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a b s t r a c t

A non-standard finite difference scheme is developed to solve the linear partial differential
equations with time- and space-fractional derivatives. The Grunwald–Letnikov method is
used to approximate the fractional derivatives. Numerical illustrations that include the
linear inhomogeneous time-fractional equation, linear space-fractional telegraph equation,
linear inhomogeneous fractional Burgers equation and the fractional wave equation are
investigated to show the pertinent features of the technique. Numerical results are
presented graphically and reveal that the non-standard finite difference scheme is very
effective and convenient for solving linear partial differential equations of fractional order.
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1. Introduction

Many applications and models involving fractional derivatives show the importance and necessity of fractional calculus.
Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of various
materials and processes. Fractional differentiation and integration operators are used tomodel problems in astrophysics and
chemical physics [1–4], signal processing and system identification, control and robotics [5,6] and other areas of application.

Finding robust and stable numerical and analytical methods for solving the fractional differential equations has been an
active research undertaking from several authors. Numerical and analyticalmethods have included Adomian decomposition
method [7,8], variational iteration method [9,10], Adams–Bashforth–Moulton method [11–14]. The variational iteration
method and the Adomian decomposition method have been extensively used to solve fractional partial differential
equations, because they provide immediate and visible symbolic terms of analytic solutions, as well as numerical
approximate solutions to both linear and nonlinear differential equations without linearization or discretization.

Erjaee [15] investigated the saddle and Hopf bifurcation points of predator–prey fractional differential equation systems
with a constant rate harvesting using the non-standard finite difference method. Hussian et al. [16] used the non-standard
discretization for solving fractional differential equations. Recently, Odibat and Momani [17] developed a semi-numerical
method for solving linear partial differential equations of fractional order. This method is named as generalized differential
transform method (GDTM) and is based on the two-dimensional differential transform method and generalized Taylor’s
formula. Very recently,manymathematicians and scientistsworked on the problemof existence anduniqueness of solutions
of fractional differential equations (cf. [18,19] and references cited therein).

This paper is devoted to develop a non-standard discretization scheme given by Mickens [20] to the Grunwald–Letnikov
discretization process for the linear partial differential equations with time- and space-fractional derivatives. The non-
standard finite difference scheme [21–25] has developed as an alternative method for solving a wide range of problems

∗ Corresponding author.
E-mail addresses: s.momani@ju.edu.jo, shahermm@yahoo.com (S. Momani).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.12.072

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82749858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2010.12.072
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:s.momani@ju.edu.jo
mailto:shahermm@yahoo.com
http://dx.doi.org/10.1016/j.camwa.2010.12.072


1210 K. Moaddy et al. / Computers and Mathematics with Applications 61 (2011) 1209–1216

whose mathematical models involve algebraic, differential, biological models, and chaotic systems. The definition of
Grunwald–Letnikov derivatives has been used in numerical analysis to discretize the fractional differential equations with
Riemann–Liouville derivatives. The technique has many advantages over the classical techniques, and provides an efficient
numerical solution.

The rest of the paper is organized as follows. In the next section we present mathematical preliminaries of the fractional
calculus theory which are required for establishing our results and describe the non-standard finite difference scheme
(NSFD) to solve the fractional partial differential equations. In Section 3, we present four examples to show the efficiency
and simplicity of the scheme and we discuss numerical approximations to the solutions. In the last section we summarize
the conclusions.

2. Preliminaries and notations

In this section we give some basic definitions and properties of the fractional calculus theory and non-standard
discretization which are used further in this paper.

2.1. Grunwald–Letinkov approximation

We will begin with the single fractional differential equation (see [16])

Dαx(t) = f (t, x(t)), T ≥ t ≥ 0 and x(t0) = 0, (1)

where α > 0 and Dα denotes the fractional derivative, defined by

Dαx(t) = Jn−αDnx(t), (2)

where n − 1 < α ≤ n, n ∈ N and Jn in the nth-order Riemann–Liouville integral operator defined as

Jnx(t) =
1

Γ (n)

∫ t

0
(t − τ)n−1x(τ )dτ , (3)

with t > 0.
To apply Mickens’ scheme, we have chosen this Grunwald–Letnikov method approximation for the one-dimensional

fractional derivative as follows (see [26]):

Dαx(t) = lim
h→0

h−α
N−
j=0

(−1)j

α
j


x(t − jh), (4)

where N = t/h and t denotes the integer part of t and h is the step size. Therefore, Eq. (4) is discretized as

N−
j=0

cαx(tn−j) = f (tn, x(tn)), n = 1, 2, 3, . . . , (5)

where tn = nh and cαj are the Grunwald–Letnikov coefficients defined as

cα j =


1 −

1 + α

j


cαj−1, and cα0 = h−α, j = 1, 2, 3, . . . . (6)

2.2. Non-standard discretization

In general, the non-standard finite difference rules, introduced byMickens [27], do not lead to a unique discretemodel for
either ODEs or PDEs. Therefore, we give the basic rules of non-standard for ODEs which lead us to obtain the non-standard
solution for such PDEs.

We consider the ODE of the form
dy
dt

= f (y), (7)

the discrete derivative is
dy
dt

=
yk+1 − yk
φ(h, λ)

, (8)

where φ is a function of the step size h = 1t . φ has the following properties:

φ(h) = h + O(h2), (9)

where h → 0.
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Examples of functions φi(h, λ) that satisfy (9) are h, sin(h), sinh(h), eh − 1.
The nonlinear terms can be in general being replaced by nonlocal discrete representations. For example,

y2 ≈ ykyk+1,

y3 ≈


yk+1 + yk−1

2


y2k,

where h = T/N, tn = nh, n = 0, 1, . . . ,N ∈ Z+.
This way of constructing discrete derivatives can be easily extended to partial derivatives

∂ f (y, t)
∂y

=
f km+1 − f km−1

φ(1y)
, (10)

∂2f (y, t)
∂t2

=
f k+1
m − 2f km + f k−1

m

φ(1x)
, (11)

where

φ(1y) = 1y + O(1y2), (12)

φ(1t) = 1t2 + O(1t4). (13)

Several examples discussing the discretization of the non-standard finite difference method for PDEs are given in [20].

3. Applications

In this section we apply the NSFD to obtain the numerical solution for the linear partial differential equations with time-
and space-fractional derivatives.

3.1. Example 1

Consider the following linear inhomogeneous time-fractional equation:

∂αu
∂tα

+ x
∂u
∂x

+
∂2u
∂x2

= f (x, t), (14)

where f (x, t) = 2tα + 2x2 + 2, t > 0, 0 < α ≤ 1,
subject to the initial condition

u(x, 0) = x2, (15)

and the boundary conditions

u(0, t) = 2t2α
Γ (α + 1)
Γ (2α + 1)

, u(1, t) = 1 + 2
Γ (α + 1)
Γ (2α + 1)

. (16)

The exact solution of Eq. (14) introduced by Odibat and Momani [17] is as follows:

u(x, t) = x2 + 2
Γ (α + 1)
Γ (2α + 1)

t2α. (17)

By applyingMickens scheme and using the Grunwald–Letnikov discretizationmethod, the derivatives can be approximated
as follows

∂αu
∂tα

=

k+1−
n=0

cnuk+1−n
m , (18)

∂u
∂x

=
uk
m+1 − uk

m−1

φ1(1x)
, (19)

∂2u
∂x2

=
uk
m+1 − 2uk

m + uk
m−1

φ2(1x)
, (20)

where1x = 1t = h.
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We chose the dominator functions as the following form

φ1(1t) = 2(eh − 1), (21)

φ2(1x) = 4 sin2(h/2), (22)
where the denominator functions φ1(h) and φ2(h) satisfy the following conditions

φ1(h) = h + O(h2), (23)

φ2(h) = h2
+ O(h4), (24)

and c0 =
1
2φ1(h)

−α
.

Substituting Eqs. (18)–(20) into Eq. (14) yields
k+1−
n=0

cnuk+1−n
m + xm

uk
m+1 − uk

m−1

φ1(h)
+

uk
m+1 − 2uk

m + uk
m−1

φ2(h)
= f km, (25)

after doing some algebraic manipulation (25) gives

uk+1
m =

γ + β1uk
m − uk

m+1(φ1 + xmφ2)− uk
m−1(φ1 − xmφ2)

c0φ1φ2
, (26)

where γ = φ1φ2


f km −

∑k+1
n=2 cnu

k+1−n
m


and β1 = 2φ1 − c1φ1φ2

where x → xm = (1x)m, t → tk = (1t)k.

3.2. Example 2

Consider the following space-fractional telegraph equation:

∂αu
∂xα

=
∂2u
∂t2

+
∂u
∂t

+ u, t ≥ 0, 0 < α ≤ 2, (27)

subject to the initial and boundary conditions

u(x, 0) = ex, 0 < x < 1, (28)

u(0, t) = e−t ,
∂2u(0, t)
∂x

= e−t , t ≥ 0. (29)

When α = 1, the exact solution for Eq. (27) introduced by Momani [8] using the Adomian decomposition method is as
follows:

u(x, t) = ex−t . (30)
We define the derivatives as follows:

∂αu
∂xα

=

m−
n=0

cnuk
m−n, (31)

∂u
∂t

=
uk+1
m − uk−1

m

φ1(1t)
, (32)

∂2u
∂t2

=
uk+1
m − 2uk

m + uk−1
m

φ2(1t)
, (33)

where1x = 1t = h. Substituting Eqs. (31)–(33) into Eq. (27) gives
m−

n=0

cnuk
m−n =

uk+1
m − 2uk

m + uk−1
m

φ2(h)
+

uk+1
m − uk−1

m

φ1(h)
+ u, (34)

for the u term in Eq. (34) we replace it by the following discrete linear

u = 2u − u → 2ūk
m − uk+1

m , (35)
where

ūk
m =

uk
m+1 + uk

m−1

2
. (36)

Therefore, solving Eq. (34) for uk+1
m yields

uk+1
m = (−β2 − (2φ1 + c0φ1φ2)uk

m + φ1φ2(uk
m+1 + uk

m−1)− (φ2 − φ1)uk−1
m )/φ1φ2 − (φ1 + φ2), (37)

where β2 = φ1φ2
∑m

n=1 cnu
k
m−n.
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3.3. Example 3

Consider the following one-dimensional linear inhomogeneous fractional wave equation
∂αu
∂tα

+
∂u
∂x

= g(x, t), t > 0, 0 < α ≤ 1, (38)

where

g(x, t) =
t1−α

Γ (2 − α)
sin x + t cos x, x ∈ ℜ, (39)

subject to the initial and boundary conditions
u(x, 0) = 0, (40)
u(0, t) = 0, u(1, t) = 0.84147t. (41)

The exact solution introduced by Odibat and Momani [10] is as follows:
u(x, t) = t sin x. (42)

Substituting (18) and (19) into Eq. (38) yields
k−

n=0

cnuk−n
m +

uk
m+1 − uk

m−1

φ3(1x)
= gk

m, (43)

where1x = 1t = h.
The denominator function φ3(h) satisfies the following condition:

φ3(h) = h + O(h2), (44)
and in this case we chose φ3(h) = 2 sin(h).

Solving Eq. (43) for uk
m+1 gives

uk
m+1 = 2


gk
m − c0uk

m +

k−
n=1

cnuk−n
m


φ3(h)+ uk

m−1, (45)

where c0 =
1
2φ3(h)

−α
.

3.4. Example 4

In this example we consider the one-dimensional linear inhomogeneous fractional Burgers equation given by

∂αu
∂tα

+
∂u
∂x

−
∂2u
∂x2

= q(x, t), t > 0, 0 < α ≤ 1, (46)

where

q(x, t) =
2t2−α

Γ (3 − α)
+ 2x − 2, x ∈ ℜ, (47)

subject to the initial and boundary conditions

u(x, 0) = x2, (48)

u(0, t) = t2, u(1, t) = 1 + t2. (49)
The exact solution introduced by Odibat and Momani [10]:

u(x, t) = x2 + t2. (50)
Substituting Eqs. (18)–(20) into Eq. (46) yields

k−
n=0

cnuk−n
m +

uk
m+1 − uk

m−1

φ3(1x)
+

uj
i+1 − 2uk

m + uk
m−1

φ2(1x)
= qkm, (51)

where1x = 1t = h, c0 =
1
2φ3(h)

−α
and the denominator function is φ3(h) = 2 sin h, and satisfies (44).

Solving Eq. (51) for uk
m+1 gives

uk
m+1 =

β3 + 2uk
m(φ3 + φ2φ3c0)− uk

m−1(φ2 + φ3)

φ3 − φ2
, (52)

where β3 = φ2φ3

∑k
n=1 cnu

k−n
m − qkm


.
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Fig. 1. Different solutions of the linear inhomogeneous time-fractional equation in Example 1 using the non-standard finite difference scheme where
x = 1/50 with time step h = 1/50.

Fig. 2. Comparison of the results of the non-standard finite difference scheme and the exact solution considering x = 1/50 for Example 1.

4. Results and discussion

Four fractional partial differential equations with boundary conditions were numerically solved using the non-standard
finite difference method based on Grunwald–Letnikov method as coded in the computer algebra package Maple. In Maple,
the number of variable digits controlling the number of significant digits is set to 18 in all the calculations done in this paper.
In this present work, we fix the benchmark time step size h = 0.02.

Note that this non-standard finite difference scheme has the following features:
(i) The discrete model is explicit.
(ii) The denominator functions φ1, φ2 and ψ for the discrete first- and second-derivatives have a non-standard form.
(iii) A central difference scheme replaces the first and second order space derivative.
(iv) For the linear terms involving the dependent variable may require ‘‘nonlocal’’ discretizations.

Fig. 1 shows the different solutions of the linear inhomogeneous time-fractional equation in Example 1 using the non-
standard finite difference scheme with different fractional derivatives α = 0.4, 0.6, 0.8 and 1. Fig. 2 shows the numerical
solutions and the exact solutions for different values of α when x = 1/50. From the numerical results in Figs. 1 and 2, it is
to conclude that the numerical solutions obtained using the non-standard finite difference scheme are in good agreement
with the exact solutions and the approximate solutions obtained using the generalized differential transform method [17]
for all values of α and t .

Figs. 3–5 show the approximate solutions for Examples 2, 3 and4obtained for different values ofα using thenon-standard
finite difference scheme, respectively. From the graphical results in these figures, it is clear that the approximate solutions
are in good agreement with the exact solutions and the solution continuously depends on the time-fractional derivative.

5. Conclusions

Numerical solutions of the linear partial differential equations of fractional order are derived using the non-standard
finite difference scheme. The results of this method are in good agreement with those obtained by using the already existing
ones. Itmay be concluded that the non-standardmethod is a very powerful and efficient technique for solving themodel. The
basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems
in fractional calculus.



K. Moaddy et al. / Computers and Mathematics with Applications 61 (2011) 1209–1216 1215

Fig. 3. Comparison of the results of the non-standard finite difference scheme and the exact solution in Example 2 considering x = 1/50 and α = 1.

Fig. 4. Comparison of the results of the non-standard finite difference scheme and the exact solution in Example 3 considering α = 0.9 and t = 1/2.

Fig. 5. Comparison of the results of the non-standard finite difference scheme and the exact solution in Example 4 considering α = 0.7 and x = 1/50.
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