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S u m m a r y  

In thin study we investigated the hypothesis that cartilage from defined regions of ovme stifle joints, which were 
subjected to differing mechamcal stresses, contained phenotyplcally distinct chondrocyte populations. Chondrocyte 
phenotypes were identified by the relative bmsynthes~s of the proteoglycans (PGs) aggrecan, blglycan and decorin. 
Articular cartilage (AC) from adult and neonatal ovme stifle joints were examined. Cells were cultured as both 
full-depth AC explants and in alginate beads after their isolation from the AC matmx. When chondrocytes from the 
varmus topographical regmns of adult ovine knee joints were cultured as explants they demonstrated a consistent 
difference with regard to the metabolism of aggrecan and decorm. S~gnificantly, this topographically-dependent 
phenotypic expression of PGs was preserved when the chondrocytes were cultured m algmate beads. In adult joints, 
chondrocytes from the central region of the tibial plateau not covered by the memscus, which ~s subjected to high 
mechamcal loads m-v1vo, synthesized less aggrecan but more decorm than cells from regmns covered by the memscus. 
When chondrocytes from identical AC regmns of neonatal ovine joints were cultured as explants, no topographical 
difference m aggrecan nor decorm metabohsm could be detected The results of this study, m assocmtmn with the 
existing literature, lead us to propose that post-natal mechamcal loading of AC could select for chondrocvte clones 
or induce a lasting modulation of chondrocyte phenotyplc expression in different joint regions. Such cellular changes 
could result m the synthesis of PG populatmns that confer properties to AC most stated to resist the variable 
mechamcal stresses m the different joint regmns. This study serves to emphasize the Importance of using cartilage 
fi'om Identical joint areas when examining PG metabohsm by chondrocytes. Further investlgatmn into the relatmnshlp 
between mechamcal loading, regmnal chondrocyte phenotype selection and the response of these cells to anabolic and 
catabolic factors may provide Important mmghts into the focal nature of AC degeneratmn m osteoarthmtls. 
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I n t r o d u c t i o n  

ARTFCULAR car t i lage  (AC) covers  the ends of  bones 
m synovia l  jo ints  and provides  a shear  r e s i s t an t  
and res i l ient  we igh t -bear ing  surface  essent ia l  for 
normal  jo in t  funct ion.  The t issue consis ts  pr imar-  
ily of  hydra t ed  p ro t eog lycans  (PGs) en t r apped  
wi th in  a ne twork  of type II  co l lagen  fibres. 
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A l t h o u g h  the  large  a g g r e g a t i n g  chondro i t in /ke r -  
a t a n  sulfa te  PG (aggrecan)  is the  p r e d o m i n a n t  
species m terms of  mass,  AC also con ta ins  a 
n u m b e r  of  small  PGs inc lud ing  two chondro i t i n /  
d e r m a t a n  sulfa te  PGs, b ig lycan  (DS-PG I) and  
decor in  (DS-PG II) and  a k e r a t a n  sulfa te  PG 
f ibromodul in  [1-3]. These  th ree  small  PGs are  
members  of  a family  of  ins te rs t i t ia l  molecules  wi th  
leuc ine  r ich  r epea t  sequences  in the i r  core  
proteins .  The synthes is  of  type  II  co l lagen  and  
a g g r e c a n  by chond rocy t e s  is cons idered  to be a 
m a r k e r  of  the  car t i lage-specif ic  cel lular  p h e n o t y p e  
[4, 5]. A change  from synthes is  of  type II  to  types  
I and  I I I  co l lagen  has  been used as a definit ive 
m a r k e r  of  c h o n d r o c y t e  dedi f fe ren t ia t ion  [6]. An  
a l t e r a t i on  in PG metabol ism,  cha rac t e r i zed  by 
decreased  synthes is  of a g g r e c a n  and  inc reased  
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synthesis of low molecular weight DS-PGs, has also 
been demonstrated with chondrocyte dedifferentia- 
tion induced by prolonged monolayer culture [4, 7] 
and in osteoarthritis [8, 9]. 

Normal AC displays biochemical heterogeneity 
with regard to both depth from the surface (zone) 
and topographical location within the joint 
[10-13]. The aggrecan content and proportion of 
keratan sulfate chains attached to the aggrecan 
subunits is increased in deep zone cartilage 
[14-16], while superficial zone tissue contains a 
higher proportion of small non-aggregating DS- 
PGs [17-19]. When full-depth cartilage from 
different joint regions was evaluated, it was 
found that cartilage from joint regions subjected 
to high weight-bearing stress contained an elev- 
ated PG content compared with tissue from 
regions experiencing lesser stress [13]. Further- 
more, AC from joint regions subjected to high- 
contact stress contained elevated levels of 
DS-PGs compared with other joint locations [20]. 
The metabolism of PGs by chondrocytes has also 
been shown to vary with zone and weight-bear- 
mg region. Superficial chondrocytes incorporated 
less 35SO~- into PGs, synthesized less aggrecan 
and keratan sulfate [21-23] but more DS-PGs 
[17,18] and hyaluronic acid (HA) [24] than 
deeper-zone cells. Chondrocytes from the full- 
depth of human femoral head AC regions ex- 
posed to high weight-bearing stress incorporated 
less ~5SO~ into PGs [11, 12] relative to joint 
areas subjected to lesser compressive loads. We 
have previously demonstrated in sheep that 
full-depth cartilage from regions of the tlbial 
plateau not covered by the meniscus and associ- 
ated with high contact stresses, exhibited not 
only reduced total synthes~s of PGs, but elevated 
production of DS-PGs in particular decorin 
[25, 26]. 

The depth-related variations in PG metabolism 
in AC have been reported to be associated with 
phenotypically distinct chondrocyte populations 
[10]. Maintenance of this zonal PG expression by 
cells cultured in short-term monolayer or a three 
dimensional matrix suggested that the cartilage 
zones may contain distinct clones or populations of 
chondrocytes [22,23]. However, depth related 
differences were progressively lost with time in 
culture [16, 21, 23] indicating that the distinct 
zonal chondrocyte phenotype may be modulated by 
different environmental conditions. It has recently 
been demonstrated that AC from young calves 
(8-12 weeks of age) does not show any zonal 
variation with regard to PG or HA synthesis when 
compared with adult bovine tissue [27]. This 
suggests that differentiation of chondrocytes with 

regard to depth occurs during maturation and is 
not inherent. The variation in PG metabohsm by 
the full-depth chondrocyte populations from differ- 
ent joint locations, in contrast to cells from 
different depths, has been attributed to differences 
in the matrix, most notably the fixed charge 
density or PG content, surrounding the chondro- 
cytes [11, 12]. 

In the present study, we investigated whether 
the patterns of PG metabolism observed in the 
different weight-bearing regions of ovine joints 
may be related to the presence of phenotypically 
distinct populations of chondrocytes rather than 
differences in the composition of the surrounding 
matrix. We identified the chondrocyte populations 
by their proportional synthesis of aggrecan 
biglycan and decorin using both cartilage explants 
from distinct joint regions of adult sheep and 
chondrocytes isolated from these same joint 
regions and cultured in alginate beads. These data 
were compared with the results obtained using 
explant cultures of cartilage from the same 
topographical joint regions of neonatal ammals 
that had not borne weight. 

Mater ia ls  and me thods  

S O U R C E  O F  R E A G E N T S  

Ham's F12 culture media was from Cytosystems, 
Castle Hill, NSW, Australia. Heat inactivated fetal 
bovine serum (FBS) was from Commonwealth 
Serum Laboratories, Parkvflle, Victoria, Aus- 
tralia. Tissue culture plates were from Costar, 
Cambridge, MA, U.S.A. Radio-isotopes were from 
Du Pont Ltd, North Ryde, NSW, Australia. 
Dimethyl-methylene blue, bovine tracheal chon- 
droitin sulfate, papain, calf thymus DNA, Hoechst 
33258 dye, bacterial collagenase and low-viscosity 
sodium alginate were from Sigma-Aldrich, Castle 
Hill, NSW, Australia. Octyl-Sepharose CL-4B, 
Sephacryl $1000, Sephadex G-25 columns and high 
molecular weight hyaluronic acid (Hylartil tspl~j, 
HA) were from Pharmacia, North Ryde, NSW, 
Australia. DEAE-Trysacryl was from IBF Biotech- 
nics, France. Pronase was from Boehringer 
Mannheim, Castle Hill, NSW, Australia. Sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) gels were from Novex Australia, 
Terry Hills, NSW. The PhosphorImager I~pr21 and 
associated computer software were from Molecular 
Dynamics, Balwyn North, Victoria, Australia. 
Protease free chondroitinase ABC was from ICN 
Seven Hills, NSW, Australia. 
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CARTILAGE EXPLANT CULTURE 

Cartilage was obtained within 6 h of death from 
the eight regions (Fig. 1) of both knee (stifle) joints 
of four skeletally mature  (2-year-old) and five 
neonatal  (_+ 24 h of birth) purebred Merino sheep. 
Stifle joints were opened under sterile conditions 
and AC explants (3 mm diameter, full thickness) 
were collected from each joint using a rotary 
trephine. Four explants were obtained from each 
region of adult  joints and two from the same 
regions of neonatal  joints. The explants were 
blotted dry and ini t iated in culture in individual 
wells of a 48-well plate. Each well contained 0.5 ml 
Ham's F12 medium pH 7.2, supplemented with 
76 mM NaHCO3, 20 mM HEPES buffer, 10% FBS 
and 50 pg/ml gentamicin sulfate (Ham's/FBS). The 
explants were cultured at  37°C in an atmosphere of 
5% CO2 in air with 98% humidity for 72 h. The 
media was changed every 24h and was sup- 
plemented with 5 pCi/ml asSO4H2 for the final 48 h 
of culture. Media from each explant was collected 
and pooled separately over the 72-h culture period 
and stored at -20°C unti l  analyzed. 
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FIG. 1. The cartilage regions sampled for analysis. White 
circles represent 3 mm diameter full-depth explants 
collected using a rotary trephine. For algmate bead 
cultures all the cartilage from the different regions was 
removed using a scalpel blade (shaded areas) and the 
cells isolated by enzymatic digestion (see Materials and 
methods). 

ALGINATE BEAD CULTURE 

The AC from the same eight joint regions 
described for explant culture was collected from 
both stifle joints of four adult  sheep. Full-depth 
regional cartilage (Fig. 1) was obtained using a 
scalpel blade and placed into separate sterile 15 ml 
tubes containing 10 ml Ham's/FBS. Chondrocytes 
were isolated by an init ial  3 h digestion in 0.1% 
(w/v) pronase followed by a 14-h digestion in 0.04% 
(w/v) collagenase as described previously [28]. All 
digestions were performed at 37°C in Ham's/FBS. 
Cells were collected by centrifugation, washed 
twice in Ham's/FBS, and an aliquot counted on a 
hemocytometer  after vital staining with t rypan 
blue. Cell pellets were mixed with sodium-alginate 
solution [2% (w/v) Na-alginate in 0.15 M NaC1] to 
give a final concentrat ion of 3x10 ~ cells/ml. 
Alginate beads were made by extruding the cell 
suspension dropwlse from a 21 gauge needle into 
100mM CaC12 solution. This resulted in 100 
beads/ml with an average cell density of 30 000 
cells/bead. Beads were allowed to cure in the CaC12 
for 10 min before washing once with Ham's/FBS. 
Beads from each region of each joint  were cul tured 
separately in 25 ml of Ham's/FBS for 24 h. Four 10 
bead aliquots of all samples were then cul tured in 
individual wells of 48-well plates in Ham's/FBS 
with 5 pCi/ml 35SO4H2 and processed exactly as 
described for explants. The remaining beads from 
each region were maintained in bulk cultures for 
3 weeks with media changes every 2-3 days. 
Aliquots of these beads were incubated for 48 h 
with 5 ~Ci/ml ~5SO4H2 on days 5, 12 and 19. 

PG CONTENT, SYNTHESIS AND RELEASE INTO 

CULTURE MEDIA 

PG synthesis in explants and beads was 
determined by measuring the incorporat ion of 
35SO4 ~- into macromolecules. After papain digestion 
of explants or beads and their  respective media, 
unincorporated 35SO~- was removed by BaC12 
precipitation [29]. Newly synthesized PGs were 
then  quant i ta ted by liquid scintil lation photom- 
etry of an aliquot of the sample. Incorporat ion of 
35SO~- into PGs in both the matrix and culture 
media was expressed per pg DNA present in the 
explant/bead, measured fluorometrically with 
Hoechst  33258 dye using calf thymus DNA as a 
s tandard [30]. Endogenous PGs in the matrix and 
culture media were measured as sulfate gly- 
cosaminoglycan (GAG) using the dimethyl-methyl- 
ene blue (DMB) assay [31] with bovine t racheal  
condroit in sulfate as a standard. This la t ter  
analysis was not possible in alginate bead cultures 
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because alginate interferes with the assay. Total 
sulfated-GAG in the explant matrix and released 
into the culture media were also expressed relative 
to the DNA content  of the sample. 

S I Z E - E X C L U S I O N  CHROMATOGRAPHY 

Newly synthesized and endogenous PGs were 
extracted from the matrix of explants and alginate 
beads with 10 volumes of 4 M GuHC1, 0.15 M Na 
Acetate pH 6.3, for 48 h at 4°C m-~the presence of 
the proteinase inhibitors EDTA (25 mM), 6 amino- 
hexanolc acid (25 mM), N-ethyl malemide (10 mM) 
and benzamidine hydrochloride (5 raM). Aliquots of 
extracts were applied to Sephadex G-25 columns 
equihbrated with 0.5 M sodium acetate, pH 6.8 and 
the void volume containing the PGs collected. 
These samples were then subjected to size 
exclusion chromatography in the presence of 
excess HA (0.1mg/ml) on a Sephacryl $1000 
column (60×0.8 cm) equilibrated with the same 
buffer. The column was eluted at 20 ml/h and 1 mt 
fractions collected and monitored for radioactivi ty 
(DPM) in both explant and alginate bead cultures 
and sulfated PGs (DMB positive material) in 
explant cultures. Culture media samples were 
precipitated with three volumes of ethanol at 4°C 
for 12 h. The precipitates were washed twice with 
75% ethanol and redlssolved in 6 M Urea, 0.15 m 
NaC12, 0.02 M Tris pH 7.4. These solutions were 
applied to l ml columns of DEAE Trysacryl 
eqmlibrated in the same buffer, washed with three 
volumes of 0.15 M NaC12 and the PGs eluted with 
three volumes of 4 M GuHC1. Aliquots of the PG 
containing fractions were then desalted and 
chromatographed exactly as described for the 
extracts. Recovery of 35S-PGs from ethanol precipi- 
tat ion and anion-exchange chromatography 
ranged from 95-98% and 93-98% respectively. The 
void volume of the Sephacryl S-]000 column was 
determined using aggregated bovine nasal carti- 
lage AI-D1-PGs and the total  volume with 35SO~-. 

SDS-PAGE AND W E S T E R N  BLOTTING 

Octyl-Sepharose chromatography of the carti- 
lage extracts was performed to part ial ly separate 
the hydrophobic DS-PGs from aggrecan [32]. We 
have previously shown tha t  all of the DS-PGs m 
cartilage extracts can be collected by this 
technique al though a small proportion of aggrecan 
also binds to the octyl-Sepharose [26]. The 
cartilage extracts were diluted 1:1 with 0.15M 
sodium acetate pH 6.3 to give a final composition 
of 2 M GuHC1, 0.15 M sodium acetate pH 6.3. These 
samples were chromatographed on i ml columns of 

octyt-Sepharose CL-4B equilibrated in the same 2 M 
GuHC1 buffer. The columns were washed with 
three volumes of aforementioned star t ing buffer to 
remove nonbound material,  and the e luant  then 
changed to 6M GuHC1, 0.15M sodmm acetate 
pH 6.3 (three volumes) to remove the octyl-bound 
PGs. The radioact ivi ty in the bound and nonbound 
PG fractmns was measured by liqmd scinti l lat ion 
photometry. In preliminary studies recovery of 
3~S-PGs from octyl-Sepharose chromatography 
ranged from 98-100%. The octyl-bound PG samples 
were precipitated with three volumes of ethanol 
with overnight shaking at 4°C. The precipitates 
were collected by centr i fugat ion washed twice 
with 75% ethanol,  redissolved in distilled water  
and freeze dried. 

Aliquots of freeze dried ocytl-bound PGs were 
dissolved in sample buffer (1% SDS, 1% ~-mercap- 
toethanol,  0.0006% bromophenol blue, 16% glycer- 
ine, 80mM Tris, pH 6.8) at  a concentrat ion of 
2 mg/ml and heated to 100°C for 5 min. Samples 
were electrophoresed at  120 V for 2 h on 1.5 mm, 
15-well 4-12% gradient  gels, as previously de- 
scribed [2, 33]. The gels were fixed in 40% 
methanol,  8% acetic acid and stained with 0.0015% 
Coomassie R250, 0.001% alcian blue overnight (no 
de-staining required). Gels were preserved by 
washing in 40% methanol,  5% glycerol for 2 h and 
dried between cellophane. Samples of freeze dried 
octyl-bound PGs were also dissolved in 100 mM Tris 
HC1, 0.03 M Na acetate pH 8.0 and digested with 
chondroit inase ABC (0.01U/pg) for 12h before 
electrophoresis, as described above. The dlstri- 
bution of ~sS-PGs m dried SDS-PAGE gels was 
determined by phosphor screen autoradiography 
using a PhosphorImager* which has a l inear 
response over a range of five orders of magnitude. 
The proportion of loaded 35SO~- in each electro- 
phoretlc band was determined by integrat ion of 
these bands using the Image Quant  ''~ software 
supplied with this equipment. 

Octyl-Sepharose-bound PGs were isolated from 
the carti lage remaining m adult  and neonatal  
ovine joints after explant collection exactly as 
described above. Aliquots of these PGs were 
digested for 12h with chondroit inase ABC. 
Duplicate aliquots of intact  and chondroit inase 
digested PGs were electrophoretically separated, 
as described above, and transferred to a nitrocellu- 
lose membrane. Western blotting was performed 
essentially as described by Johnstone et al. (1993) 
[34] except tha t  0.1% (v/v) Tween 20 was used to 
block membranes ra ther  than  bovine serum 
albumin [35]. Antisera LF-96 and LF-94 to 
synthetic peptides corresponding to amino acids 
11~4 and 5-17 of bovine biglycan and decorin, 
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respect ively (generously provided by Dr Lar ry  
Fisher, NIH, Bethesda, MD, U.S.A.) were used at 
1/100 dilutmn. 

STATISTICAL ANALYSIS 

Data were normalized by square root  or 
logari thmic t ransformation.  An analysis of vari- 
ance (ANOVA) of t ransformed data was used to 
evaluate  the associat ion between joint  region and 
PG content,  DNA content ,  PG synthesis, and 
release of PGs into the cul ture  media. When the F 
statist ic was significant a Fisher 's  analysis of least 
significant difference was used to test for specific 
rater-regional  differences. In order  to simplify the 
presenta t ion  of results, and because the var ia t ion 
in loading is best defined for the covered and 
uncovered tibial plateau, only specific inter- 
regional  differences between these regions are 
given. Differences were considered s~gnificant 
when P _< 0.05. 

R e s u l t s  

CARTILAGE DNA 

Total  micrograms of DNA/explant  (3 mm diam- 
eter, full-thickness) from all regions of adult  and 
neonata l  joints was measured. Adult  car t i lage 
contained 0.97 ± 0.08-1.6 + 0.27 ~g DNA/explant  
compared with 21.4 + 0.6-26.5 ± 2.1 ~g DNA/ex- 
plant  in neonata l  cartilage. There was no 
associat ion between the amount  of DNA/explant  
and joint  region in adult  (P--0.6) or neonata l  
tissue (P=0.2).  Neonata l  cart i lage contained 
significantly more DNA/explant  than  adult  carti- 
lage m all regions (P < 0.0001). Because DNA was 
constant  between regions all subsequent  par- 
ameters were expressed per microgram DNA. 

RESIDENT PG FROM EXPLANT CULTURES OF ADULT 
AND NEONATAL CARTILAGE 

The concent ra t ion  of PG (measured as sulfated 
CAG) in the cart i lage matr ix of different weight- 
bearing regions of adul t  and neonata l  AC and the 
extent  of release of this material  into the cul ture  
media is shown m Fig. 2(a) and (b), respectively. 
There was a significant regional  var ia t ion in the 
PG content  of adult  explants (P < 0.0001) with the 
two regions of the tibial plateau uncovered by the 
meniscus (TUM, TUL) containing significantly 
more PG/pg DNA than  their  covered counterpar ts  
(TCM, TCL) (P=0.006 for TUM vs TCM, and 
P <  0.0001 for TUL vs TCL). There was also a 
significant var ia t ion  in release of PGs into the 
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Fro. 2 A compamson of the resident PGs (~g GAG/~tg 
DNA mean _+ SEM) from the e~ght different weight-bear- 
mg regions (see Fig 1 for abbreviations) of adult (N--8, 
black bars) and neonatal (N= 10; striped bars) joints. (a) 
The PG content of cartilage explant matmx (b) PGs 
released into culture media from explants • =Adult 
explants; [] -- neonatal explants. 

cul ture  media by adult  explants (P < 0.0001). The 
uncovered tibial regions released more PGs into 
the medm than their  covered counterpar t s  
(P < 0.0001 for both TUM vs TCM, and TUL vs 
TCL). In contrast ,  the AC of neonata l  joints  
showed no regional  difference in ei ther  PG conten t  
or release into cul ture media. The matr ix  PG 
content  and release into media were both 
significantly lower in lambs than adults 
(P < 0.0001). 

PG SYNTHESIS AND RELEASE INTO CULTURE MEDIA 

The extent  of incorpora t ion  of 35S-PGs (DPM/~g 
DNA) into the matr ix and their  release into the 
cul ture  media by adult  car t i lage explants, adul t  
chondrocytes  in alginate beads and neona ta l  
explants are shown in Fig. 3(a) and (b). There  was 
a significant regional  var ia t ion  in the incorpor- 
at ion of 35S-PGs into the matr ix  by adult  AC 
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explants (P=0.006). The tibial cartilages not 
covered by the menisci incorporated less 35S-PGs 
than those beneath this tissue (P= 0.001 for both 
TUM vs TCM and TUL vs TCL). When adult  
chondrocytes were cultured in alginate beads the 
overall synthetic activity was lower than  in 
exptants, but the topographical variat ion in 35SO42- 
incorporation into the matrix observed for ex- 
plants was preserved (P= 0.03). The total  35S-PGs 
deposited into the matrix of cultured neonatal  
cartilage was less than  for the adult  carti lage 
explants. Most notable was the finding tha t  there 
was no difference in ~sS-PG incorporation into 
cartilage from the different joint regions (P=0.9). 
There was no regional difference in the release of 
35S-PGs into the culture media by either adult  
explants, alginate beads or neonatal  explants, 
however, there were differences in the ~S-PG 
release between the three, cultur~ ~y~tem~. Chum 
drocytes m alginate beads released si~nificantlv 
more ~-~S-PGs into media, w-bale cxplants of 
neonatal  carti lage released significantly less 
35S-PGs than  the corresponding adult  explants 
[Fig. 3(b)]. 

The regional pat tern of total  35SO42- incorpor- 
atlon into PGs was maintained by the chondro- 
cytes m alginate beads for the 3-week durat ion of 
the study a l though all regions showed a decline 
over this time (data not shown). The DNA content,  
used as an index of cell number, doubled in beads 
from all regions by day 5 of culture and remained 
constant  thereafter  (data not shown). Fur ther  
examination of the PGs synthesized by the 
chondrocytes in alginate beads was only under- 
taken for the day 3 bead cultures. 

ANALYSIS OF 35S-PGS 

Representative size-exclusion chromatograms 
(under associative conditions in the presence of 
excess HA) of 35S-PGs extracted from the car t i lage-  
bead matrix of the lateral tibial carti lage covered 
by the meniscus (TCL) and uncovered by the 
meniscus (TUL) are shown in Fig. 4(a) and (b), 
respectively. Size exclusion chromatograms of 
35S-PGs released into the culture media from the 
carti lage/bead cultures of TCL and TUL are shown 
in Fig. 4(c) and (d), respectively. The 35S-PGs 
extracted from the matr ix of adult  and neonatal  
explants and the alginate beads separated into two 
pools on Sephacryl $1000 chromatography,  one 
excluded from the column and the other with Kay 
~0.8 [Fig. 4(a) and (b), pool 1 and 2]. The majori ty 
(50-70%) of the PGs extracted from the matr ix  in 
all three culture systems formed high molecular 
weight aggregates with HA (pool 1, Kay 0-0.2). In 

extracts of adult  carti lage explants there was an 
increased proportion of pool 2 PGs in uncovered 
tibial carti lage compared with other regions. In 
the alginate beads and neonatal  explants the 
proportion of PGs in pool 2 was decreased in all 
regions compared with adult  explants. Size 
exclusion chromatograms of the ~SS-media-PGs 
revealed two pools with similar distribution to the 
extracted PGs [Fig. 4(c) and (d)]. Pool 2 fractions 
were always better resolved for media from the 
alginate beads cultures than  explant media. There 
was no major difference between regions in any 
culture system with regard to the chromatographic 
profile of the ~SS-media-PGs. The distribution of 
DMB-positive PGs from extracts of adult  and 
neonatal  explants followed an identical pat tern to 
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FIG. 3. A comparison of 35SO42- incorporation into PGs 
(DPM/pg DNA mean _+ SEM) o v e r  48 h of culture from 
the eight weight-bearing regions of joints (see Fig. 1 for 
abbreviations): adult explants (N= 8; black bars), adult 
chondrocytes m alginate beads (N= 8; striped bars) and 
neonatal explants (N=10; stippled bars) (a) 35SO42- 
incorporated into PGs retained in the matrix. (b) s~S-PGs 
released into the culture media. [] =Adult explants; 
[] = alginate beads; [] = neonatal explants 
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FIG 4 Associative size exclusion chromatograms of 3~S-PGs (m the presence of 0.1 mg/ml HA) from the lateral covered 
tlblal cartilage [TCL; (a) and (c)] and lateral uncovered tibial cartilage [TUL; (b) and (d)] of adult cartilage explants, 
adult chondrocytes in alginate beads and neonatal cartilage explants (a) and (b) 85S-PGs retained m the matrix. (c) 
and (d) 3~S-PGs released into the culture media. • = Adult explants; • = neonatal explants; • = algmate beads. 

the 35S-PGs (data not  shown). The majority of the 
DMB-positive PGs released into the culture media 
were distributed as a broad peak with Kay ~0.5 
(data not shown) in contrast  to the 35S-media-PG 
dmtribution shown in Fig. 4(c) and (d). 

Representative examples of SDS-PAGE distri- 
bution of 35S-PGs extracted from the matrix of 
uncovered lateral tibial cartilage (TUL) of adult 
explants, alginate beads and neonatal  explants are 
shown in Fig. 5. The 35S-octyl-bound-PGs extracted 
from adult  explants separated into three broad but  
distinct bands (lane 1). The slowest migrating band 
failed to enter the resolving gel consistent with its 
assignment as aggrecan monomer [33], the second 
band had an MW ~250kDa  and the fastest 
migrating broad band had an MW ~116kDa.  A 
s~milar pat tern of PG separation was evident in the 
octyl-bound-extract of alginate beads (lane 2) while 

in neonatal  cartilage the PGs separated into the 
slow and intermediate migrating bands only (lane 
4). In all three culture systems, the radioactivi ty in 
the intermediate and fast migrating PG bands was 
mostly eliminated with prior chondroit inase ABC 
digestion (lane 5) indicating that  the 35SO~- in 
these bands was incorporated into chondroitin/  
dermatan sulfate rather  than keratan sulfate. 
After chondroitinase digestion a core protein (MW 
~45 kDa), which appeared as a doublet on the 
original gel, became apparent with Coomassie 
staining [Fig. 5(b) lane 2]. PGs that  did not bind to 
octyl-Sepharose contained only the slowest ml- 
grating band, which failed to enter the resolving 
gel, confirming the complete removal of the faster 
migrating species by octyl-Sepharose chromatog- 
raphy [Fig. 5(a), lane 6]. 

The intermediate and fast migrating ssS-PG 
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bands  were  ass igned  as b ig lycan  and  decor in ,  
respect ively ,  based  on t he i r  i n t e r a c t i o n  wi th  
oc ty l -Sepharose ,  t he i r  m i g r a t i o n  on SDS-PAGE,  
the  loss of  r ad io -ac t iv i ty  a f t e r  c h o n d r o i t i n a s e  ABC 
diges tmn and  the  a p p e a r a n c e  of  a core  p ro t e in  
wi th  a M W  of ~45  kDa  a f t e r  c h o n d r o i t m a s e  ABC 
diges t ion [2, 32, 33]. The  resu l t s  of  Wes t e rn  blot- 
t ing  us ing  decor in-  and  biglycan-specif ic  an t i s e r a  
conf i rmed the  iden t i ty  of  these  two PGs (Fig. 6). 
Ant ibodies  to b ig lycan  c ross - reac ted  wi th  PGs in 
bo th  the  i n t e r m e d i a t e  and  fast  m ig ra t i ng  bands  
(Fig. 6, l ane  2), however ,  chondr6 i t i na se  d iges t ion  
before  e l ec t rophores i s  e l imina ted  on ly  the  im- 
m u n o r e a c t i v i t y  in the  i n t e r m e d i a t e  band  (Fig. 6, 
lane 5). This  i nd ica t ed  t h a t  the  b ig lycan  immunore-  
ac t iv i ty  in the  fast  m ig ra t i ng  band  was no t  
assoc ia ted  wi th  PGs c o n t a i n i n g  chondro i t in /de r -  
m a t a n  su l fa te  GAG chains• Whi le  no t  i nves t iga t ed  
fur ther ,  th is  b ig lycan  i m m u n o r e a c t i v e  ma te r i a l  
may  r ep re sen t  cross r e a c t i v i t y  of  the  an t i body  wi th  
the  homologous  k e r a t a n  su l fa te  con t a in ing  small  
PG, f ib romoduhn .  I m m u n o r e a c t i v i t y  wi th  anti-  
decor in  was conf ined  to the  fast  m ig ra t i ng  band  of  
in t ac t  PGs (Fig. 6, l ane  4) and  aga in  was e h m m a t e d  
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FIa 5. (a) PhosphorImage of representative samples 
demonstrating the 412% SDS-PAGE distribution of 
ssS-PGs extracted from the matrix of lateral uncovered 
tibial cartilage cultures (lanes 1 5 are PGs that bound 
to octyl-Sepharose and lane 6 is PGs that did not bind 
to octyl-Sepharose): lane (1) adult explants, lane (2) adult 
chondrocytes in algmate beads, lane (3) neonatal 
explants, lane (4) 14C-labeled protein standards (200, 97.4, 
69, 46 and 30 kDa from top to bottom, respectively), lane 
(5) adult explant PGs digested with chondroltinase ABC 
before electrophoresis, lane (6) adult explants• (b) 
Coomassm stained gel of adult explant PGs as m 5(a) 
lane 1: (1) without and (2) after chondroltinase ABC 
d~gestion. D~gestion with chondroitmase ABC produced 
a protein band with a MW ~45-50 kDa (open arrow). 
Sohd arrows indicate protein bands present in the 
chondroitinase ABC preparation. 
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FIG 6. Western blot of octyl-Sepharose bound PGs. 
Lanes 1-6=adul t  sheep and lanes 7 and 8=neonata l  
sheep. Lanes 1 and 3 are pre-stamed globular protein 
standards (250, 98, 64, 50, 36, 16 and 6 kDa from top to 
bottom, respectively). Lanes 2, 5 and 7 blotted with 
antibody LF-96 against a segment of bovine biglyean 
core protein. Lanes 4, 6 and 8 blotted with antibody 
LF-94 against a segment of bovme decorm core protein• 
Lanes 5, 6, 7 and 8 were digested with ehondroitmase 
ABC before electrophoresis Sohd arrow indicates 
immunoreactlve biglycan and decorm core proteins 
present after chondroltmase d~gestmn. Open arrow 
indicates the umdentified ~55 kDa protein present in 
neonatal samples whmh reacted with antisera to both 
biglycan and decorin. 

wi th  pr io r  c h o n d r o i t i n a s e  ABC d iges t ion  (Fig. 6, 
l ane  6). C h o n d r o i t i n a s e  ABC diges t ion  of  adu l t  
oc ty l -bound  samples  r e su l t ed  in the  a p p e a r a n c e  of 
core  p ro t e in  bands  wi th  an  MW ~45  kDa  which  
i m m u n o r e a c t e d  wi th  bo th  DS-PG an t ibod ies  (Fig• 
6, lanes  5 and  6, solid arrow).  In  c h o n d r o i t i n a s e  
ABC diges ted  n e o n a t a l  bu t  no t  adu l t  oc ty l -bound  
samples,  a p ro t e in  wi th  an  MW ~55  kDa,  which  
r e a c t e d  wi th  bo th  b ig lycan  and  deco r in  ant i -sera,  
was de tec ted  (Fig. 6, lanes  7 and  8, open  arrow)• 
The  iden t i ty  of  this  band  was no t  i nves t iga t ed  
fur ther•  Specif ic  ~mmunoreac t iv i ty  wi th  the  anti-  
b~glycan sera  was ev iden t  in the  c h o n d r o i t i n a s e  
d iges ted  n e o n a t a l  samples  (MW ~45  kDa),  how- 
ever,  i m m u n o r e a c t i v e  decor in  core  p ro t e in  was no t  
detec ted .  

I t  was conc luded  f rom these  s tudies  t ha t  
a l t h o u g h  m a t e r i a l  t h a t  i m m u n o r e a c t e d  wi th  bigly- 
can  was de tec ted  in bo th  the  i n t e rmed ia t e  and  fast  
m ig ra t i ng  SDS-PAGE bands,  the  35S-containing 
b ig lycan  was conf ined  to the  i n t e r m e d i a t e  band.  
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Thus quant l ta t ion of the 35SO~- in the intermediate 
and fast migrat ing bands, which unlike the 
immunoreact ivi ty could be eliminated with prior 
chondroit inase ABC digestmn, would enable 
measurement of the synthesis of glycosylated 
biglycan and decorm, respectively. 

D S - P G  Q U A N T I T A T I O N  

The proportmn of 35SO42- in the matrix tha t  was 
incorporated into the DS-PG electrophoretic bands 
(blglycan plus decorin) in the three culture systems 
was calculated from the PhosphorImage scans and 
is shown in Fig. 7. There was a significant regional 
variat ion in incorporation of ~sS-DS-PGs into the 
matrix of adult  explants (P=0.001). The two 
regions of the tibial plateau not covered by the 
meniscus incorporated significantly more 35S-DS- 
PGs into their  matrix than  their  covered counter- 
parts (P = 0.002 for both TUM vs TCM and TUL vs 
TCL). This sigmficant regional difference was 
maintained by the chondrocytes when cultured in 
alginate beads (P < 0.0001). In neonatal  explants 
the incorporation of asS-DS-PGs into the matrix 
was lower than adults and there was no significant 
difference between regions. 

Whilst a subtle regional var ia tmn in biglycan 
synthesis may exist, there was no significant 
difference in the regional incorporatmn of 35S- 
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The percentage of matrix ~SO42- that was 
incorporated into (a) blglycan and (b) decorin (DPM/pg 
DNA mean ± SEM) from different joint regions in adult 
explants (N=8; black bars), adult chondrocytes m 
algmate beads (N=8; striped bars) and neonatal 
explants (N=10; stippled bars) as determined from 
PhosphorImage scans (see Fig. 5). • =Adult explants; 
[] = algmate beads, [] = neonatal explants. 

biglycan into adult  cartilage matrix, alginate bead 
matrix or neonatal  cartilage matrix [Fig. 8(a)]. It is 
possible tha t  use of a larger number of animals may 
have enabled differences in biglycan synthesis to 
be detected, however, the numbers were sufficient 
for the incorporation of newly synthesized decorin 
into the matrix of adult  explants and alginate 
beads to show a significant regional variat ion 
[P < 0.001 for both adult  explants and beads. Fig. 
8(b)]. The uncovered tibial cartilages incorporated 
more 35S-decorin into their  matrices than  their  
covered counterparts.  In neonatal  cartilage the 
synthesis of 35S-decorin was barely detectable. 
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D i s c u s s i o n  

In adult  ovine knee joints, as in humans, the 
tibial AC uncovered by the meniscus is subject  to 
high compressive loads compared w~th the regions 
under the meniscus [36, 37]. The relative mechan- 
ical stresses experienced by the other joint  regmns 
evaluated in the present s tudy have not been well 
defined. Nevertheless basic principles would 
indicate that  as the femoral condyles rotate across 
the s ta t ionary tibial  plateaux, the stresses borne 
by the femoral carti lages would be~dlstributed over 
a greater surface area than the opposing t~bml 
cartilages. Similarly, as the patella moves along 
the t rochlea groove during joint  flexion, the loads 
on the t rochlea carti lage are distr ibuted over the 
length of the groove. Accordingly, cartilage on the 
femoral condyles are subjected to less focal stress 
than the contact  area on the corresponding 
uncovered tibial plateau. Likewise, the t rochlea 
groove carti lage experiences less contact  stress 
than the patella cartilage. In the present s tudy the 
cartilage areas subjected to high contact  stresses 
(TUL and TUM compared with TCL, TCM, FUM 
and FUL; PAT compared with TRO) were found to 
contain more PG but  incorporated less 35SO4 ~- into 
PGs per microgram DNA than low stress areas. 
These findings were consistent  with previous 
reports which advocated a primary role of the 
matrix PG content  (as fixed charge density) in 
modulating chondrocyte  PG synthesis [11, 12]. 

Art icular  chondrocytes [4, 5], as well as meniscal 
f ibrochondrocytes [38], have been shown to 
maintain their  normal biosynthetic  phenotype 
when cul tured in alginate beads. Our experiments 
have demonstrated that  chondrocytes from differ- 
ent weight-bearing regions of ovine joints, when 
cultured in a lgmate  beads with identical cell 
densities and conditions, preserved the topograph- 
ical differences in total  35SO~- incorporation/~g 
DNA observed for explants derived from the same 
regions. This topographical ly dependent chondro- 
cyte biosynthetic  expression, and thus phenotype,  
was observed for up to 3 weeks in culture, despite 
cell replication within the alginate beads. When 
the newly synthesized PGs that  were retained in 
the explant matrices were separated into different 
types by SDS-PAGE it was found that  the AC 
regions exposed to high-contact  stress in-wvo 
synthesized a greater  proport ion of small non- 
aggregating asS-DS-PGs, in part icular  decorin, 
than less stressed regions. This regional difference 
in DS-PG synthesis observed for adult  explant 
cultures was mainta ined when the chondrocytes 
were cultured in alginate beads. These data lead us 
to suggest that  AC from joint  regions exposed to 

different mechanical  loads contains phenotypi- 
cally distinct chondrocyte  populations.  

In order to investigate whether  the regional 
variat ions observed in adul t  explant and alginate 
bead cultures were associated with inherent ly 
distinct cell populations,  the metabolism of PGs by 
explants from the same joint  regions of neonatal  
sheep that  had not  borne weight was investigated. 
In these experiments we could not  demonstrate  a 
topographical  pat tern in total  PG synthesis nor in 
the proport ions of PG types that  were synthesized 
by neonatal  explants. These data were consistent  
with the hypothesis that  the regional chondrocyte  
phenotype observed in both explant and bead 
culture for adult  cart i lage resulted from environ- 
mental factors imposed on the joint  after birth, the 
most notable being weight bearing and articula- 
tmn. 

The cell density of AC has been shown to decline 
post-natally up to the time of skeletal  matur i ty  
after which it remains relatively stable [39, 40]. 
This post-natal decline in chondrocyte numbers  
revolves a selective loss of cells from the 
superficial zone [39, 40]. Furthermore,  the dist inct  
zonal populations of chondrocytes do not become 
apparent  until  matur i ty  [27]. It would appear 
plausible, therefore, that  the post-natal mechan- 
ical stresses imposed on carti lage of different joint  
regions as a consequence of weight bearing, may 
select for different clones of cells m those regions. 
This interpretat ion is compatible with the studies 
of others. Mechanical  stress has been shown to 
modulate the matura t ion  and differentiation of 
chondroblasts  in the AC of the rat  mandibular  
condyle during matura t ion  [41]. Increased mechan- 
real loading has been reported to delay matura t ion  
and differentiation of mesenchymal cells into 
chondrocytes [42]. Basdra et al. [42] have suggested 
that  this effect may be mediated by altered 
phosphorylat ion of intracel lular  proteins. 

Because it is well accepted that  chondrocytes  
from the superficial cart i lage zone are phenotypi- 
cally distinct from deeper cells, the question arises 
as to whether  the differences in chondrocyte 
phenotype observed in the present  s tudy were 
simply related to variat ions in the proport ion of 
superficial versus deep cells in the various joint  
regions. The percentage of chondrocytes with 
superficial zone morphology has been found to 
vary topographical ly within joints, being related 
to the magnitude of stress to which the AC had 
been exposed during weight bearing [43,44]. 
Cartilage from high weight-bearing regions such 
as the tibial p la teau not  covered by the meniscus, 
has been shown to contain fewer superficial type 
cells than tissue from low stress areas despite 
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Fm 9. Histological appearance of the superficial cartilage zone of 2-year-old sheep. (a) Tibial plateau covered by the 
meniscus and (b) tlblal plateau uncovered by the meniscus. Note the lack of flattened cells m the uncovered tibial 
plateau (Tolmdme blue/fast green. Original magnification ×40.) 

similar total  cell numbers [42, 44]. Histological  
examination revealed that  an identical s i tuat ion 
exists in the 2-year-old sheep examined in the 
present s tudy (Fig. 9). Such differences in 
chondrocyte populations,  however, would not  
account  for the regional variat ions m PG 
metabolism observed in the present study. Given 
the biosynthetic profile of superficial compared 
with deep zone chondrocytes,  a reduced proport ion 
of superficial zone cells in high weight-bearing 
cartilage regions, such as the tiblal plateau not  
covered by the meniscus, would be expected to 
result  in elevated total  35SO42 incorporat ion and 
decreased synthesis off DS-PGs relative to tissue 
containing more superficial zone cells (low weight- 
bearing regions). Such a metabolic profile was not  
observed in the present experiments. 

In the present s tudy the chondrocytes were all 
cul tured in the presence of 10% FBS. The 
metabolic differences observed between chondro- 
cytes from distinct joint  regions under these 
conditions could be related to a variable response 
to growth factors present in the culture media. In 
this regard it should be noted that  we have 
previously demonstrated that  the chondrocytes 
from the tibial plateau uncovered by the meniscus 
showed a significantly greater increase in PG 
synthesis in response to exogenous transforming 
growth factor-~ (TGF-~) ( lng/ml)  than cells 
cultured from the tibial cartilage covered by the 

meniscus [45]. We consider that  this finding 
supports the concept of regional chondrocyte  
phenotyplc heterogenei ty  in art iculat ing joints. 

Differences in the DS-PG species synthesized by 
neonatal  and adult  cart i lage explants were 
demonstrated in the present study. Neonata l  
explants synthesized and incorporated predomi- 
nant ly 35S-biglycan into the carti lage matrix while 
only negligible amounts of 3~S-decorin could be 
detected. While explants from adul t  joints incor- 
porated the same amount  of 35S-biglycan into their  
matrices as neonatal  tissue, the levels of 35S- 
decorin present  were higher than those for 
biglycan. This difference in the relat ive synthesis 
biglycan and decorin was consistent  with reports  
on the matura t ion  related change in DS-PG 
metabolism by human chondrocytes [1, 46]. How- 
ever, we found that  biglycan synthesis remained 
constant  with matura t ion  ra ther  than undergoing 
a decline as reported by Melching and Roughly [1]. 
Decorin synthesis increased with matura t ion  in 
our studies and eventual ly  superseded that  of 
biglycan. This la t ter  finding was in agreement 
with previous reports  [1, 46]. It should be noted 
that  in both the present  s tudy and that  by 
Melching and Roughley [1], only 35S-labeled 
DS-PGs incorporated into the matrix were quanti- 
tated. Inadequate  SDS-PAGE separat ion of the 
~sS-FGs released into the culture media from 
explants precluded their accurate  quant i ta t ion in 
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the present  study. GAG-free DS-PG core proteins 
and their  fragments are known to accumulate  in 
AC with age [47]. Despite this la t te r  finding, it is 
evident from studies of matura t iona l  change m 
DS-PG synthesis in human AC, that  similar results 
were obtained whether  the concent ra t ion  of 
DS-PGs was quant i ta ted  by immunologic means 
[46] or by measur ing the ~sS-labeled DS-PGs 
re ta ined in the matr ix  [1]. 

The increased incorpora t ion  of decorin into the 
matr ix of mature  cart i lage relat ive to neonata l  
tissue is compatible with the suggested role of this 
PG in collagen matr ix  organizat ion [9, 48]. With 
the onset  of weight  bearing, the s t ruc tura l  
organizat ion of the cart i lage collagen ne twork  
would be crit ical for the optimal mechamcal  
functions required of the tissue [49]. Bullough et al .  

[43] have demonstra ted tha t  the collagen fibres in 
the uncovered tibial car t i lage (high-stress region) 
were more uniform in diameter,  th inner  and 
ar ranged in paral lel  bundles as compared with 
collagen fibres in the cart i lage region covered by 
the memscus (low-stress region). This regional  
difference in collagen a rch i tec ture  is consistent  
with the described effect of decorin on collagen 
fibrillogenesis i n - v i t ro  [48]. The enhanced incorpor- 
at ion of decorm into the matr ix  of highly stressed 
cart i lage regions in the adult  ovine (uncovered 
tlbial carti lage) is again support ive of its role m 
the mechanical  integri ty  of the tissue. The 
functional  role of biglycan in AC is present ly 
unknown but significantly in the present  s tudy we 
could not  demonstra te  any associat ion between 
biglycan synthesis and joint  region and hence 
mechanical  loading of AC. This finding is in 
agreement  with the work of Visser et  al .  [50] who 
demonstrated tha t  mature  bovine chondrocytes  
re ta ined in the AC matr ix  responded to i n - v i t ro  

cyclic mechanical  loading by increasing decorin 
synthesis while biglycan synthesis  remained at 
steady-state levels. 

In conclusion these studies have demonstra ted a 
topographmal  var ia t ion  in PG biosynthesis  by 
chondrocytes  in adul t  ovine AC. This regional  
difference in PG synthesis  was not  demonstrable in 
cultures of neonata l  cart i lage tha t  had not  been 
exposed to weight-bearing stress. The ext race l lu lar  
matr ix  was not  found to be the pr imary determi- 
nan t  in control l ing PG biosynthesis  by chondro- 
cytes, as has been h i ther to  postula ted [11, 12], 
because adult  chondrocytes  cul tured in alginate 
beads re ta ined thei r  regional  phenotype  with 
respect  to PG metabolism. The presence of dist inct  
chondrocyte  populat ions in different  joint  regions, 
and their  variable response to catabolic  and 
anabolic stimuli may be impor tant  in understand- 

ing the focal na tu re  of car t i lage degenerat ion 
observed in osteoarthri t is .  
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