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Introduction

There are many instances of symplectic group actions which are not Hamiltonian—i.e., for which there is no momentum
map. These can occur both in applications [12] as well as in fundamental studies of symplectic geometry [1,2,4]. In such
cases it is possible to define a “cylinder valued momentum map” [3], and then perform symplectic reduction with respect
to this map [15,16]. An alternative approach is to lift to the universal cover, where the action is always Hamiltonian, and
then to perform ordinary symplectic reduction. The principal purpose of this study is to relate the two procedures. In short,
we show that under suitable hypotheses, the reduced space obtained from the universal cover is a symplectic cover of the
one obtained from the cylinder valued momentum map.

In more detail, suppose a connected Lie group G acts on a connected manifold M , and let N be a cover of M . Then it
may not be possible to lift the action of G , but there is a natural lift to universal covers giving an action of G̃ on M̃ . This can
then be used to define an action of G̃ on the given cover N . This general construction is well known, but we were unable to
find its principal properties in the literature, and consequently in Section 1 we establish the main results about these lifted
actions. For example, since N can be written as a quotient of M̃ by a subgroup of the group of deck transformations, we
use this to determine exactly which subgroup of G̃ acts trivially on N . We show that if the action on M is free and proper,
then so is the appropriate lifted action on N . Further details on such lifted actions (including non-free actions) are available
as notes [11].

In Section 2 we consider the case where M is a symplectic manifold, and G acts symplectically on M . We consider the
covers of M for which the action is Hamiltonian. The “largest” Hamiltonian cover of M is of course its universal cover M̃; we
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give an explicit expression for its momentum map (Proposition 2.3) and we use it to define a subgroup of the fundamental
group of M whose corresponding set of subgroups classifies the Hamiltonian covers (Corollary 2.8). There is also a “minimal”
such cover, denoted M̂ and which was first introduced in [14], where it is called the universal covered space of M; we give
here a different interpretation of it as a quotient of the universal cover.

In Section 3, we consider the cylinder valued momentum map of [3] (where it is defined in a different manner, and
called the “moment réduit”). In Theorem 3.4 we see that reduction can be carried out in two ways. One can either reduce
M with respect to the cylinder valued momentum map or, alternatively, one can lift the action to the universal cover M̃
(or on any other Hamiltonian cover) and then carry out (standard) symplectic reduction on it using its momentum map.
The result is that the natural projection of this reduced space (inherited from the covering projection) yields the original
reduced space; that is, both reduction schemes are equivalent up to the projection. If the original action is free and proper
and its Hamiltonian holonomy is closed then both reduced spaces are symplectic manifolds, and the projection is in fact a
symplectic cover. We also identify the deck transformation group of the cover.

We end both Sections 2 and 3 with the general example of a group acting by left translations on its cotangent bundle,
with symplectic form equal to the sum of the canonical one and a magnetic term consisting of the pullback to the cotangent
bundle of a left-invariant 2-form on the group. In particular we show that symplectic reduction via the cylinder-valued
momentum map and Hamiltonian reduction via a standard momentum map yield the same result.

1. Lifting group actions to covering spaces

1.1. The category of covering spaces

We begin by recalling a few facts about covering spaces. Many of the details can be found in any introductory book
on Algebraic Topology, for example Hatcher [6]. Let (M, z0) be a connected manifold with a chosen base point z0, and let
qM : (M̃, z̃0) → (M, z0) be the universal cover. We realize the universal cover as the set of homotopy classes of paths in M
with base point z0. For definiteness, we take the base point in M̃ to be the homotopy class z̃0 of the trivial loop at z0.
Throughout, ‘homotopic paths’ will mean homotopy with fixed end-points, all paths will be parametrized by t ∈ [0,1], and
for composition of paths a ∗ b means first do a and then b.

Any cover pN : (N, y0) → (M, z0) has the same universal cover (M̃, z̃0) as (M, z0), and the covering map qN : (M̃, z̃0) →
(N, y0) can be constructed as follows: Let z̃ ∈ M̃ and let z(t) be a representative path in M , so z(0) = z0. By the path lifting
property of the covering map pN , z(t) can be lifted uniquely to a path y(t) in (N, y0). Then qN (z̃) = y(1).

Let C be the category of all covers of (M, z0). The morphisms are the covering maps. Since any element (N, y0) ∈ C also
shares M̃ as universal cover, it sits in a diagram,

(M̃, z̃0)
qN−→ (N, y0)

pN−→ (M, z0).

Note that the map M̃ → M can be written both as qM and as pM̃ .
It is well known that this category is isomorphic to the category of subgroups of the fundamental group π1(M, z0)

of M , where the morphisms are the inclusion homomorphisms of subgroups. The isomorphism is defined as follows. Let
pN : (N, y0) → (M, z0) be a cover. Then ΓN := pN∗(π1(N, y0)) is the required subgroup of Γ := π1(M, z0). ΓN consists of
the homotopy classes of closed paths in (M, z0) whose lift to (N, y0) is also closed, and the number of sheets of the cover
pN is equal to the index Γ : ΓN . Note that since M̃ is simply connected, ΓM̃ is trivial.

The inverse of this isomorphism can be defined using deck transformations. Let Γ = π1(M, z0). Then Γ is the fibre of
qM over z0, and it acts on M̃ by deck transformations defined via the homotopy product: if γ ∈ Γ and z̃ ∈ M̃ then γ ∗ z̃
gives the action of γ on z̃. Then given Γ1 < Γ , define N = M̃/Γ1, and put y0 = Γ1 z̃0. Then from the long exact sequence
of homotopy, it follows that π1(N, y0) � Γ1. Furthermore, if Γ1 < Γ2 < Γ then there is a well-defined morphism (covering
map) p : N1 → N2, where N j = M̃/Γ j , obtained from noting that any Γ1-orbit is contained in a unique Γ2-orbit, so we put
p(Γ1 z̃) = Γ2 z̃.

Let (N1, y1) be a cover of (M, z0) with group Γ1, and let Γ2 = γΓ1γ
−1 be a subgroup conjugate to Γ1 (where γ ∈ Γ ).

Then N2 = M̃/Γ2 is diffeomorphic to N1, but the base point is now y2 = Γ2 z̃0. A diffeomorphism is simply induced from
the diffeomorphism z̃ �→ γ · z̃ of M̃ (which does not in general map y1 to y2).

If Γ1 � Γ (normal subgroup), then the cover (N, y1) is said to be a normal cover. In this case the Γ -action (by deck
transformations) on M̃ descends to an action on N (with kernel Γ1), and Γ/Γ1 is the group of deck transformations of the
cover N → M . For a general cover, the group of deck transformations is isomorphic to NΓ (Γ1)/Γ1, where NΓ (Γ1) is the
normalizer of Γ1 in Γ . Only for normal covers does the group of deck transformations act transitively on the sheets of the
cover. See [6] for examples.

Let us emphasize here that we view Γ = π1(M, z0) both as a group acting on M̃ by deck transformations, and as a
discrete subset of M̃—the fibre over z0. In particular, for γ ∈ Γ , γ ∗ z̃0 = γ . In other words, z̃0 is the identity element in Γ .
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1.2. Lifting the group action

Now let G be a connected Lie group acting on the connected manifold M , and let pN : (N, y0) → (M, z0) be a cover.
To define the lifted action on N , we first describe the lift to M̃ and then show it induces an action on N , using the cover
qN : M̃ → N .

The action of G on M does not in general lift to an action of G on M̃ but of the universal cover G̃ , which is also defined
using homotopy classes of paths, with base point the identity element e. The covering map is denoted qG : G̃ → G . So if g̃
is represented by a path g(t) then qG(g̃) = g(1). The product structure in G̃ is given by pointwise multiplication of paths:
if g̃1 is represented by a path g1(t) and g̃2 by g2(t), then g̃1 g̃2 is represented by the path t �→ g1(t)g2(t).

Definition 1.1. Let g̃ ∈ G̃ be represented by a path g(t) (with g(0) = e), and z̃ ∈ M̃ be represented by a path z(t) (with
z(0) = z0). Then we define g̃ · z̃ to be ỹ ∈ M̃ , where ỹ is the homotopy class represented by the path t �→ g(t) · z(t). It is
readily checked that the homotopy class of this path depends only on the homotopy classes g̃ and z̃.

With this definition for the action of G̃ on M̃ , it is clear that the following diagram commutes:

(1.1)

where the vertical arrows are qG × qM and qM respectively, and the horizontal arrows are the group actions. In particular,

ỹ = g̃ · z̃ �⇒ y = g · z (1.2)

where for z̃ ∈ M̃ we denote its projection to M by z, and similarly with elements of G̃ .

Remark 1.2. A second approach to defining the action of G̃ on M̃ is as follows. The action of G gives rise to an action of the
Lie algebra g. That is, to each ξ ∈ g there is associated an infinitesimal generator vector field ξM on M . Let N → M be any
cover. The covering map is a local diffeomorphism, so the vector fields ξM can be lifted to vector fields ξN on N . Because
this covering map is a local diffeomorphism, this gives rise to an action of g on N . Now g is the Lie algebra of a unique
simply connected Lie group G̃ . To see that the vector fields on N are complete, so defining an action of G̃ , one needs to
compare the local actions on M and N . It is not hard to see that the two definitions of actions of G̃ are equivalent.

Proposition 1.3. The action of G̃ on M̃ commutes with the deck transformations. Furthermore, for each g̃ ∈ π1(G, e) the homotopy
class g(t) · z0 lies in the centre of π1(M, z0).

Proof. First note that if g(t) is a path in G with g(0) = e, and z(t) a path in M with z(0) = z0 and z(1) = z1, then the
following three paths are homotopic:

g(t) · z(t),
[

g(t) · z0
] ∗ [

g(1) · z(t)
]
, z(t) ∗ [

g(t) · z1
]
. (1.3)

Now let g̃ ∈ G̃ , δ ∈ Γ and z̃ ∈ M̃ with qM(z̃) = y ∈ M . We want to show that g̃ · (δ · z̃) = δ · (g̃ · z̃). By (1.3) applied with
γ = δ ∗ z̃, we have g̃ · (δ · z̃) = [δ ∗ z̃] ∗ [g̃ · y], while again by (1.3) applied with γ = z̃ we have δ · (g̃ · z̃) = δ ∗ [z̃ ∗ (g̃ · y)].
The result follows from the associativity of the homotopy product.

Finally let g̃ ∈ π1(G, e) and δ ∈ Γ . We want to show that [g̃ · z̃0] ∗ δ = δ ∗ [g̃ · z̃0], where z̃0 is the constant loop at x. By
(1.3), δ ∗ [g̃ · z̃0] = g̃ · δ = [g̃ · z̃0] ∗ δ (since g(1) = e), as required. �

Applying this to the left action of G on itself gives the well-known fact that π1(G, e) lies in the centre of G̃ . Consequently
the following is a central extension:

1 → π1(G, e) → G̃
qG−→ G → 1. (1.4)

Now we are in a position to define the action of G̃ on an arbitrary cover (N, y0) of (M, z0). As in Section 1.1, let
ΓN = pN∗(π1(N, y0)) < Γ . So, N � M̃/ΓN . That is, a point in N can be identified with a ΓN -orbit of points in M̃ .

Definition 1.4. The G̃-action on N is defined simply by

g̃ · ΓN z̃ := ΓN(g̃ · z̃).

This is well-defined as the actions of G̃ and Γ commute, by Proposition 1.3. It is clear too that the analogues of (1.1) and
(1.2) hold with N in place of M̃ .
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Proposition 1.5. Let pN : (N, y0) → (M, z0) be a covering map. The G̃-orbits on N are the connected components of the inverse
images under pN of the orbits on M. More precisely, if y ∈ p−1

N (z) ⊂ N then G̃ · y is the connected component of p−1
N (G · z) containing

y. In particular if the G-orbits in M are closed, so too are the G̃-orbits in N.

Proof. Let Z ⊂ M be any submanifold. Then Z ′ := p−1
N (Z) is a submanifold of N and the projection pN |Z ′ : Z ′ → Z is a

cover, and if Z is closed so too is Z ′ . Moreover, if Z is G-invariant (hence G̃-invariant), then by the equivariance of pN so is
Z ′ , and if Z is a single orbit, then Z ′ is a discrete union of orbits: discrete because pN is a cover. Since G̃ is connected, the

orbits are the connected components of Z ′ . �
1.3. The kernel of the lifted action

The natural action of G̃ on M̃ described above need not be effective, even if the action of G on M is, and the kernel is a
subgroup of π1(G, e) which we describe in this section.

Let g̃ ∈ π1(G, e) be represented by a path g(t), with g(1) = e. The path g(t) determines an element [g(t) · z0] in the
centre of π1(M, z0). Moreover, homotopic loops in G give rise to homotopic loops in M , so this induces a well-defined
homomorphism

az0 : π1(G, e) → π1(M, z0), (1.5)

whose image lies in the centre of π1(M, z0), by Proposition 1.3.

Proposition 1.6.

(i) The kernel K < π1(G, e) of az0 is independent of z0 and acts trivially on M̃ and hence on every cover of M.
(ii) If (N, y0) is a cover of (M, z0), with associated subgroup ΓN of π1(M, z0), then KN := a−1

z0
(ΓN ) is independent of the choice of

base point y0 in N, and acts trivially on N.
(iii) If G acts effectively on M then G N := G̃/KN acts effectively on N.

Note that since the domain of az0 is π1(G, e) which is in the centre of G̃ , it follows that KN is a normal subgroup of G̃ .
And with the notation of the proposition, K = KM̃ since ΓM̃ is trivial. We will write G ′ := G̃/K for the group acting on M̃ .

In particular, if az0 is trivial then K = π1(G, e) and the G-action on M lifts to an action of G on M̃ . That is, az0 is the
obstruction to lifting the G-action. A particular case is where the action of G on M has a fixed point. If z0 is such a fixed
point then az0 = 0. More generally this is true if any (and hence every) G-orbit in M is contractible in M , since in that case
too az0 is trivial. See also Remark 1.8.

Proof. (i) Let z0, z1 ∈ M and let η be any path from z0 to z1 (recall we are assuming M is a connected manifold), and let
g̃ ∈ π1(G, e) with a representative path g(t). For T ∈ [0,1] define gT (t) = g(T t) (for t ∈ [0,1]), so gT ∈ G̃ . Then varying T
defines a homotopy from η to (gT · z̃0) ∗ (g(T )(η)) ∗ ((gT )−1 z̃′

0). In particular, putting T = 1 shows that η is homotopic to
az0(g̃) ∗ η ∗ az1 (g̃−1), or equivalently that

η ∗ az1

(
g̃−1) ∗ η̄ = az0

(
g̃−1),

where η̄ is the reverse of the path η. This composition of paths defines the standard isomorphism η∗ : π1(M, z1) →
π1(M, z0). We have shown therefore that az0 = η∗ ◦ az1 , and so both have the same kernel. That K acts trivially on M̃
follows from the definition of az0 : let z̃ ∈ M̃ and g̃ ∈ K , then g̃ · z̃ = g̃ · (z̃0 ∗ z̃) = az0 (g̃) ∗ z̃ = z̃ (using (1.3)).

(ii) Let y0, y1 ∈ N , let z j = pN (y j) ∈ M and let ζ be any path from y0 to y1, with η its projection to M . The result
follows from the fact that the following diagram commutes (with p(N,y j)∗ written p j∗ ):

Writing N = M̃/ΓN , if g̃ ∈ a−1
z0

(ΓN ) then g̃ ∈ KΓN and, g̃ΓN z̃ ⊂ ΓN K z̃ = ΓN z̃ so g̃ acts trivially (using Proposition 1.3 and
part (i)).

(iii) Suppose g̃ ∈ G̃ acts trivially on N , so for all y ∈ N , g̃ · y = y. Projecting to M , this implies that g(1) · z = z (for all
z ∈ M) so g(1) ∈ ∩z∈M Gz = {e}. Thus g̃ ∈ π1(G, e).
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To prove the statement, we first consider the case N = M̃ . If g̃ /∈ K then az0(g̃) = z̃0 ∈ π1(M, z0). Since π1(M, z0) acts
effectively (by deck transformations) on the fibre q−1

M (z0) � π1(M, z0) ⊂ M̃ it follows that az0(g̃) acts non-trivially, which is
in contradiction with the assumption that g̃ acts trivially.

Now suppose g̃ ∈ G̃ acts trivially on N . We have g̃ΓN z̃0 = ΓN z̃0, so that g̃ ∈ ΓN K = a−1
z0

(ΓN ) as required. �
Proposition 1.7. Let N be any cover of M. If the action of G on M is free and proper then so is the action of G N on N.

Proof. First suppose G acts freely on M , and let y = ΓN z̃ ∈ p−1
N (z0) ⊂ N . We need to show that the isotropy group G̃ y for

the G̃ action on N is equal to KN . Now, g̃ · y = g̃ΓN z̃ = g̃ΓNγ z̃0, for some γ ∈ Γ , as Γ acts transitively on the fibre over z0
in M̃ . So g̃ · y = y if and only if, g̃ΓNγ z̃0 = ΓNγ z̃0. However, the action of g̃ commutes with that of Γ so this reduces to
az0(g̃) ∈ ΓN as required for the freeness of the G N -action.

To show the G N -action is proper, we need to show that the action map ΦN : G N × N → N × N is closed and has compact
fibres. The fibre Φ−1

N (x, y) = {(g, y) ∈ G N × N | g · x = y}. If this is non-empty, and h · x = y then Φ−1
N (x, y) � h(G N )x , which

is a single element of G N as the action is free.
To see that the action map is closed, consider a sequence (gi, xi) in G N × N for which (gi · xi, xi) converges to (y, z).

Then of course xi → z. We claim that gi · z → y. This is because,

d(gi · z, y) � d(gi · z, gi · xi) + d(gi · xi, y) = d(z, xi) + d(gi · xi, y),

where d is the G N -invariant metric on N defined above. Both terms on the right tend to 0 so that d(gi · z, y) → 0 as
required.

Now, by Proposition 1.5 the G N -orbits in N are closed and hence there is an g ∈ G N with y = g · z. That is, gi · z → g · z.
Consequently, gi(G N )z → g(G N )z in G N/(G N )z . By taking a slice to the proper (G N )z-action on G , this can be rewritten as
gihi → g in G N , for some sequence hi ∈ (G N )z . Since (G N )z is compact, (hi) has a convergent subsequence, hik → h. Then
gik → gh−1. It follows therefore that (gik , xik ) → (gh−1, z) and ΦN (gh−1, z) = (y, z). �
Remark 1.8. D. Gottlieb [5] considered the images in π1(M, z0) of “cyclic homotopies” of a space, which includes the image
of az0 as a particular case. He showed in particular that image(az0 ) lies in the subgroup P (M, z0) of π1(M, z0) consisting
of those loops which act trivially on all homotopy groups πk(M, z0). Furthermore, he showed that if M is homotopic to a
compact polyhedron, and the Euler characteristic χ(M) = 0, then image(az0 ) = 0, which implies by what we proved above
that every group action on such a space lifts (as an action of G) to its universal cover.

1.4. Orbit spaces and covers for free actions

It will be useful for Section 3 to compare the orbit spaces M/G and M̃/G̃ (or M̃/G ′ where G ′ = G̃/K ) when the G-action
is free and proper, and more generally with N/G N when N is a normal cover of M .

Let N be a normal cover of M (see the end of Section 1.1), with associated group ΓN . Then there is an action of
G N × Γ on N (the action of Γ by deck transformations factors through one of Γ/ΓN , and commutes with the G N -action,
by Proposition 1.3).

Proposition 1.9. Let G act freely and properly on M. Then the natural map q′
M : M̃/G ′ → M/G is a covering map, with deck transfor-

mation group equal to coker(az0 ) acting transitively on the fibres.
More generally, if pN : N → M is a normal cover then p′

N : N/G N → M/G is a normal cover with deck transformation group
coker(az0 )/ΓN � Γ/(image(az0)ΓN ).

Proof. Since G acts freely and properly on M then G N acts freely and properly on N , so both M/G and N/G N are smooth
manifolds. Moreover, since N is a normal cover of M , it follows that ΔN := Γ/ΓN acts freely and transitively on the fibres
of the covering map, and so M � N/ΔN .

Consider the following commutative diagram:

(1.6)

Since the covers qN and pN are local diffeomorphisms, it follows that slices to the G̃-actions can be chosen in M̃ , N and
M in a way compatible with the covers. Consequently, the lower horizontal maps in the diagram are also covers (the same
is true if the cover N is not normal).

First consider the cover q′
M : M̃/G ′ −→ M/G . Since the action of Γ on M̃ commutes with the action of G ′ , it descends to

an action on M̃/G ′ . Moreover, since M̃/Γ � M , so
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(M̃/G ′)/Γ � M̃/(G ′ × Γ ) � M/G.

(All diffeomorphisms � are natural.) Furthermore, since Γ acts transitively on the fibres of M̃ → M , so it does on the fibres
of M̃/G ′ → M/G .

We claim that the isotropy subgroup of the action of Γ for any point in M̃/G ′ is Γ ′ = image(az0 ). Indeed, for the action
of G ′ × Γ on M̃ the isotropy subgroup of x̃ is

H = {
(g̃, γ ) | g̃ · γ · x̃ = x̃

}
.

Clearly then, (g̃, γ ) ∈ H implies in particular g̃ ∈ π1(G, e), and for such g̃ , (g̃, γ ) · x̃ = az0(g̃) ∗ γ ∗ x̃ and so (g̃, γ ) ∈ H iff
az0(g̃) = γ −1. Thus γ ∈ Γ acts trivially on M̃/G ′ if and only if ∃g̃ ∈ G ′ such that az0 (g̃−1) = γ , as required for the claim.
Consequently, for the cover q′

M , the deck transformation group is Γ/image(az0 ) = coker(az0 ), and this acts transitively on
the fibres.

The same argument as above can be used for the more general normal cover pN : N → M , with G ′ replaced by G N and
Γ by Γ/ΓN . �
Remark 1.10. If N is a cover of M but not a normal cover, then as pointed out in the proof N/G is still a cover of M/G .
Moreover, the fibre still has cardinality coker(az0 )/ΓN , but the latter is not in this case a group.

Notice that as G acts freely and properly on M , then M̃/G ′ is a connected and simply connected manifold (simply
connected because G ′ is connected). Consequently, M̃/G ′ is the (a) universal cover of M/G .

2. Hamiltonian covers

For the remainder of the paper, we assume the manifold M is endowed with a symplectic form ω and the Lie group G
acts by symplectomorphisms. Notice that any cover pN : N → M of M is also symplectic with form ωN := p∗

Nω and that,
moreover, the lifted action of G̃ (or G N ) on N is also symplectic. It follows that the category of all symplectic covers of
(M,ω) coincides with the category of all covers of M . Furthermore, the deck transformations on M̃ are also symplectic.

Symplectic Lie group actions are linked at a very fundamental level with the existence of momentum maps. Let g be the
Lie algebra of G and g∗ its dual. We recall that a momentum map J : M → g∗ for the symplectic G-action on (M,ω) is
defined by the condition that its components Jξ := 〈J, ξ〉, ξ ∈ g, are Hamiltonian functions for the infinitesimal generator
vector fields ξM(m) := d

dt

∣∣
t=0 exp tξ · m. The existence of a momentum map for the action is by no means guaranteed;

however, it could be that the lifted action to a cover has this feature. For example, if the cover is simply connected (as is
M̃), the action necessarily has a momentum map associated. This remark leads us to the following definitions.

Definition 2.1. Let (M, z0,ω) be a connected symplectic manifold endowed with an action of the connected Lie group G .
We say that the smooth cover pN : (N, y0) → (M, z0) of (M, z0) is a Hamiltonian cover of (M, z0,ω) if N is connected and
the lifted action of G̃ (or G N ) on (N,ωN ) has a momentum map JN : N → g∗ associated.

Note that we keep the base points in the notation as the choice of momentum map depends on the base point.
If the G-action on M is already Hamiltonian, then every cover is naturally a Hamiltonian cover, so the interesting case is

where the symplectic action on M is not Hamiltonian.
The connectedness hypothesis on N assumed in the previous definition implies that any two momentum maps of the

G N -action on N differ by a constant element in g∗ . We will assume that JN is chosen so that JN (y0) = 0. (This choice should
perhaps be denoted J(N,y0) , but we will refrain from the temptation!)

Definition 2.2. Let (M, z0,ω) be a connected symplectic manifold and G a Lie group acting symplectically thereon. Let H be
the category whose objects Ob(H) are the pairs

(
pN : (N, y0,ωN) → (M, z0,ω), JN

)
,

where pN is a Hamiltonian cover of (M, z0,ω) and JN : N → g∗ is the momentum map for the lifted G̃- (or G N -) action on
N satisfying JN (y0) = 0, and whose morphisms Mor(H) are the smooth maps p : (N1, y1,ω1) → (N2, y2,ω2) that satisfy the
following properties:

(i) p is a G̃-equivariant symplectic covering map
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(ii) the following diagram commutes:

We will refer to H as the category of Hamiltonian covers of (M, z0,ω).

It should be clear that the ingredients ωN and JN are both uniquely determined by pN : (N, y0) → (M, z0) (given the
symplectic form on M), so H is in fact a (full) subcategory of the category of all covers of (M, z0).

The category of the Hamiltonian covers of a symplectic manifold acted upon symplectically by a Lie algebra was studied
in [14]. We will now use the developments in Section 1 to recover those results in the context of group actions. The study
that we carry out in the following paragraphs sheds light on the universal covered space introduced in [14] and additionally
will be of much use in Section 3 where we will spell out in detail the interplay between Hamiltonian covers and symplectic
reduction.

2.1. The momentum map on the universal cover

We now start by giving an expression for the momentum map associated to the G̃-action on the universal cover M̃ of
M . As far as this momentum map is concerned, it does not matter if we consider the G̃ or the G ′ action (defined after
Proposition 1.6) since both have the same Lie algebra and the momentum map depends only on the infinitesimal part of
the action. Recall that the Chu map Ψ : M → Z 2(g) is defined by

Ψ (z)(ξ,η) := ω(z)
(
ξM(z), ηM(z)

)
. (2.1)

for ξ,η ∈ g.

Proposition 2.3. Let (M,ω) be a connected symplectic manifold acted upon symplectically by the connected Lie group G. Then, the
G̃-action on (M̃, ω̃ := q∗

Mω) has a momentum map associated J : M̃ → g∗ that can be expressed as follows: realize M̃ as the set of
homotopy classes of paths in M with base point z0 . Let x̃ ∈ M̃ and x(t) an element in the homotopy class x̃. Then, for any ξ ∈ g

〈
J(x̃), ξ

〉 = ∫
[0,1]

x∗(iξM ω) =
1∫

0

ω
(
x(t)

)(
ξM

(
x(t)

)
, ẋ(t)

)
dt. (2.2)

If x̃ ∈ π1(M, z0) and ỹ ∈ M̃ then x̃ ∗ ỹ ∈ M̃ and

J(x̃ ∗ ỹ) = J(x̃) + J( ỹ). (2.3)

The non-equivariance cocycle σJ : G̃ → g∗ of J is given by

〈
σJ(g̃), ξ

〉 =
1∫

0

Ψ (z0)(ξt , ηt)dt, (2.4)

for any ξ ∈ g, g̃ ∈ G̃ , and g(t) a curve in the homotopy class of g̃, where ξt = Adg(t)−1ξ and ηt = (Te Lg(t))
−1 ġ(t), and Ψ is the Chu

map defined in (2.1) above.

The non-equivariance cocycle is used to define an affine action of G̃ on g∗ with respect to which the momentum map is
equivariant, namely

g̃ · μ = Ad∗
g−1μ + σJ(g̃). (2.5)

Momentum maps are only defined up to a constant; the one in (2.2) is normalized to vanish on the trivial homotopy class
z̃0 at z0. The expression (2.2) is closely related to the one in [10] for the momentum map of the action of a group G on the
fundamental groupoid of a symplectic G-manifold; see Remark 2.5 below.
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Proof. Let α := iξM ω. Since this 1-form on M is closed, it follows that
∫

x∗α depends only on the homotopy class (indeed
homology class) of x; that is, J(x̃) is well-defined by (2.2).

To show that J is a momentum map for the G̃-action on M̃ , we use the Poincaré Lemma on the closed form α. Cover the
image of x(t) in M by contractible well-chained open sets (open in M), U1, . . . , Un , with x(0) = z0 ∈ U1 and x(1) ∈ Un . We
can enumerate these sets consecutively along the curve x(t), and let z j = x(t j) ∈ U j ∩ U j+1 lie on the curve and zn = x(1).

On each U j we can write α = dφ j for some function φ j (in fact a local momentum for ξM ). Then on Ui ∩ U j , μi, j :=
φi − φ j is constant. Now, with I = [0,1] and I j = [t j, t j+1] we have

∫
I

x∗α =
∑

j

∫
I j

x∗dφ j =
∑

j

(
φ j(z j+1) − φ j(z j)

) = φn(zn) − φ1(z0) −
n−1∑
j=1

μ j+1, j . (2.6)

The covering map qM : M̃ → M, x̃ �→ x(1) identifies the tangent space Tx̃ M̃ with Tx(1)M . Let ṽ ∈ Tx̃ M̃ arbitrary and
v = Tx̃qM(ṽ). Thus, differentiating (2.6) at x̃ in the direction ṽ ∈ Tx̃ M̃ gives

d
(∫

x∗α
)
(ṽ) = dφn

(
x(1)

)
(v) = α

(
x(1)

)
(v) = ω(ξM , v) = ω̃(ξM̃ , ṽ),

as required. The identity (2.3) follows from a straightforward verification.
We conclude by computing the non-equivariance cocycle σJ . By definition, for any g̃ ∈ G̃ and ξ ∈ g

σJ(g̃) = J(g̃ · x̃) − Ad∗
g̃−1 J(x̃),

for any x̃ ∈ M̃ . Take x̃ = z̃0 and use (2.2). The formula for σJ then follows by recalling that J(z̃0) = 0 and that the G-action
on M is symplectic. �
Remark 2.4. If the Chu map vanishes at one point, then J is clearly coadjoint-equivariant. This happens if there is an isotropic
orbit in M (and hence in M̃).

Remark 2.5. Let Π(M) be the fundamental groupoid of M , which has a natural symplectic structure and Hamiltonian action
of G derived from those on M , as described by Mikami and Weinstein, [10]. The relationship between the momentum map
J : Π(M) → g∗ defined in [10] and ours is as follows (we thank Rui Loja Fernandes for explaining this to us). Given the
base point z0 ∈ M there is a natural cover M̃ × M̃ → Π(M) (with fibre π1(M, z0)). The momentum map J lifts to one on
M̃ × M̃ , and our momentum map is the restriction of this lift to the first factor M̃ × {z̃0}.

Conversely, given our momentum map J : M̃ → g∗ , the map:

M̃ × M̃ → g∗, (x̃, ỹ) �→ J(x̃) − J( ỹ)

descends to the quotient by π1(M, z0) and yields the momentum map J : Π(M) → g∗ .

2.2. The Hamiltonian holonomy and Hamiltonian covers

Definition 2.6. Let (M, z0,ω) be a connected symplectic manifold with symplectic action of the connected Lie group G .
Let J : M̃ → g∗ be the momentum map defined in Proposition 2.3. The Hamiltonian holonomy H of the G-action on (M,ω)

is defined as H = J(Γ ), and for an arbitrary symplectic cover pN : N → M , the holonomy group is HN := J(ΓN ), where
Γ = π1(M, z0) and ΓN = (pN )∗(π1(N, y0)) (as in Section 1).

Proposition 2.7. The symplectic cover pN : (N, y0) → (M, z0) is Hamiltonian if and only if HN = 0.

Proof. If the G̃-action on N is Hamiltonian, then the momentum map is well-defined. This means that if γ is any closed
loop in N , then J(γ̄ ) = 0, where γ̄ ∈ π1(M, z0) is the image under (pN )∗ of the homotopy class of γ . Conversely, if HN = 0
then the map J : M̃ → g∗ descends to a map JN : M̃/ΓN → g∗ , and as described in Section 1, N � M̃/ΓN as covers of M . �

Let us emphasize that if pN : (N, y0) → (M, z0) is a Hamiltonian cover, then the momentum map JN : N → g∗ is defined
uniquely by the following diagram.

(2.7)
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As we pointed out in Section 1, the subgroups of the fundamental group Γ = π1(M, z0) classify the covers of M . In a
similar vein, the following result shows that the subgroups of the subgroup Γ0 of Γ play the same role with respect to the
Hamiltonian covers of the symplectic G-manifold (M,ω).

Define,

Γ0 := J−1(0) ∩ q−1
M (z0) < π1(M, z0); (2.8)

that is, Γ0 = ker(J|Γ : Γ → g∗). It follows that Γ0 � Γ .

Corollary 2.8. The symplectic cover pN : (N, y0) → (M, z0) is Hamiltonian if and only if ΓN < Γ0 . Consequently, H is isomorphic to
the category of subgroups of Γ0 .

Recall that the category S(Γ ) of subgroups of a group Γ is the category whose objects are the subgroups, and whose
morphisms are the inclusions of one subgroup into another. We have therefore shown that H � S(Γ0). Explicitly, the
isomorphism is given by

H −→ S(Γ0)(
pN : (N, y0) → (M, z0), JN

) �−→ ΓN = (pN )∗
(
π1(N, y0)

)
. (2.9)

2.3. The universal Hamiltonian covering and covered spaces

As it was shown in the previous section, the Hamiltonian covers of a symplectic G-manifold (M,ω) are characterized by
the subgroups of Γ0. The cover associated to the smallest possible subgroup, that is, the trivial group, is obviously the simply
connected universal cover M̃ of M . It is easy to check that this object satisfies in the category H of Hamiltonian covers, the
same universality property that it satisfies in the general category of covering spaces, that is, (pM̃ : M̃ → M, J) ∈ Ob(H) and
for any other Hamiltonian cover (pN : N → M, JN ) of (M,ω) there exists a morphism qN : (M̃, ω̃) → (N,ωN ) in Mor(H).
Moreover, any other element in Ob(H) that has this universality property is isomorphic to (pM̃ : M̃ → M, J) (we have
suppressed the dependence on base points z0, y0, z̃0 in this discussion; if they are included the morphisms become unique—
see Remark 2.10 below).

A difference between the general category of covering spaces and the category of Hamiltonian covers arises when we
look at the cover associated to the biggest possible subgroup of Γ0, that is, Γ0 itself. Unlike the situation found for general
covers, where the biggest possible subgroup that one considers is the fundamental group Γ and it is associated to the
trivial (identity) cover, the cover associated to Γ0 is non-trivial (unless M is already Hamiltonian) and has an interesting
universality property that is “dual” to the one exhibited by the universal cover. Define M̂ := M̃/Γ0; it follows from the
corollary above that this Hamiltonian cover is minimal. It was first introduced under a different guise in [14], where it is
called the universal covered space of (M,ω), and defined using a holonomy bundle associated to a flat g∗-valued connection.
Recall from Section 1.1 that a cover N → M is said to be normal if ΓN is a normal subgroup of Γ . Since Γ0 is the kernel
of a homomorphism Γ → H, it follows that M̂ is a normal cover of M . By Proposition 1.6, the group Ĝ := G̃/a−1

z0
(Γ0) acts

effectively on M̂ (as always, we assume that G acts effectively on M).

Proposition 2.9. M̂ is a Hamiltonian normal cover of M with the universal property that for any given Hamiltonian cover pN : N → M
of M there is a Hamiltonian cover p̂N : N → M̂.

Proof. Since we have shown that H � S(Γ0), this property of M̂ in H follows from the corresponding property of Γ0 in
S(Γ0); namely that for every subgroup Γ1 of Γ0 there is an inclusion Γ1 ↪→ Γ0. �
Remark 2.10. (M̃, z̃0) and (M̂, ẑ0) are initial and final objects in the category of Hamiltonian covers of (M, z0) with base
points; this of course corresponds to the fact that 1 and Γ0 are initial and final objects in the category S(Γ0).

2.4. The connection in M × g∗ and a model for the universal covered space

The universal covered space M̂ was introduced in [14] (though there it is denoted M̃) using a connection in M × g∗
proposed in [3]. Here we briefly review that definition, and show that it is equivalent to the one given above.

Let (M,ω) be a connected paracompact symplectic manifold and let G be a connected Lie group that acts symplectically
on M . Consider the Cartesian product M × g∗ and let π : M × g∗ → M be the projection onto M . Consider π as the bundle
map of the trivial principal fibre bundle (M × g∗, M,π,g∗) that has (g∗,+) as Abelian structure group. The group (g∗,+)

acts on M × g∗ by ν · (z,μ) := (z,μ − ν). Let α ∈ Ω1(M × g∗;g∗) be the connection one-form defined by

〈
α(z,μ)(vz, ν), ξ

〉 := (iξM ω)(z)(vz) − 〈ν, ξ〉, (2.10)
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where (z,μ) ∈ M × g∗ , (vz, ν) ∈ T z M × g∗ , 〈·, ·〉 denotes the natural pairing between g∗ and g, and ξM is the infinitesimal
generator vector field associated to ξ ∈ g.

The connection α is flat. For (z0,0) ∈ M × g∗ , let M̂ ′ := (M × g∗)(z0,0) be the holonomy bundle through (z0,0) and let
H(z0,0) be the holonomy group of α with reference point (z0,0) (which is an Abelian zero-dimensional Lie subgroup of
g∗ by the flatness of α); in other words, M̂ ′ is the maximal integral leaf of the horizontal distribution associated to α that
contains the point (z0,0) and it is hence endowed with a natural initial submanifold structure with respect to M × g∗ . See
for example Kobayashi and Nomizu [7] for standard definitions and properties of flat connections and holonomy bundles.

The principal bundle (M̂ ′, M, p̂, H) := (M̂ ′, M,π |(M×g∗)(z0,0), H(z0,0)) is a reduction of the principal bundle (M ×
g∗, M,π,g∗). A straightforward verification shows that H(z0,0) coincides with the Hamiltonian holonomy H introduced
in Definition 2.6. In this sense, the momentum map J : M̃ → g∗ establishes a relationship between the deck transformation
groups of the universal cover of M and of the holonomy bundle p̂ : M̂ ′ → M . Moreover, the holonomy bundle M̂ ′ can be
expressed using J as

M̂ ′ = {(
qM(x̃), J(x̃)

) ∣∣ x̃ ∈ M̃
}
. (2.11)

This expression allows one to check easily that (M̂ ′, M, p̂, H) is actually a Hamiltonian cover of M with the symplectic form
ω̂′ := p̂∗ω. The G M̂′ -action on M̂ ′ is symplectic and is induced by the G̃-action on M̂ ′ given by

g̃ · (x,μ) = (
g · x, J(g̃ · x̃)

) = (
g · x, σJ(g̃) + Ad∗

g−1 J(x̃)
)
, (2.12)

where (x,μ) ∈ M̂ ′ , g = pG̃(g̃), and x̃ is such that pM̃(x̃) = x, and J(x̃) = μ. The G M̂′ -action on M̂ ′ has a momentum map
Ĵ : M̂ ′ → g∗ given by Ĵ(x,μ) = μ.

Proposition 2.11. The universal covered space M̂ = M̃/Γ0 is symplectomorphic to M̂ ′ .

Proof. The required symplectomorphism is implemented by the map

Θ : M̃/Γ0 −→ M̂ ′

[x̃] �−→ (
x(1), J(x̃)

)
.

This map is well defined since by (2.3), the smooth map θ : M̃ −→ M̂ ′ given by x̃ �−→ (x(1), J(x̃)) is Γ0 invariant and hence it
drops to the smooth map Θ . The map θ is an immersion since for any vx̃ ∈ Tx̃ M̃ such that 0 = Tx̃θ · vx̃ = (Tx̃ pM̃ · vx̃, Tx̃J · vx̃),
we have that Tx̃ pM̃ · vx̃ = 0 and hence vx̃ = 0, necessarily. Given that Γ0 is a discrete group, the projection M̃ → M̃/Γ0 is a
local diffeomorphism and hence Θ is also an immersion. Additionally, by (2.11), the map Θ is also surjective. We conclude
by showing that Θ is injective. Let x̃, ỹ ∈ M̃ be such that Θ([x̃]) = Θ([ ỹ]). This implies that

x(1) = y(1) and that J(x̃) = J( ỹ). (2.13)

The first equality in (2.13) implies that x̃ ∗ ˜̄y ∈ π1(M, z0), where ˜̄y is the homotopy class associated to the reverse path ȳ of
y. Moreover, by the second equality in (2.13), it is easy to check that J(x̃ ∗ ˜̄y) = 0, and hence x̃ ∗ ˜̄y ∈ Γ0. Since (x̃ ∗ ˜̄y) ∗ ỹ =
x̃ we can conclude that [x̃] = [ ỹ], as required. Consequently, Θ being a smooth bijective immersion, it is necessarily a
diffeomorphism. A straightforward verification shows that Θ ∈ Mor(H), which concludes the proof. �
2.5. Example

We apply the ideas developed in this section to the left action of a Lie group G on its cotangent bundle, but with a
modified symplectic form.

Let G be a connected Lie group, and let θ : g → g∗ be a symplectic cocycle which is not a coboundary, so it represents a
non-zero element of H1

s (g,g∗) (the subscript meaning symplectic cocycles; that is, θ is skew-symmetric—see [17] for details).
One can also view θ as a real-valued 2-cocycle Σ : g × g → R by putting Σ(ξ,η) := 〈θ(ξ),η〉. Indeed, H2(g,R) ∼= H1

s (g,g∗).
Let g(t) (t ∈ [0,1]) be a differentiable path in G and define,

Θ
(

g(·)) =
1∫

0

Ad∗
g(t)−1θ

(
g(t)−1 ġ(t)

)
dt. (2.14)

It is well known (and easy to check) that Θ depends only on the homotopy class of the path g(t) (relative to the end
points), so by restricting to g(0) = e, Θ defines a map Θ : G̃ −→ g∗ . Moreover, one can also check that Θ is a 1-cocycle on
G̃ , and so defines a well-defined element of H1(G̃,g∗).

Let Γ0 < π1(G, e) be the kernel of the restriction of Θ to the subgroup π1(G, e) of G̃ . Then for any subgroup Γ1 < Γ0, Θ

descends to a 1-cocycle Θ1 ∈ H1(G1,g
∗), where G1 = G̃/Γ1. In particular, write Ĝ = G̃/Γ0. (The notation Γ0 is justified in

the corollary below.)
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Now consider the action of G on T ∗G by lifting left multiplication. Given the 2-cocycle Σ associated to θ , define a closed
differential 2-form Bθ on G to be the left-invariant 2-form whose value at e is Σ . Write π : T ∗G → G , and on M = T ∗G
consider the symplectic form

Ωθ = Ωcanon − π∗Bθ . (2.15)

where Ωcanon is the canonical cotangent bundle symplectic form.
We claim that the action of G on M is symplectic, and is Hamiltonian if and only if Γ0 = π1(G, e). More generally, we

claim that whenever Γ1 < Γ0 the lift of the action to T ∗G1 is Hamiltonian.

Proposition 2.12. The action of G̃ on M̃ = T ∗G̃ ∼= G̃ × g∗ with symplectic form given by (2.15) is Hamiltonian, with momentum map
given by

Jθ (g̃,μ) = Ad∗
g−1μ + Θ(g̃),

where g = g̃(1), and we have identified the Lie algebras of G and G̃. The non-equivariance cocycle of this momentum map is simply Θ .

If θ = δν for some ν ∈ g∗ (i.e. θ represents zero in H1(g,g∗)), then the action on T ∗G is Hamiltonian with momentum
map J(g,μ) = Ad∗

g−1μ + ν .

Proof. The action is symplectic because Bθ is left-invariant. For the momentum map, the first term of the right-hand side
in (2.15) is the standard expression due to Ωcanon. For the second term, one needs to check that

−ιξM̃
π∗Bθ = 〈dΘ,ξ〉.

Each side of this is an invariant function, so it suffices to check the equality at the identity element. Now, ιξM̃
π∗Bθ = ιξG Bθ

and at the identity this is ιξΣ . On the other hand 〈dΘ(e)(η), ξ〉 = 〈θ(η), ξ〉 = −Σ(ξ,η).
For the non-equivariance cocycle σ ∈ H1(G,g∗),

σ(h) = Jθ
(
h · (e,0)

) − Ad∗
h−1 Jθ (e,0) = Jθ (h,0) − 0 = Θ(h). �

Notice that Jθ (e,0) = 0, so this choice of momentum map agrees with the one of Proposition 2.3 if we take z0 = (e,0)

as base point.

Corollary 2.13. The group Γ0 < π1(G, e) defined in (2.8) coincides with the group Γ0 defined above in terms of Θ . Consequently, given
any subgroup Γ1 < π1(G, e), the action of G1 on T ∗G1 is Hamiltonian if and only if Γ1 < Γ0 .

Proof. Following the notation of Section 2.2, we can take z0 = (e,0) ∈ M = T ∗G , and qM = qG × id on M̃ = T ∗G̃ � G̃ × g∗ .
Then q−1

M (z0) = π1(G, e) × {0} and

Γ0 := (
Jθ

)−1
(0) ∩ (

π1(G, e) × {0}) = Θ−1(0) ∩ π1(G, e),

as required. The rest of the statement follows from Corollary 2.8. �
Notice that with Ĝ = G̃/Γ0, T ∗Ĝ is the universal covered space for the given symplectic action of G , and it depends on

the choice of θ .

Example 2.14. Let G = T = T
d = R

d/Z
d be a d-dimensional torus, so G̃ = R

d and π1(G, e) = Z
d , and g = R

d can be identified
with G̃ . For this case, H1

s (t, t
∗) is the space of all skew-symmetric linear maps t → t∗ . Let θ be such a map. Then Θ : G̃ → t∗

can be identified with θ , and the subgroup Γ0 < Z
d is Γ0 = ker(θ) ∩ Z

d . In particular, if θ : t → t∗ is invertible then Γ0 = 0
and the only Hamiltonian cover is the universal cover R

d . The same occurs if ker θ is “sufficiently irrational”. If, on the other
hand, ker θ contains some but not all points of the integer lattice, then Ĝ will be a cylinder; that is a product T

r × R
d−r for

some r with 1 � r � d − 1. The Hamiltonian holonomy is H = θ(Zd) ⊂ t∗ , which may or may not be closed in t∗ , depending
on the “irrationality” of ker θ . In all cases, the momentum map on the cover T ∗

R
d is given by J(u,μ) = μ + Θ(u).

Example 2.15. Consider the group G that is a central extension of R
2 by S1 with cocycle 1

2 ω. That is, as sets G = S1 × R
2,

with multiplication

(α, u)(β, v) =
(
α + β + 1

ω̄(u, v), u + v

)
, (2.16)
2
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where ω is the standard symplectic form on R
2, and 1

2 ω̄(u, v) = 1
2 ω(u, v) mod 1 ∈ S1 = R/Z. The universal cover of G is

the Heisenberg group H , with the same multiplication rule but with ω in place of ω̄. We identify g with R × R
2, and

correspondingly g∗ � R
∗ × (R2)∗ . One finds that

H1
s (g,g∗) �

{(
0 σ

−σ T 0

)∣∣∣∣σ ∈ L
(
R

2,R
∗)}.

Now fix any non-zero such σ and let θ be the corresponding element of H1(g,g∗). The integral of θ on H given by (2.14)
is,

Θ(α, u) =
(

σ(u)

−ασ − 1
2 σ(u)ιuω

)
.

Note that Θ does not descend to a function on G . The momentum map on T ∗H is given by

J
(

(α, u),

(
ψ

ν

))
= Ad∗

(α,u)−1

(
ψ

ν

)
+ Θ(α, u) =

(
ψ + σ(u)

ν − ασ − (ψ + 1
2 σ(u))ιuω

)
.

The Hamiltonian holonomy is therefore

H = J(Z, 0) =
(

0
Zσ

)
,

which is closed. The cylinder-valued momentum map on T ∗G takes values in C = g∗/H � R × R × S1.

We continue these examples at the end of the next section, where we consider symplectic reduction for such actions.

3. Symplectic reduction and Hamiltonian covers

Symplectic reduction is a well studied process that prescribes how to construct symplectic quotients out of the orbit
spaces associated to the symplectic symmetries of a given symplectic manifold. Even though it is known how to carry this
out for fully general symplectic actions [15], the implementation of this procedure is particularly convenient in the presence
of a standard momentum map, that is, when the Hamiltonian holonomy is trivial (this is the so-called symplectic or Meyer–
Marsden–Weinstein reduction [8,9]). Unlike the situation encountered in the general case with a non-trivial Hamiltonian
holonomy, the existence of a standard momentum map implies the existence of a unique canonical symplectic reduced
space. In the light of this remark the notion of Hamiltonian cover appears as an interesting and useful object for reduction.
More specifically, one may ask whether, given a symplectic action on a symplectic manifold with non-trivial holonomy
and with respect to which we want to reduce, we could lift the action to a Hamiltonian cover, perform reduction there
with respect to a standard momentum map, and then project down the resulting space. How would this compare with the
potentially complicated reduction in the original manifold? The main result in this section shows that indeed both processes
yield essentially the same result. Furthermore, we show that this projection down is a cover.

3.1. The cylinder valued momentum map

Recall the definition of the holonomy of a symplectic action of G on M given in Definition 2.6: namely, H = J(Γ ), where
as always, Γ = π1(M, z0). Using this definition, Eq. (2.3) can be expressed by saying that J is equivariant with respect to Γ

acting as deck transformations on M̃ and as translations by elements of H on g∗ . It follows that J descends to another map
with values in g∗/H. However, in general this is a difficult object to use as H is not necessarily a closed subgroup of g∗ . To
circumvent this, we proceed as follows.

Let �H be the closure of H in g∗ . Since �H is a closed subgroup of (g∗,+), the quotient C := g∗/ �H is a cylinder (that is, it
is isomorphic to the Abelian Lie group R

a × T
b for some a,b ∈ N). Let πC : g∗ → g∗/ �H be the projection. Define K : M → C

to be the map that makes the following diagram commutative:

(3.1)

In other words, K is defined by K(z) = πC (J(z̃)), where z̃ ∈ M̃ is any path with endpoint z. We will refer to K : M → g∗/ �H
as a cylinder valued momentum map associated to the symplectic G-action on (M,ω). This object was introduced in [3] using
the connection described in Section 2.4, where it is called the “moment réduit”.

Any other choice of Hamiltonian cover in place of M̃ would render the same Hamiltonian holonomy group H and the
same cylinder valued momentum map. If one chose a different base point z1 ∈ M in place of z0 the holonomy group would
remain the same, but the cylinder valued momentum map would differ from K by a constant in g∗/ �H.
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Elementary properties
The cylinder valued momentum map is a strict generalization of the standard (Kostant–Souriau) momentum map since

the G-action has a standard momentum map if and only if the holonomy group H is trivial. In such a case the cylinder
valued momentum map is a standard momentum map. The cylinder valued momentum map satisfies Noether’s Theorem;
that is, for any G-invariant function h ∈ C∞(M)G , the flow Ft of its associated Hamiltonian vector field Xh satisfies the
identity K ◦ Ft = K|Dom(Ft ) . Additionally, using diagram (3.1) and identifying T z M and T z̃ M̃ via T z̃qM , one has that for any
vz ∈ T z M , T zK(vz) = TμπC (ν), where μ = J(z̃) ∈ g∗ and ν = T z̃J(vz) ∈ g∗ .

Consequently, T zK(vz) = 0 is equivalent to T z̃J(vz) ∈ Lie( �H) ⊂ �H, or equivalently ivz ω ∈ Lie( �H), so that

ker T zK = [(
Lie( �H)

)◦ · z
]ω

.

Here Lie( �H) ⊂ g∗ is the Lie algebra of �H, and Lie( �H)◦ its annihilator in g, and the upper index ω denotes the ω-orthogonal
complement of the set in question. The notation k · m for any subspace k ⊂ g has the usual meaning: namely the vec-
tor subspace of T z M formed by evaluating all infinitesimal generators ηM at the point z ∈ M for all η ∈ k. Furthermore,
range(T zK) = TμπC ((gz)

◦) (the Bifurcation Lemma).

Equivariance properties of the cylinder valued momentum map
There is a G-action on g∗/ �H with respect to which the cylinder valued momentum map is G-equivariant. This action is

constructed by noticing first that since G is connected it follows (see [15]) that the Hamiltonian holonomy H is pointwise
fixed by the coadjoint action, that is, Ad∗

g−1 h = h, for any g ∈ G and any h ∈ H. Hence, the coadjoint action on g∗ descends

to a well defined action Ad∗ on g∗/ �H defined so that for any g ∈ G , Ad∗
g−1 ◦πC = πC ◦ Ad∗

g−1 . With this in mind, we define

σ̄K : G × M → g∗/ �H by

σ̄K(g, z) := K(g · z) − Ad∗
g−1 K(z).

Since M is connected by hypothesis, it can be shown that σ̄K does not depend on the point z ∈ M and hence it defines a map
σK : G → g∗/ �H which is a group valued one-cocycle: for any g,h ∈ G , it satisfies the equality σK(gh) = σK(g)+ Ad∗

g−1σK(h).

This guarantees that the map

Φ : G × g∗/ �H −→ g∗/ �H(
g,πC (μ)

) �−→ Ad∗
g−1

(
πC (μ)

) + σK(g),

defines a G-action on g∗/ �H with respect to which the cylinder valued momentum map K is G-equivariant; that is, for any
g ∈ G , z ∈ M , we have

K(g · z) = Φ
(

g,K(z)
)
.

We will refer to σK : G → g∗/ �H as the non-equivariance one-cocycle of the cylinder valued momentum map K : M → g∗/ �H
and to Φ as the affine G-action on g∗/ �H induced by σK . The infinitesimal generators of the affine G-action on g∗/ �H are
given by the expression

ξ
g∗/ �H

(
πC (μ)

) = −TμπC
(
Ψ (z)(ξ, ·)), (3.2)

for any ξ ∈ g, where K(z) = πC (μ), and Ψ : M → Z 2(g) is the Chu map defined in (2.1).
The non-equivariance cocycles σJ : G̃ → g∗ and σK : G → g∗/ �H are related by

πC ◦ σJ = σK ◦ qG . (3.3)

Proposition 3.1. If the action of G has an isotropic orbit then the cylinder valued momentum map for this action can be chosen
coadjoint equivariant.

Proof. This follows from Remark 2.4. Let z0 ∈ M be a point in the isotropic orbit and construct a universal cover M̃ of M by
taking homotopies of curves with a fixed endpoint starting at z0. Let J : M̃ → g∗ be the momentum map for the G̃-action on
M̃ introduced in Proposition 2.3. Since the G-orbit containing z0 is isotropic, the integrand in (2.4) is identically zero and
hence σJ = 0 (see Remark 2.4). Therefore by (3.3) the non-equivariance cocycle σK satisfies σK ◦ qG = πC ◦ σJ = 0. �
Remark 3.2. For any Hamiltonian cover pN : N → M of (M,ω) there exists a momentum map JN : N → g∗ for the G̃ (and also
G N ) action on N such that JN ◦ qN = J and σJN = σJ , where qN : M̃ → N is the G̃-equivariant cover such that pN ◦ qN = qM .
Consequently, there is a commutative diagram analogous to (3.1) with N and JN in place of M̃ and J.



602 J. Montaldi, J.-P. Ortega / Differential Geometry and its Applications 27 (2009) 589–604
3.2. Reductions

The following result establishes a crucial relationship between the deck transformation group of qM : M̃ → M , that is,
Γ := π1(M, z0), and the deck transformation group of p̂ : M̂ → M , that is H � Γ/Γ0.

Proposition 3.3. Let G be a connected Lie group acting symplectically on the symplectic manifold (M,ω) with Hamiltonian holonomy
H and let J : M̃ → M be the momentum map for the lifted action on (M̃, z̃0) defined in Proposition 2.3. Then, for any μ ∈ g∗

q−1
M

(
qM

(
J−1(μ)

)) = J−1(μ + H). (3.4)

More generally, for any Hamiltonian cover pN : (N, y0) → (M, z0) of (M, z0,ω), let JN : N → g∗ be the momentum map discussed in
Remark 3.2. Then, for any μ ∈ g∗

p−1
N

(
pN

(
J−1
N (μ)

)) = J−1
N (μ + H). (3.5)

Proof. Since Γ acts transitively on the fibres of qM , (3.4) is equivalent to

J−1(μ + H) = Γ · J−1(μ).

By Proposition 2.3, if J(z̃) = μ and γ ∈ Γ then J(γ · z̃) = μ+ ν for some ν ∈ H; that is, γ · z̃ ∈ J−1(μ+ H). Conversely, given
ν ∈ H there is a γ ∈ Γ for which J(γ · z̃) = μ + ν so proving the statement.

In order to prove (3.5) let qN : M̃ → N be the G̃-equivariant cover such that pN ◦ qN = qM . This equality and the sur-
jectivity of qN imply that for any set A ⊂ N , pN (A) = qM(q−1

N (A)). Now, the relations JN ◦ qN = J and (3.4) imply that
qM(q−1

N (J−1
N (μ + H))) = qM(q−1

N (J−1
N (μ))) and hence pN (J−1

N (μ + H)) = pN (J−1
N (μ)), as required. �

The main result of this section shows that when the Hamiltonian holonomy is closed reduction behaves well with respect
to the lifting of the action to any Hamiltonian cover. More explicitly, we show that in order to carry out reduction one can
either stay in the original manifold and use the cylinder valued momentum map or one can lift the action to a Hamiltonian
cover, perform ordinary symplectic (Marsden–Weinstein) reduction there and then project the resulting quotient. The two
strategies yield closely related results. Notice that if the Hamiltonian holonomy of the action H is not closed in g∗ , the
reduced spaces obtained via the cylinder valued momentum map are in general not symplectic but Poisson manifolds [15].

For the remainder of this section we assume the Hamiltonian holonomy H to be a closed subset of g∗ , and we write
g̃ ·μ for the modified coadjoint action of G ′ or G̃ on g∗ , and similarly g · [μ] for the inherited action on g∗/H. We also write
Γ ′ := image(az0 ), where az0 is defined in (1.5).

Let N be any Hamiltonian cover of M , and consider the diagram for N analogous to (3.1); of course particular cases of
interest are N = M̃ and N = M̂ . As H is closed, the image of J−1

N (μ + H) under pN is precisely K−1([μ]), by the definition
of K. Reduction of each defines a map

(pN )μ : Nμ −→ M[μ].

In the case that N = M̃ , we denote the projection by (qM)μ : M̃μ → M[μ] .
For each μ ∈ g∗ define

Γμ = Γ ∩ J−1(σμ(G̃)
)

where σμ : G̃ → g∗ is the 1-cocycle σμ = σJ + δμ and δμ(g̃) = δμ(g) = Ad∗
g−1μ−μ is the coboundary associated to μ. Note

that for all μ ∈ g∗ , Γ ′ < Γμ . Indeed, given g̃ ∈ π1(G, e), J(g̃ · z̃0) = σ(g̃) = σμ(g̃) as required; the last equality holds because
for g̃ ∈ π1(G, e), δμ(g̃) = 0.

Furthermore, we have that Γμ ⊃ Γ0 = J−1(0) ∩ Γ . Since both Γ ′ and Γ0 are normal subgroups of Γ (and hence of Γμ),
with Γ ′ being in the centre, it follows that, for all μ ∈ g∗ , the product

Γ ′Γ0 � Γμ. (3.6)

Theorem 3.4. Suppose the action of G on (M,ω) is free and proper, and the holonomy group H is closed. Then the map
(qM)μ : M̃μ → M[μ] is a cover, with transitive deck transformation group isomorphic to

Γμ,red := Γμ/Γ ′.

More generally, if N is a normal Hamiltonian cover of M then (pN )μ is a normal cover, with the deck transformation group

Γμ/(ΓNΓ ′).
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Proof. We approach this from the point of view of orbit reduction; that is we consider

M[μ] = K−1(G · [μ])/G ⊂ M/G, and M̃μ = J−1(G̃ · μ)/G̃ ⊂ M̃/G̃.

In both cases, the G or G̃ actions are the coadjoint action modified by the cocycle σK and σJ , respectively. It is well-known
that for proper actions, point and orbit reductions are equivalent (for a proof, see Theorem 6.4.1 of [13]), and the equivalence
respects the projections induced by M̃ → M .

Consider then the following commutative diagrams:

(3.7)

The maps in the left-hand diagram are just restrictions of those in the right-hand one.
First we claim that qM : J−1(G̃ · μ) → K−1(G · [μ]) is a cover whose group of covering transformations is Γμ defined

above. The result then follows from Proposition 1.9, but with Γ replaced by Γμ , since Γ ′ < Γμ .
To prove the claim, we know from Proposition 3.3 that q−1

M (K−1([μ])) = J−1(μ + H). Saturating by G̃ , we have

q−1
M

(
K−1(G · [μ])) = J−1(G̃ · (μ + H)

)
,

and this is a cover with group Γ (that of the cover M̃ → M).
Now let z ∈ M be such that K(z) = [μ] (so in particular z ∈ K−1(G · [μ])), and let Z = q−1

m (z) be the fibre over z. If z̃ ∈ Z
then Z = Γ · z̃, and J(Γ · z̃) = μ + H, so we choose z̃ ∈ Z such that J(z̃) = μ.

We now show that Z ∩ J−1(G̃ · μ) = Γμ · z̃. To this end, let z̃1 ∈ Z . Then ∃γ ∈ Γ such that z̃1 = γ · z̃, so

J(z̃1) = J(z̃) + J(γ ) = μ + J(γ ).

Then μ + J(γ ) ∈ G̃ · μ if and only if ∃g̃ ∈ G̃ such that

μ + J(γ ) = g̃ · μ = Ad∗
g−1μ + σ(g̃),

so that J(γ ) = δμ(g̃) + σ(g̃) = σμ(g̃); that is, γ ∈ Γμ , as required.
The proof of the second part of the theorem, with a general normal cover N , is identical, given that N = M̃/ΓN . �

Corollary 3.5. The cover M̂μ → M[μ] has cover transformation group Γμ/Γ0Γ
′ . This is trivial if J(Γ ′) = H ∩σJ(G̃), in which case the

cover is a symplectomorphism.

Remark 3.6. If the Hamiltonian holonomy is not closed but the action is still free and proper, the reduced spaces M[μ] and
M̃μ are Poisson manifolds [15], and the natural map pμ : M̃μ → M[μ] is a surjective Poisson submersion.

3.3. Example

We continue the example of G acting on T ∗G with symplectic form modified by a cocycle θ , as discussed in Section 2.5.
In this case, Γ = π1(G, e) and az0 : π1(G, e) → Γ is the identity, so Γ ′ = Γ and it follows that Γμ = Γ for all μ ∈ g∗ .

Write M = T ∗G and M̃ = T ∗G̃ and assume that the Hamiltonian holonomy H = Θ(Γ ) ⊂ g∗ is closed. It follows from
Theorem 3.4 that the projection M̃μ → M[μ] is a cover with trivial (and transitive) deck transformation group, so is in fact
a symplectomorphism. Indeed the same is true for any intermediate cover G1 for which the action on T ∗G1 is Hamiltonian.
In particular, we find that for the left action of G on T ∗G with modified symplectic form, Hamiltonian reduction for a
Hamiltonian lift and symplectic reduction via the cylinder valued momentum map yield the same result.

The well-known statement that the symplectic reduced spaces for the canonical left action of G on T ∗G coincide with
the coadjoint orbits [8] remains true when both the symplectic structure and the action on g∗ are modified by a cocycle Θ

(see for example [13]). The statement above shows that this remains true for cylinder valued momentum maps, where the
orbits are those of G̃ in g∗ rather than those of G in C .

Example 3.7. Returning to Example 2.14 on the torus, given θ ∈ H1
s (t, t

∗) the orbits of the modified coadjoint action of R
d

are the affine subspaces parallel to image(θ) ⊂ t∗ , and so the reduced spaces for this action are symplectomorphic to these
affine subspaces. If θ is chosen so that the holonomy is closed (e.g., d is even and θ is invertible) then the same is true of
the reduced spaces for the action of T

d on T ∗
T

d via the cylinder valued momentum map.
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Example 3.8. Returning now to Example 2.15, the symplectic reduced spaces for the Heisenberg group with the symplectic
structure Ωcanon + π∗BΣ on T ∗H are the orbits for the modified coadjoint action. Calculations show these to be the level
sets of the Casimir function f (ψ,ν) = 1

2 ψ2 − ω−1(σ , ν), which are parabolic cylinders. Since the Hamiltonian holonomy H
is closed, it follows from the results above that the same is true for reduction via the cylinder valued momentum map on
T ∗G .
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