅, we are done, otherwise we have to do
some more work:

Split C0 (arbitrarily) into two disjoint setsD, E such thatD∪E = C0 and for all d ∈ D and for all e ∈ E, d▹e. Notice
thatwe allow the possibility that one of theD, E is empty. Define d▹b▹e, for all d ∈ D and for all e ∈ E. Let d0 = supD
and e0 = inf E. If both d0, e0 exist, choose one of them arbitrarily, say d0, and choose some m1 ≥ f (d0, e0) and let
f (b, d0) = m1 and for all other c ∈ C0, let f (b, c) = min{f (b, d0), f (c, d0)}. If only one of d0, e0 exist, say d0, then
choose some arbitrarym1 ≥ m0, let f (b, d0) = m1 and for all other c ∈ C0, again let f (b, c) = min{f (b, d0), f (c, d0)}.

First we verify that the above definition is well-defined.

Claim 1. If l ≠ −∞ and u ≠ ∞, then cases (1) and (2) of the above definition do not contradict each other.

Proof. Notice that cases 1 and 2 overlap for all the c ’s such that f (l, c) < m0 or f (u, c) < m0. If f (l, c) < m0, then
f (u, c) = f (l, c) < m0 = f (l, u). By Observation 4.3, either c ▹ l ▹ u, or l ▹ u ▹ c . Consider the first case and the second
is dealt with symmetrically. If c ▹ l, then [c]m0 ▹ [l]m0 and case 1 of the definition gives f (b, c) = min{f (l, c), f (l, b)} =

min{f (l, c),m0}} = f (l, c) and c ▹ b. For the same c , case 2 of the definition gives f (b, c) = f (u, c) and c ▹ b. Since
f (u, c) = f (l, c), the two definitions completely agree. �

Nextwe have to verify thatB∪C under the above definition satisfies property (4). The proof splits intomany cases given
by corresponding claims. We deal only with the case that l ≠ −∞. We can prove similar claims for the case that u ≠ ∞,
but are quite similar and we leave the details to the reader. So, for all the following claims assume that l ≠ −∞.

Claim 2. If c0, c1 ∈ C0, then f (c0, c1) ≥ m0.

Proof. Assume c0▹c1. Then l▹c0▹c1 and f (l, c0) = f (l, c1) = m0. So, by property (4),m0 = f (l, c0) = f (l, c1) ≤ f (c0, c1). �

Claim 3. If c ∈ V (C) are such that f (l, c) < m0, then f (b, c) = f (l, c) and c ▹ l iff c ▹ b.

Proof. If l ▹ c , then the result is immediate by case 1. If c ▹ l, then [c]m0 ▹ [l]m0 and case 1 again gives c ▹ b and
f (b, c) = min{f (l, c), f (l, b)} = min{f (l, c),m0} = f (l, c), which concludes the proof. �

Claim 4. If c0, c1 ∈ V (C) is such that f (l, c0), f (l, c1) < m0, then the triplet b, c0, c1 satisfies property (4).

Proof. By Claim 3, f (b, ci) = f (l, ci) and ci ▹ l iff ci ▹ b, for i = 0, 1. Then property (4) for b, c0, c1 follows from the
corresponding property for l, c0, c1.

Claim 5. If c0, c1 ∈ V (C) are such that f (l, c0) < m0 < f (l, c1), then the triplet b, c0, c1 satisfies property (4).

Proof. By Claim 3, f (b, c0) = f (l, c0) < m0 and either c0 ▹ l ▹ b or l ▹ b ▹ c0. Since m0 < f (l, c1), it is [c1]m0 = [l]m0
and by case 1, c1 ▹ b and f (b, c1) = min{f (l, c1), f (l, b)} = m0. If c0 ▹ l ▹ b, then c0 ▹ c1 ▹ b. Otherwise, it would be
c1 ▹ c0 ▹ l and by Observation 4.3, m0 < f (l, c1) = min{f (l, c0), f (c0, c1)} ≤ f (l, c0) < m0. Contradiction. Thus, in either
case c0 is the minimum or the maximum of the three elements b, c0, c1. It suffices to prove f (l, c0) = f (c0, c1), because then
f (b, c0) = f (l, c0) = f (c0, c1) < m0 = f (b, c1) and we have property (4).

If c0 ▹ c1 ▹ l ▹ b or l ▹ c1 ▹ b ▹ c0, then by Observation 4.3, f (l, c0) = min{f (l, c1), f (c0, c1)} = f (c0, c1), since f (l, c1) >
m0 > f (l, c0). If c0 ▹ l ▹ c1 ▹ b or c1 ▹ l ▹ b ▹ c0, then, by Observation 4.3 again, f (c0, c1) = min{f (l, c0), f (l, c1)} = f (l, c0) and
we are done. �

Claim 6. If c0, c1 ∈ V (C) are such that m0 < f (l, c0), f (l, c1), then the triplet b, c0, c1 satisfies property (4).

Proof. Without loss of generality assume that c0 ▹ c1. By assumption [c0]m0 = [l]m0 = [c1]m0 and by case 1, l ▹ c0 ▹ c1 ▹ b
and f (b, c0) = f (b, c1) = min{f (l, b), f (l, c0)} = min{f (l, b), f (l, c0)} = m0. It suffices to prove that m0 < f (c0, c1). By
Observation 4.3, f (l, c1) = min{f (l, c0), f (c0, c1)} and by assumption, both f (l, c0), f (l, c1) are greater than m0. So, it must
also be that f (c0, c1) > m0. �
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Claim 7. If c0, c1 ∈ C0, then the triplet b, c0, c1 satisfies property (4).

Proof. Without loss of generality assume that c0 ▹ c1 and

f (b, c0) = min{f (b, d0), f (c0, d0)}

and

f (b, c1) = min{f (b, d0), f (c1, d0)}.

The proof splits into 3 cases:

(1) c0, c1 ∈ D. Then c0 ▹ c1 ▹ d0 ▹ b. By Observation 4.3, f (c0, d0) = min{f (c0, c1), f (c1, d0)}. If f (c0, d0) = f (c1, d0) ≤

f (c0, c1), then f (b, c0) = f (b, c1) ≤ f (c0, d0) ≤ f (c0, c1) and property (4) is satisfied. If f (c0, d0) = f (c0, c1) < f (c1, d0),
then either f (b, c0) = f (b, c1) = f (b, d0) < f (c0, d0) = f (c0, c1), or f (b, c0) = f (c0, d0) = f (c0, c1) < f (b, d0). In the
latter case, since also f (c0, c1) < f (c1, d0), we conclude f (b, c0) = f (c0, c1) < min{f (b, d0), f (c1, d0)} = f (b, c1) and
thus, in both cases property (4) is satisfied.

(2) c0 ∈ D and c1 ∈ E. Then c0 ▹ d0 ▹ b ▹ e0 ▹ c1 and by Observation 4.3, f (c1, d0) = min{f (d0, e0), f (c1, e0)} ≤ f (d0, e0) ≤

m1 = f (b, d0). By definition f (b, c1) = min{f (b, d0), f (c1, d0)} = f (c1, d0). By Observation 4.3 again, f (c0, c1) =

min{f (c0, d0), f (c1, d0)}. If f (c0, c1) = f (c1, d0) < f (c0, d0), then f (c0, c1) = f (c1, d0) = f (b, c1) ≤ f (b, d0), which
implies f (c0, c1) = f (b, c1) < min{f (c0, d0), f (b, d0)} = f (b, c0) by definition and gives property (4). If f (c0, c1) =

f (c0, d0) ≤ f (c1, d0), then f (c0, d0) ≤ f (c1, d0) ≤ f (b, d0). By definition f (b, c0) = min{f (b, d0), f (c0, d0)} =

f (c0, d0) = f (c0, c1) ≤ f (c1, d0) and again property (4) is satisfied.
(3) c0, c1 ∈ E. Then d0▹b▹c0▹c1. As in the previous case, we can prove that f (b, ci) = f (ci, d0), i = 0, 1. Since d0▹c0▹c1, by

Observation 4.3, f (c1, d0) = min{f (c0, c1), f (c0, d0)}. So, either f (b, c1) = f (c1, d0) = f (c0, c1) ≤ f (c0, d0) = f (b, c0),
or f (b, c1) = f (c1, d0) = f (c0, d0) = f (b, c0) < f (c0, c1), and in both cases property (4) is satisfied. �

Claim 8. If c0, c1 ∈ V (C) and f (l, c0) = f (l, c1) = m0, then the triplet b, c0, c1 satisfies property (4).

Proof. Without loss of generality assume that c0 ▹ c1. If c0, c1 ∈ C0, then the result is from the previous claim. Otherwise,
we have to consider two cases:

(1) Assume that c0 ▹ l ▹ c1, i.e. c1 ∈ C0, while c0 ∉ C0. Then c0 ▹ l ▹ b andbyObservation 4.3, f (b, c0) = min{f (l, c0), f (b, l)} =

m0. By definition, f (b, c1) = min{f (b, d0), f (c1, d0)} and by definition again f (b, d0) = m1 ≥ f (d0, e0) ≥ m0, while by
Claim 2, f (c1, d0) ≥ m0. So, f (b, c1) ≥ m0. By Observation 4.3 for c0 ▹ l ▹ c1, f (c0, c1) = min{f (l, c0), f (l, c1)} = m0.
Overall, f (b, c0) = f (c0, c1) = m0 ≤ f (b, c1) and we have property (4).

(2) Assume that c0 ▹ c1 ▹ l ▹ b, i.e. both c0, c1 ∉ C0. Then [ci]m0 ▹ [l]m0 and by definition f (b, ci) = min{f (l, ci), f (l, b)} = m0,
for both i = 0, 1. By observation 4.3, m0 = f (c0, l) = min{f (c0, c1), f (c1, l)} ≤ f (c0, c1). Combining all these,
f (b, c0) = f (b, c1) = m0 ≤ f (c0, c1)which gives property (4). �

Claim 9. If c0, c1 ∈ V (C) and f (l, c0) < m0 = f (l, c1), then the triplet b, c0, c1 satisfies property (4).

Proof. Without loss of generality assume that c0 ▹ l (the other case is handled similarly). We split into two cases:

(1) c1 ∉ C0. Then c0 ▹ c1 ▹ l. Otherwise, it would be c1 ▹ c0 ▹ l and by Observation 4.3,m0 = f (c1, l) = min{f (c0, l), f (c1, c0)}
≤ f (l, c0) < m0. Contradiction.

So, c0 ▹ c1 ▹ l. By definition, f (b, c0) = min{f (l, b), f (l, c0)} = min{m0, f (l, c0)} = f (l, c0) < m0. A similar
argument proves that f (b, c1) = m0 and Observation 4.3 for c0 ▹ c1 ▹ l implies f (l, c0) = min{f (l, c1), f (c0, c1)}, while
f (l, c0) < m0 = f (l, c1). So, it must be f (l, c0) = f (c0, c1) < f (l, c1). Combining all these, f (b, c0) = f (l, c0) =

f (c0, c1) < m0 = f (b, c1) and we are done.
(2) c1 ∈ C0. Then c0 ▹ l ▹ c1 and f (b, c0) = min{f (b, l), f (l, c0)} = f (l, c0), while f (b, c1) = min{f (b, d0), f (c1, d0)}. By

Claim2, f (c1, d0)must be greater or equal tom0 and by definition again f (b, d0) ≥ f (d0, e0) ≥ m0, which combined gives
f (b, c1) ≥ m0. Observation 4.3 for c0 ▹ l ▹ c1 gives f (c0, c1) = min{f (l, c0), f (l, c1)} = f (l, c0) = f (b, c0) < m0 ≤ f (b, c1)
and this concludes the claim. �

Claim 10. If c0, c1 ∈ V (C) and f (l, c0) = m0 < f (l, c1), then the triplet b, c0, c1 satisfies property (4).

Proof. Since f (l, c1) > m0, c1 ∼m0 l and [c1]m0 = [l]m0 and by definition c1 ▹ b and f (b, c1) = min{f (l, c1), f (l, b)} =

min{f (l, c1),m0} = m0. By property (4) for c0, l, c1, f (c0, c1) = f (l, c0) = m0 < f (l, c1).
If c0 ▹ l ▹ b, then by definition, f (b, c0) = min{f (l, c0), f (l, b)} = m0 and f (b, c0) = f (c0, c1) = f (b, c1) = m0 andwehave

the result. If l▹ c0, then either c0 ∈ C0, or otherwise u ≠ ∞ and u▹ c0. If c0 ∈ C0, then f (b, c0) = min{f (b, d0), f (c0, d0)} and
both f (b, d0), f (c0, d0) are≥ m0. Therefore, f (b, c0) ≥ m0 and f (c0, c1) = m0 = f (b, c1) ≤ f (b, c0),which gives property (4).
If u ≠ ∞ and u ▹ c0, then by definition f (b, c0) = min{f (u, c0), f (b, u)} = m0 and then, f (b, c0) = m0 = f (b, c1) = f (c0, c1),
which concludes the proof of the claim. �

The above claims prove that B ∪ C satisfies property (4) in all cases and the proof of the lemma is also concluded. �
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Note: The proof of the above lemma would have been simpler, if we had defined f and ▹ differently on C0. An easy example
is to let b ▹ c , for all c ∈ C0. The reason we went through all this work is because in the proof of Theorem 4.13 we will need
a similar construction, namely we will need to make a Dedekind cut on C0 and place b appropriately in the cut. The details
of the proof of Theorem 4.13 follow closely the proof we just did and we will omit it as it tends to be very repetitive. The
interested reader should be able to fill in all the details following the example of the proof above.

Now, by Theorem 2.11 there is a Fraisse limit of K(M), call it F and let φF be its Scott sentence. By the same theorem
we know that the φF is equivalent to the conjunction of (I)K(M) and (II)K(M) and the following lemma gives us another
equivalence.

Lemma 4.9. If φF is the Scott sentence of the Fraisse limit of K(M), then φF is equivalent to the conjunction of the following:

(I)K(M) (cf. Theorem 2.11)
(1∗) for all x ∈ V (F ) and for all m ∈ M(F ), there exist z1, z2 such that z1 ▹ x ▹ z2, f (x, z1) = f (x, z2) = m and we can require

z1, z2 to be 0-, or 1-colored (not necessarily the same). In particular, ▹ restricted to the subset that contains the 0-colored
(respectively the 1-colored) elements of V (F ) is a linear ordering without endpoints.

(2∗) for all x ▹ y ∈ V (F ) and for all m ≥ f (x, y), m ∈ M(F ), there exist some z1, z2 such that x ▹ z1, z2 ▹ y, f (x, z1) = m and
f (y, z2) = m and again, we can require z1, z2 to be 0-, or 1-colored.

Also note that z1 is not required to be different than z2, although in most cases they will be different.

Proof. By Theorem 2.11, φF is equivalent to the conjunction of (I)K(M) and (II)K(M). So we have to prove that (I)K(M) and
(II)K(M) are equivalent to the conjunction of (I)K(M) and (1∗) and (2∗).

The direction (I)K(M) ∧ (II)K(M) → (I)K(M) ∧ (1∗)∧ (2∗) is immediate, because if x ▹ y ∈ V (F ), the structure generated
by x, y is in K(M) and then we can use (II)K(M) to extend this structure to a structure that contains the desired z1, z2 for
both (1∗) and (2∗).

The direction (I)K(M)∧(1∗)∧(2∗) → (I)K(M)∧(II)K(M) needs somemorework. Assume thatA0 is a finitely generated/M
substructure ofF andA1 ⊃ A0 withA1 ∈ K(M).Weneed to find a finitely generated/M substructureF1 ofF withA0 ⊂ F1
and some isomorphism i : F1 ∼= A1 with i|A0 = id. We work by induction on n = |A1 \ A0| = |V (A1) \ V (A0)|.

If n = 0, the result is obvious and it suffices to prove the result for n = 1. Let V (A1) = V (A0) ∪ {a} and we will find
some element z ∈ F such that A1 ∼= A0 ∪ {z}. If a▹ a0, or a0 ▹ a, for all a0 ∈ V (A0), we can find this z using (1∗). Otherwise
let a0 be the maximum element in V (A0) such that a0 ▹ a and a1 be the minimum element in V (A0) such that a ▹ a1, and
we can find the desired z using (2∗) on the tuple a0, a1. �

Before we prove anything else we prove the following

Theorem 4.10. If G is a model of φF , then (V (G), ▹) is a linear order with character χ(V (G), ▹) = cf (M(G),<).

Proof. SinceM(G) is a model of φ, it has size ≤ ℵ1 and the same is true for its cofinality. Without loss of generality we will
assume that cf (M(G),<) = ℵ1. Fix a cofinal sequence {mα ∈ M(G)|α < ω1} of length ℵ1. It is not hard to see that

F |= ∀a ∈ V (F ) ∀m ∈ M ∃b ∈ V (F ) (b ▹ a ∧ f (a, b) = m) . (4.1)

Therefore, the same sentence is true for G.
Fix some a ∈ V (G). For every α ∈ ℵ1, find some bα ▹ a given by (4.1), such that f (a, bα) = mα . Then the sequence

(bα|α < ℵ1) is cofinal in {c|c ▹ a}. If c ▹ a and f (a, c) = m, there is some α such that m ≤ mα . Then f (bα+1, c) =

min{f (a, c), f (a, bα+1)} = m, which implies that c ▹ bα+1. So, the character of V (G) is at most ℵ1.
On the other hand, if (cn)n∈ω is an ▹-increasing countable sequence, such that

c0 ▹ c1 ▹ · · · ▹ a,

then by Observation 4.3, f (cn, a) = min{f (cn+1, a), f (cn, cn+1)} ≤ f (cn+1, a). Therefore the sequence (f (cn, a)|n ∈ ω)
is increasing and by the assumption on the cofinality of (M(G),<), this sequence cannot be cofinal. Hence, it is bounded
above and we can find as above some α ∈ ℵ1 such that cn ▹ bα , for all n. Then bα is an upperbound of (cn))n∈ω and (cn)n∈ω
cannot be cofinal in {c ∈ V (G)|c ▹ a}, which proves that the left character of (any) a ∈ V (G) is equal to ℵ1. We can repeat
the proof for the right character being equal to ℵ1 and this concludes the proof of the theorem. �

Lemma 4.11. If G is a model that satisfies (I)K(M) and x ∈ V (G) and Y ⊂ V (G) are such that for all y ∈ Y , y ▹ x and for all
m ∈ M(G) there exists y ∈ Y such that f (x, y) > m, then x is the supremum of Y .

Quite symmetrically, if x ▹ y, for all y ∈ Y , and for all m ∈ M(G) there exists some y such that f (x, y) > m, then x is the
infimum of Y .

Proof. Toward contradiction, assume there is some z such that for all y ∈ Y , y ▹ z ▹ x and let m = f (x, z). By assumption
find some y ∈ Y such that f (x, y) > m. Then the triplet x, y, z contradicts property (4) of K(M) since y ▹ z ▹ x and
f (y, x) > m = f (x, z).

For the second part, the proof is symmetrical. �
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Definition 4.12. Assume G is a structure that satisfies (I)K(M) and (D, E) is a Dedekind cut, i.e. a partition of V (G) such
that d ▹ e, for all d ∈ D and for all e ∈ E. If there exists some d ∈ D such that the set {f (d, e)|e ∈ E} is cofinal in
{f (d′, e)|d′

∈ D, e ∈ E} and the set {f (d, d′)|d′
∈ D, d ▹ d′

} is coinitial in {m ∈ M|m > f (d′, e) for all d′
∈ D, e ∈ E} and the

set {f (d′, e)|d′
∈ D, e ∈ E} does not have a supremum (equivalently, the set {m ∈ M|m > f (d′, e) for all d′

∈ D, e ∈ E} does
not have an infimum), then we will call (D, E) an irremovable gap.

Symmetrically, if there exists some e ∈ E such that the set {f (d, e)|d ∈ D} is cofinal in {f (d, e′)|d ∈ D, e′
∈ E} and the set

{f (e, e′)|e′
∈ E, e′

▹ e} is coinitial in {m ∈ M|m > f (d′, e) for all d′
∈ D, e ∈ E} and the set {f (d, e′)|d ∈ D, e′

∈ E} does not
have a supremum (equivalently, the set {m ∈ M|m > f (d′, e) for all d′

∈ D, e ∈ E} does not have an infimum), then (D, E)
is an irremovable gap.

If (D, E) consists of a gap on V (G) that is not irremovable, we will call it a removable gap.

If (D, E) is an irremovable gap, it follows that neither supD exists nor inf E, and moreover, we cannot extend V (G) by
adding an element b such that for all d ∈ D and for all e ∈ E, d ▹ b ▹ e. The reason for that is that if d witnesses the
fact that (D, E) is irremovable, then by Observation 4.3, f (b, d) has to be smaller or equal than all the elements of the set
{f (d, d′)|d′

∈ D, d ▹ d′
} and bigger or equal to all the elements of the set {f (d, e)|e ∈ E}, which by the assumptions above

cannot happen.
Also notice that the sets

M1 = {m ∈ M|m ≤ f (d′, e) for some d′
∈ D, e ∈ E}

and

M2 = {m ∈ M|m > f (d′, e) for all d′
∈ D, e ∈ E}

consist of a Dedekind cut on (M, <). If neitherM1 has a supremumnorM2 an infimum, then the cut is a gap and this gap gives
rise to irremovable gaps on (V (G), ▹) (one for every element of V (G)). Therefore, if (M, <) is a complete order, then there
are no irremovable gaps on (V (G), ▹). Otherwise the number of irremovable gaps is bounded by |V (G)| times the number
of gaps on (M, <). If the character of (M, <) is µ, µ ≤ ℵ1 = |M|, then the number of gaps on (M, <) is ≤ ℵ

µ

1 ≤ 2ℵ1 .

Theorem 4.13. Assume G is a structure that satisfies (I)K(M), |G \ M| ≤ κ , and (D, E) is a removable gap on V (G). Also assume
that A0 ⊂ G, A1 = A0 ∪ {b′

} and A1 is a structure in K(M). Then there exists another structure G′ which extends G, G′ satisfies
(I)K(M), |G′

\ M| ≤ κ , there exists some element b ∈ G′ such that d ▹ b ▹ c, for all d ∈ D and all e ∈ E, and there exists an
isomorphism i : A0 ∪ {b} ∼= A1, with i|A0 = id.

We will say that G′ removes that gap (D, E) by adding b′.

Proof. As in Lemma 4.8, let d0 = supD and e0 = inf E and notice that d0, e0 may not exist. We distinguish the following
cases:

• d0 exists and there is somem ∈ M(G) such that for all e ∈ E, f (d0, e) ≤ m.
Then choose some arbitrarym1 ≥ m0, let f (b, d0) = m1 and for all other c ∈ C0, let f (b, c) = min{f (b, d0), f (c, d0)}.

• Symmetrically, if e0 exists and there is somem ∈ M(G) such that for all d ∈ D, f (e0, d) ≤ m, then choose some arbitrary
m1 ≥ m0, let f (b, e0) = m1 and f (b, c) = min{f (b, e0), f (c, e0)}, for all other c ∈ C0.

• If both d0, e0 exist, then choose one of them arbitrarily, say d0, and choose some m1 ≥ f (d0, e0) and let f (b, d0) = m1
and f (b, c) = min{f (b, d0), f (c, d0)}, for all other c ∈ C0.

These first three cases are similar to the ones we encountered in the proof of Amalgamation. The next ones are new:
• d0 exists and for all m ∈ M(G) there exists e ∈ E, f (d0, e) ≥ m.

Then by Lemma 4.11 d0 is the infimum of E and in this case (D, E) is not a gap.
• Symmetrically, if e0 exists and for allm ∈ M(G) there exists d ∈ D, f (e0, d) ≥ m, then e0 is the supremum of D and again
(D, E) is not a gap.

• If for every d ∈ D the set {f (d, e)|e ∈ E} is not cofinal in {f (d′, e)|d′
∈ D, e ∈ E}, then for every d there exists some d′

∈ D
and e′

∈ E such that for every e ∈ E, f (d, e) < f (d′, e′). In this case define f (b, d) = f (d, d′).
Similarly, if for every e ∈ E the set {f (d, e)|d ∈ D} is not cofinal in {f (d, e′)|d ∈ D, e′

∈ E}, then there exists some
e′

∈ E and some d′
∈ D such that for every d ∈ D, f (d, e) < f (d′, e′). Define f (b, e) = f (e, e′).

• If there exists some d ∈ D such that the set {f (d, e)|e ∈ E} is cofinal in {f (d′, e)|d′
∈ D, e ∈ E} and there exists some

s ∈ M greater than all f (d′, e), d′
∈ D, e ∈ E and smaller than all f (d, d′), d′

∈ D, d ▹ d′, then let f (b, d) = s and for every
other c ∈ C0, let f (b, c) = min{f (b, d), f (c, d)}.

• Symmetrically, if there exists some e ∈ E such that the set {f (d, e)|d ∈ D} is cofinal in {f (d, e′)|d ∈ D, e′
∈ E} and there

exists some s greater than all f (d, e′), d ∈ D, e′
∈ E and smaller than all f (e, e′), e′

∈ E, e′
▹ e, then let f (b, e) = s and for

every other c ∈ C0, let f (b, c) = min{f (b, e), f (c, e)}.

In all these cases we have to prove that f was defined in such a way that G′
= G ∪ {b} also satisfies (I)K(M). The details of

the proof follow the proof of Lemma 4.8 and are left to the reader. �
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Theorem 4.14. Let M be a model of φ of cardinality ℵ1. Then for every linear ordering (L, <) that has cardinality |L| = κ ≥ ℵ1,
there is some model G∗ of cardinality κ that satisfies φF , M(G∗) = M, and there exists a one-to-one function F : L → V (G∗)
such that

x < y iff F(x) ▹ F(y)

and

for all x ∈ L, F(x) is 0-colored.

In other words, every linear ordering of size ≥ ℵ1 can be embedded into a model of φF of the same cardinality.

Proof. Let G be the L-structure such that (V (G), ▹) ∼= (L, <) and for every x, y ∈ V (G), x, y are both 0-colored and
f (x, y) = m, for some fixed m ∈ M(G). It is immediate that this G satisfies (I)K(M) and we have to extend G to a structure
G∗ that satisfies both (I)K(M) and (II)K(M). Since for any finitely generated/M substructure of G there are ℵ1 ≤ κ many
structures in K(M) that extend it, we can use Theorems 2.14 and 4.13 to find the desired G∗. �

Corollary 4.15. For every infinite cardinal κ , there is a model of φF that has size κ .

Theorem 4.16. Let G be a model of φF and V (G) the ▹-completion of V (G). Then there is some model G such that

• If U is the set of irremovable gaps of V (G) (cf. Definition 4.12), then V (G) = V (G) \ U,
• for all x ∈ V (G) \ V (G), x is 1-colored, i.e. no new 0-colored elements are introduced,
• the function f G restricted on G × G agrees with the function f G and
• G |= φF .

The model G we will call the completion of G.
In particular, if |G| = κ > 2ℵ1 , then the completion of G has cardinality equal to |V (G)|.

Proof. Since G satisfies φF , by Theorem 4.9, G satisfies (I)K(M) and (1∗) and (2∗). Since (1∗) and (2∗) are density
requirements and V (G) is dense in V (G), G satisfies (1∗) and (2∗) too. So, it remains to show that G satisfies (I)K(M) and
this follows from Theorem 4.13. We remove all the removable gaps, one at a time, by applying Theorem 4.13 and we make
sure that all the elements we add are 1-colored.

If κ > 2ℵ1 , then there exist at most κ · ℵ
µ

1 ≤ κ · 2ℵ1 = κ many irremovable gaps (see comments after Definition 4.12),
where µ is the character of (M, <) and µ ≤ ℵ1, and the result follows. �

Theorem 4.17. If κ ∈ CHω1,ω and ℵ1 is the least cardinal such that κℵ1 > κ , then κℵ1 ∈ CHω1,ω .

Proof. If κ ≤ 2ℵ1 , then κℵ1 = 2ℵ1 and the result follows from Theorem 2.7 and Corollaries 2.5 and 2.6. So assume that
κ > 2ℵ1 . By the assumption on κ and by Theorem 2.15 we can assume that κ ∈ HCHω1,ω . Let ψ be the conjunction of φF

together with the sentence that expresses the fact that the set of the 0-colored elements of V (·) has cardinality ≤ κ . Since
κ ∈ HCHω1,ω we can express this fact by a sentence in Lω1,ω by Theorem 2.16.

By Theorem 4.14, φF has a model G∗ that embeds the linear ordering κ<ℵ1 into the set of the 0-colored elements. By
assumption κ<ℵ1 = κ and we can assume that G∗ also has cardinality κ . From this it follows that G∗ is also a model ofψ . By
Theorem 4.16 there is a model G∗ of cardinality equal to the cardinality of |κ<ℵ1 | = κℵ1 that introduces no new 0-colored
elements. Therefore, G∗ is also a model of ψ . Since by Theorem 4.10 any model of ψ (and φF ) has character ≤ ℵ1, and any
model of ψ has a dense subset of cardinality ≤ κ (the set of the 0-colored elements), by Theorem 3.5 there is no model of
ψ of cardinality> κℵ1 which concludes the proof. �

Theorem 4.18. If κ ∈ CHω1,ω , then κ
ℵ1 ∈ CHω1,ω .

Proof. If κℵ0 = κℵ1 , the result follows from 2.15. Otherwise use the previous theorem for κℵ0 . �

5. Powers of the form κλ

There is nothing particular about ℵ1 that cannot be generalized to any uncountable cardinal λ that is characterized by
a densely ordered structure. The proofs of the following theorems follow from the proof of the corresponding theorems in
the previous section by replacing ℵ1 with λ. Thus we have the following:

Let (M, <) be a countable densely ordered structure that characterizes λ and K(M) be defined as above (see
Theorem 4.2). Then K(M) has the HP, the JEP and the AP and there exists a Fraisse limit for K(M) which we will call F
and let φF be its Scott sentence.

Theorem 5.1. If G is a model of φF , then (V (G), ▹) is a dense linear ordering with character χ(V (G), ▹) = cf (M(G),<).

Since the character of (M(G),<) is bounded by |M(G)| ≤ λ, the set of gaps on (M(G),<)will have size at most 2λ. If λ is a
singular cardinal, then χ(V (G), ▹) = cf (M(G),<) < λ and we may get strict inequality.



I. Souldatos / Annals of Pure and Applied Logic 163 (2012) 225–237 237

Theorem 5.2. If λ and φF are as above, then for every linear ordering (L, <) with cardinality |L| = κ ≥ λ, there exists some
model G∗ of φF of cardinality κ and a one-to-one function F : L → G∗ such that

x < y iff F(x) ▹ F(y)

and

for all x ∈ L, F(x) is 0-colored.

In other words, every linear ordering of size ≥ λ can be embedded into a model of φF of the same cardinality.

If G is a model of φF of size κ , then the set of irremovable gaps on V (G) has size ≤ κ · 2λ.

Theorem 5.3. If G is a model of φF of cardinality κ > 2λ, then there is a model of φ of cardinality equal to |V (G)|.

Theorem 5.4. Assume that κ > 2λ is a characterizable cardinal, λ is a cardinal characterizable by a densely ordered structure
and λ is the least cardinal such that κλ > κ . Then κλ ∈ CHω1,ω .

Observe here that we allow the possibility that λ is countable. In this case the result follows from Theorem 2.15. In the case
that κ ≤ 2λ, the characterizability of κλ = 2λ follows from Theorem 2.7, but we require the extra assumption that there
exists amodel with an increasing sequence of size λ. If λ is a successor of a characterizable cardinal (as it is in the case ofℵ1),
such a sequence is guaranteed by Corollary 2.5, but in the general case this question is open (see Open Question 2). So, we
have

Theorem 5.5. If ℵα and κℵα are both in CHω1,ω , then κ
ℵα+β ∈ CHω1,ω , for all countable ordinals β .

Proof. By induction on β . If κℵα+β = 2ℵα+β , then use Corollary 2.5 and Theorem 2.7. Otherwise, use Corollary 2.6 and
Theorem 5.4. �

Corollary 5.6. If κ ∈ CHω1,ω , then κ
ℵα ∈ CHω1,ω , for all countable ordinals α.

Theorem 5.7. Assume that κ > 2ℵα is a characterizable cardinal, ℵα is a cardinal characterizable by a densely ordered structure
and ℵα is the least cardinal such that κℵα > κ . Then κℵβ is in CHω1,ω , for all β < α + ω1.

Proof. By Theorems 5.4 and 5.5. �

To the best of our knowledge the following questions are open:

Open Question 1. Assume that κ is in CHω1,ω . Does it follow that κ is characterized by the Scott sentence of a densely ordered
structure?

Assume that φ characterizes κ . Extend the language of φ to L1 by including< and assume that the conjunction of φ and ‘‘< is
a dense linear order’’ has more than ℵ0-many non-isomorphic countable models. Does it follow that one of them characterizes κ?

Open Question 2. Assume that φ is the Scott sentence of a densely ordered structure that characterizes κ . Can we find another
densely ordered structure with Scott sentence ψ such that

• ψ characterizes κ and
• ψ has a model with an increasing sequence of size κ?

If the answer is positive, what if we require that ψ has a model with cofinality κ?

Open Question 3. Similarly as above, if µ ≤ κ , can we find some ψ such that

• ψ characterizes κ and
• ψ has a model of size κ and character µ?
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