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Abstract

The original Rough Set model is concerned primarily with algebraic properties of approx-

imately defined sets. The Variable Precision Rough Set (VPRS) model extends the basic rough

set theory to incorporate probabilistic information. The article presents a non-parametric

modification of the VPRS model called the Bayesian Rough Set (BRS) model, where the set

approximations are defined by using the prior probability as a reference. Mathematical prop-

erties of BRS are investigated. It is shown that the quality of BRS models can be evaluated

using probabilistic gain function, which is suitable for identification and elimination of redun-

dant attributes.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Most of practical data mining problems require identification of probabilistic pat-

terns in data, typically in the form of probabilistic rules. To compute probabilistic

rules using the rough set theory [4], the original Rough Set (RS) model (Pawlak�s
model) has to be ‘‘softened’’ to allow for some degree of uncertainty in approximat-

ing the target events. Several probabilistic extensions of the RS model have been pro-

posed in the past. In particular, the Variable Precision Rough Set (VPRS) model
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[17,1,19] was used as a basis of many algorithms for computation of probabilistic

rules from data.

The VPRS model is parametric—definitions of positive and negative regions de-

pend on the settings of permissible levels of uncertainty associated with each of the

approximation regions. In some applications, however, it is not clear how to define
the parameters. Also, using parameters is sometimes not required, as the general

objective can be to increase certainty of a prediction that an event of interest would

occur, or would not occur, rather than to find high probability rules, which might be

impossible to get.

For example, in medical domain, the results of medical tests might indicate in-

creased/decreased chances of a specific disease. Without the tests, its chances would

be given by the prior probability of its occurrence in the general population. In such

cases, the prior probability can be used as a benchmark value against which the qual-
ity of available information about domain objects can be measured. There are three

possible scenarios in that respect: (i) the acquired information increases our percep-

tion of the chance that the event would happen; (ii) the acquired information de-

creases our perception of the chance that the event would not happen; (iii) the

acquired information has no effect on our perception of the chance that the event

would or would not happen.

In the latter scenario, the information is totally unrelated to the event, effectively

forcing us to accept the prior probability as the only estimate of the chances that the
event of interest would occur. Positive or negative deviation from the prior probabil-

ity of an event is an improvement in our ability to better assess the chances of its

occurrence or non-occurrence, respectively. In the context of rough set theory, the

universe of interest can thus be divided into three regions: (i) the positive region

where the probability of a target event is higher than its prior probability; (ii) the

negative region where the probability of a target event is lower than its prior prob-

ability; (iii) the boundary region where it is equal, or approximately equal to the

prior probability.
Such a categorization results in a new approach to VPRS model and rough set

theory in general, referred to as to the Bayesian Rough Set (BRS) model. The name

of the proposed model emphasizes its connections with fundamental ideas of Bayes-

ian reasoning [12]. Its main feature, as opposed to the original VPRS approach, is

the absence of parameters, which makes it appropriate for applications concerned

with achieving any certainty gain in decision-making processes, rather than meeting

specific certainty goals.

The article is organized as follows. Section 2 provides basics of data-based prob-
abilistic calculus. Section 3 outlines the basics of the original theory of rough sets.

Section 4 presents VPRS extension of the theory of rough sets. Section 5 introduces

fundamental notions and properties of BRS model. Section 6 investigates the con-

nections of the BRS model with Bayesian reasoning. Section 7 is concerned with

information quality measures called certainty gain measures. Section 8 deals with

some issues related to the attribute reduction in the context of BRS. Finally, Section

9 addresses directions for further research.



D. Śle�zak, W. Ziarko / Internat. J. Approx. Reason. 40 (2005) 81–91 83
2. Probabilistic framework

Let U denote a universe of objects, infinite in general. We assume the existence of

probabilistic measure P over r-algebra MðUÞ of measurable subsets of U. We assume

that all subsets (events) X 2 MðUÞ under consideration are likely to occur but their
occurrence not certain, that is 0 < P(X) < 1.

We also assume the existence of an indiscernibility equivalence relation on U, with

possibly infinite but countable family of measurable mutually disjoint classes (ele-

mentary sets) E � MðUÞ such that 0 < P(E) < 1, E 2 E, and
P

E2EP ðEÞ ¼ 1. We will

refer to this relation as to the IND-relation.

In practice, the elementary sets are obtained by grouping together objects having

(almost) identical values of a selected set of features (attributes). In real-life applica-

tions, it is normally realistically assumed that E is finite. However, the results pre-
sented in this article hold also for IND-relations E � MðUÞ with infinite, but

countable collections of equivalence classes (elementary sets).

Each elementary set E 2 E is associated with the conditional probabilities

P(XjE) = P(X \ E)/P(E) and P(EjX) = P(X \ E)/P(X). The values of these probabil-

ities are normally estimated based on a finite random sample Uf � U, using the

following formulas:

eP ðX Þ ¼ cardðX \ U fÞ
cardðU fÞ

eP ðX jEÞ ¼
cardðX \ E \ U fÞ
cardðE \ U fÞ

() E \ U f 6¼ ;

undefined () E \ U f ¼ ;

8<
:

eP ðEÞ ¼ cardðE \ U fÞ
cardðU fÞ

eP ðEjX Þ ¼
cardðX \ E \ U fÞ
cardðX \ U fÞ

() X \ U f 6¼ ;

undefined () X \ U f ¼ ;

8<
:

ð1Þ

where card(*) denotes cardinality of a set. Any other statistical estimates, depending

on the type of a source of information, such as probability density functions etc. can
also be used. In this article, while introducing and investigating the new model of

rough sets, we do not assume any specific kind of probability estimation technique.

Nevertheless, we refer to estimators (1) in examples, as they are most commonly used

in rough set-related applications.
3. Rough set framework

In this section, we restate the basic Pawlak�s model in probabilistic terms. It pro-

vides definitions of positive, negative and boundary approximation regions of events

estimated using finite samples Uf � U.

The positive region gPOSðX Þ of the event X � U is an area of Uf where the occur-

rence of X \ Uf is certain. That is

gPOSðX Þ ¼
[

fE \ U f : E \ U f � X \ U fg ¼
[

fE \ U f : eP ðX jEÞ ¼ 1g ð2Þ
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The negative region gNEGðX Þ is a mirror image of gPOSðX Þ. It covers an area of Uf

where the occurrence of X is unlikely. That is

gNEGðX Þ ¼
[

fE \ U f : E \ X \ U f ¼ ;g ¼
[

fE \ U f : eP ðX jEÞ ¼ 0g ð3Þ

The boundary region defines an area of Uf where the occurrence of the event X is

possible but not certain. That is

gBNDðX Þ ¼
[

fE \ U f : 0 < eP ðX jEÞ < 1g ð4Þ

If the boundary of X is empty, then the set X is said to be definable. Otherwise

we refer to X as a rough set [4]. One can see that gPOSðX Þ ¼ gNEGð:X Þ andgBNDðX Þ ¼ gBNDð:X Þ for the complementary target event :X ¼ U n X . Therefore,

X is definable, if and only if :X is definable.

In (2)–(4) we use notation ‘‘f’’ to emphasize that the respective rough set regions

are based on the estimated probabilities, using (1) in this particular case. In the rough
set related literature there are many approaches to expressing probabilistic informa-

tion (cf. [2,3,5,15]). Generally, one could use any type of estimation or simply refer to

the true rough approximation regions

POSðX Þ ¼
[

fE 2 E : P ðX jEÞ ¼ 1g
NEGðX Þ ¼

[
fE 2 E : P ðX jEÞ ¼ 0g

BNDðX Þ ¼
[

fE 2 E : 0 < P ðX jEÞ < 1g

ð5Þ

where P(XjE) are the true probabilities defined in r-algebra MðUÞ. A statistical

problem is how accurate are ‘‘estimations’’ gPOSðX Þ; gNEGðX Þ; gBNDðX Þ with re-

gards to the true regions defined by (5). This issue is beyond the scope of this article.

Consequently, we present our approach without distinguishing between estimates
and actual probabilities, using a unified notation P and skipping the symbol ‘‘f’’.

All presented results hold both for finite samples and infinite universes, under

assumptions introduced in Section 2.
4. Variable precision rough set model

The VPRS model [17] aims at increasing the discriminatory capabilities of the
rough set approach by using parameter-controlled grades of conditional probabili-

ties. The asymmetric VPRS generalization [1,19] is based on the lower and upper lim-

it certainty thresholds l and u when defining approximation regions, satisfying

0 6 l < P(X) < u 6 1.

The u-positive region POSu(X) is controlled by the upper limit parameter u, which

reflects the least acceptable degree of the conditional probability P(XjE) to include

elementary set E in POSu(X). That is

POSuðX Þ ¼
[

fE 2 E : P ðX jEÞ P ug ð6Þ
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The l-negative region NEGl(X) is controlled by the lower limit l, such that

0 6 l < P(X). NEGl(X) is an area where the occurrence of X is significantly—with re-

spect to l—less likely than random guess P(X). That is

NEGlðX Þ ¼
[

fE 2 E : P ðX jEÞ 6 lg ð7Þ

The l-negative region NEGl(X) can be expressed as the (1 � l)-positive region

POSð1�lÞð:X Þ for :X ¼ U n X . Therefore, we can talk about a complete duality of

positive and negative regions in the VPRS model. One can also consider the (l,u)-
boundary region, which is a ‘‘grey’’ area where there is no sufficient probabilistic bias

towards neither X nor :X . That is

BNDl;uðX Þ ¼
[

fE 2 E : l < PðX jEÞ < ug ð8Þ

The VPRS model�s ability to flexibly control approximation regions� definitions
allows for capturing probabilistic relations existing in data. The original rough set

model is a special case of VPRS, for l = 0 and u = 1. That is

POSðX Þ ¼ POS1ðX Þ; NEGðX Þ ¼ NEG0ðX Þ; BNDðX Þ ¼ BND0;1ðX Þ
Usually, however, more interesting results are expected for non-trivial settings

0 < l < P(X) < u < 1, where l and u are appropriately tuned [18].
5. Bayesian rough set model

In some applications, for example in stock market, medical diagnosis etc., the
objective is to achieve some certainty prediction improvement rather than trying

to produce rules satisfying preset certainty requirements. Then, it is more appropri-

ate not to use any parameters to control model derivation. In what follows, we pres-

ent and investigate a modification of VPRS model, which allows for derivation of

parameter-free predictive models. We call it the Bayesian Rough Set (BRS) model

because of its connections with Bayesian reasoning.

The BRS positive region POS*(X) defines an area of the universe where the prob-

ability of X is higher than the prior probability. It is an area of certainty improve-
ment or gain with respect to predicting the occurrence of X. That is

POS�ðX Þ ¼
[

fE : P ðX jEÞ > P ðX Þg ð9Þ

The BRS negative region NEG*(X) defines an area of the universe where the

probability of X is lower than the prior probability. It is an area of certainty loss with

respect to predicting the occurrence of X. That is

NEG�ðX Þ ¼
[

fE : PðX jEÞ < PðX Þg ð10Þ

The BRS boundary region is an area characterized by the lack of certainty

improvement with respect to predicting neither X nor :X . That is

BND�ðX Þ ¼
[

fE : PðX jEÞ ¼ PðX Þg ð11Þ
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Information defining the boundary area is totally unrelated to X, which results in

the same probabilistic distribution of objects belonging to X. In other words, the tar-

get event X is independent from all the elementary events in BND*(X), that is, for all

E � BND*(X) we have P(X \ E) = P(X)P(E).

One can compare properties of BRS with the classical rough set model. The fol-
lowing result provides us with the same duality properties as before.

Proposition 5.1. For X 2 MðUÞ and IND-relation E�MðUÞ;POS�ðX Þ¼NEG�ð:X Þ;
NEG�ðX Þ ¼ POS�ð:X Þ, and BND�ðX Þ ¼ BND�ð:X Þ holds.
Proof. Equalities with POS* and NEG* follow from equivalence P ðX jEÞ >
P ðX Þ () P ð:X jEÞ ¼ 1� P ðX jEÞ < 1� PðX Þ ¼ P ð:X Þ. For BND* analogous

equivalence with equalities instead of inequalities is applied. h
6. Connections with Bayesian reasoning

The nature of Bayesian reasoning is to combine the prior knowledge with the

data-driven inverse probabilities to achieve the posterior probabilities [12]. The pos-
terior probabilities are then compared to the prior ones to evaluate the obtained

information. The following equation, which involves the posterior, prior and inverse

odd ratios, helps in understanding this approach

P ðX jEÞ
P ð:X jEÞ ¼

P ðX Þ
Pð:X Þ �

P ðEjX Þ
P ðEj:X Þ ð12Þ

Consequently, we could try to compare the inverse probabilities P(EjX) and

P ðEj:X Þ instead of comparing P(XjE) with P(X) and P ð:X jEÞ with P ð:X Þ. The fol-
lowing result formalizes this intuition. The idea of defining rough set regions based

on the inverse probabilities is further developed in [8,9].
Proposition 6.1. For X 2 MðUÞ and IND-relation E � MðUÞ we have

POS�ðX Þ ¼
[

fE 2 E : P ðEjX Þ > P ðEj:X Þg

NEG�ðX Þ ¼
[

fE 2 E : P ðEjX Þ < P ðEj:X Þg

BND�ðX Þ ¼
[

fE 2 E : P ðEjX Þ ¼ P ðEj:X Þg
Proof. Let us consider the first case. The others are analogous. We have to

show PðX jEÞ > P ðX Þ () PðEjX Þ > PðEj:X Þ. Assume P(XjE) > P(X). It implies

P ð:X jEÞ ¼ 1� P ðX jEÞ < 1� PðX Þ ¼ P ð:X Þ. Therefore, we get ðP ðX jEÞ=P ðX ÞÞ=
ðP ð:X jEÞ=P ð:X ÞÞ > 1, that is, using identity (12), P ðEjX Þ=P ðEj:X Þ > 1. Now, by

contradiction, assume P(XjE) 6 P(X). It implies P ðEjX Þ=P ðEj:X Þ 6 1 in the same

way as above. h
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7. Certainty gain

The objective of predictive models is to increase the degree of certainty of decision

making. In this section, we apply the certainty gain measure [10,19] to evaluation of

the BRS regions. The local gain measure g(XjE) is associated with every elementary
set E 2 E by

gðX jEÞ ¼ P ðX jEÞ=P ðX Þ � 1 ð13Þ

It reflects the degree of certainty increase/decrease relative to the value of the prior

probability P(X).
Proposition 7.1. For any X 2 MðUÞ and IND-relation E � MðUÞ we have

gðX jEÞ > 0 () E � POS�ðX Þ () E � NEG�ð:X Þ () gð:X jEÞ < 0

gðX jEÞ < 0 () E � NEG�ðX Þ () E � POS�ð:X Þ () gð:X jEÞ > 0

gðX jEÞ ¼ 0 () E � BND�ðX Þ () E � BND�ð:X Þ () gð:X jEÞ ¼ 0
Proof. The proof is directly derivable from (13) and Proposition 5.1. h

Proposition 7.1 establishes a relationship between the gain function and BRS re-

gions. Proposition 7.2 demonstrates the alternative representation.
Proposition 7.2. For X 2 MðUÞ and IND-relation E � MðUÞ we have

POS�ðX Þ ¼
[

fE 2 E : gðX jEÞ > gð:X jEÞg

NEG�ðX Þ ¼
[

fE 2 E : gðX jEÞ < gð:X jEÞg

BND�ðX Þ ¼
[

fE 2 E : gðX jEÞ ¼ gð:X jEÞg
Proof. The proof is directly derivable from Proposition 7.1. h

Based on the local gain function, the local relative gain function is defined as

rðX jEÞ ¼ maxfgðX jEÞ; gð:X jEÞg ð14Þ
It represents relative improvement in the prediction accuracy when predicting

either X or :X , depending on the effect of the new information. The effect may be

‘‘positive’’, that is it can lead to higher chances of X, or ‘‘negative’’, leading to higher

chances of :X .

The local relative gain can be applied to measure the average certainty gain over

all elementary sets. It leads to the global relative gain defined as
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RðX Þ ¼
X
E2E

P ðEÞrðX jEÞ ð15Þ

The following result provides helpful formulas for computation of R(X).
Proposition 7.3. For X 2 MðUÞ and IND-relation E � MðUÞ, we have
RðX Þ ¼
X
E2E

maxfP ðEjX Þ; P ðEj:X Þg � 1

¼ P ðPOS�ðX ÞjX Þ þ P ð:POS�ðX Þj:X Þ � 1
where P(POS*(X)jX) is the probability of belonging to POS*(X) conditioned by belong-

ing to X, and P ð:POS�ðX Þj:X Þ is the probability of not belonging to POS*(X) condi-

tioned by not belonging to X.
Proof. Let us note that rðX jEÞ ¼ maxfP ðX jEÞ=P ðX Þ; P ð:X jEÞ=P ð:X Þg � 1 and fur-

ther that P ðEÞrðX jEÞ ¼ maxfPðEjX Þ; P ðEj:X Þg � P ðEÞ, using the Bayes rule. There-

fore RðX Þ sums up to the first above form. Further,
P

E2E maxfP ðEjX Þ; P ðEj:X Þg
equals to

P
E2E:P ðEjX Þ>P ðEj:X ÞP ðEjX Þ plus

P
E2E:PðEjX Þ6PðEj:X ÞP ðEj:X Þ. The constraints

for E 2 E can be rewritten as E � POS*(X) and E � NEG*(X) [ BND*(X).

Therefore, the above sums equal to P(POS*(X)jX) and P ð:POS�ðX Þj:X Þ, respec-
tively. h

The following result establishes a link between the global relative gain and the

Pawlak�s classical notion of definability [4].
Theorem 7.4. For any X 2 MðUÞ and IND-relation E � MðUÞ, we have inequalities
0 6 R(X) 6 1. Moreover, the following properties hold:

RðX Þ ¼ 0 () P ðBND�ðX ÞÞ ¼ 1

RðX Þ ¼ 1 () P ðBNDðX ÞÞ ¼ 0
Proof. According to Proposition 7.1 there is r(XjE) P 0, where equality holds if and

only if P(XjE) = P(X). Hence, we have R(X) P 0 with equality holding if and only if

E � BND*(X) for all E 2 E, i.e. P(BND*(X)) = 1.

According to Proposition 7.3 there is R(X) 6 1, where equality holds if and only if

P ðPOS�ðX ÞjX Þ ¼ P ð:POS�ðX Þj:X Þ ¼ 1. This can be rewritten as PðX n POS�ðX ÞÞ ¼
P ð:X n :POS�ðX ÞÞ ¼ 0, or as PðNEG�ðX Þ [ BND�ðX Þ n :X Þ ¼ 0 and P(POS*(X)n
X) = 0. The first of these equalities holds if and only if every E � NEG*

(X) [ BND*(X) satisfies PðE n :X Þ ¼ 0, that is Pð:X jEÞ ¼ 1. The second equality
holds if and only if every E � POS*(X) satisfies P(EnX) = 0, that is P(XjE) = 1.

These facts can be expressed as implications P(XjE) 6 P(X)) P(XjE) = 0 and
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P(XjE) > P(X) ) P(XjE) = 1. It means that every E 2 E must satisfy P(XjE) = 0 or

P(XjE) = 1, consequently there are no E 2 E in BND(X). h
8. Attribute reduction

One of the major applications of rough set theory is attribute reduction (cf.

[4,6,7,16]), that is elimination of attributes considered as redundant while preserving

quality of information. We will explore in this section the attribute reduction issue in

the context of BRS using global relative gain function as measure of information

quality.
Let us assume that every element E of IND-relation groups together objects e 2 U

with identical values over a set of attributes A. We will denote by U/A the collection

of elementary sets corresponding to this relation. Any alternative classification of U

in terms of any subset of attributes B � A will be denoted by U/B. To distinguish

between U/A and U/B, for any B � A, we index all respective symbolic names with

attribute set symbols. For example POS�
BðX Þ means a positive BRS region of X ob-

tained using classification U/B.

Global relative gain of X based on U/B will be denoted as RB(X). We are inter-
ested in comparing the values of RA(X) with RB(X) for subsets B � A. We adapt

the notion of a rough set reduct and say that B � A is an R-reduct for X, if and only

if it satisfies the equality RB(X) = RA(X), that is, it preserves the value of the global

gain function, and none of its proper subsets does it. The following result is crucial

for such a definition.
Theorem 8.1. Let B � A and X � U be given. We have RB(X) 6 RA(X) where equality

holds, if and only if
POS�
AðX Þ � POS�

BðX Þ and POS�
Að:X Þ � POS�

Bð:X Þ ð16Þ
Proof. Any assertion F 2 U/B can be expressed as F = ¨{E 2 U/A :E � F}. To prove

RB(X) 6 RA(X) it suffices to demonstrate that the following holds:

maxfP ðF jX Þ; PðF j:X Þg 6

X
E2U=A:E�F

maxfP ðEjX Þ; PðEj:X Þg ð17Þ

Clearly we have equalities P ðF jX Þ ¼
P

E2U=A:E�F P ðEjX Þ and P ðF j:X Þ ¼P
E2U=A:E�F P ðEj:X Þ. Hence, there is either maxfP ðF jX Þ; P ðF j:X Þg ¼P
E2U=A:E�F P ðEjX Þ or maxfPðF jX Þ; PðF j:X Þg ¼

P
E2U=A:E�F P ðEj:X Þ. We have alsoP

E2U=A:E�F P ðEjX Þ 6
P

E2U=A:E�F maxfP ðEjX Þ; P ðEj:X Þg and
P

E2U=A:E�F P ðEj:X Þ 6P
E2U=A:E�F maxfP ðEjX Þ; P ðEj:X Þg. It implies inequality (17) and consequently

RB(X) 6 RA(X).

To prove that (16) is equivalent to RB(X) = RA(X) let us note that equality in (17)

holds, if and only if we have 8E2U=A:E�F P ðEjX Þ P P ðEj:X Þ or 8E2U=A:E�F P ðEjX Þ 6
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P ðEj:X Þ. Consequently, equality in (17) holds, if and only if both implications

P ðF jX Þ P P ðF j:X Þ ) 8E2U=A:E�F P ðEjX Þ P P ðEj:X Þ and P ðF jX Þ 6 P ðF j:X Þ )
8E2U=A:E�F P ðEjX Þ 6 P ðEj:X Þ are satisfied. The first of them means that if

F � POS�BðX Þ [ BND�
BðX Þ, then every E � F, E 2 U/A, is included in POS�AðX Þ[

BND�
AðX Þ. The second implication means that if F � NEG�

BðX Þ [ BND�
BðX Þ, then

every E � F is included in NEG�
AðX Þ [ BND�

AðX Þ. Consequently, we obtain

inclusions POS�BðX Þ [ BND�
BðX Þ � POS�AðX Þ [ BND�

AðX Þ and NEG�
BðX Þ[ BND�

B

ðX Þ � NEG�
AðX Þ [ BND�

AðX Þ, equivalent to the inclusions (16). h

Theorem 8.1 indicates that the information gain will not increase when we replace

the classification U/A by potentially less accurate classification U/B. Hence, it makes

sense to investigate conditions for keeping that information at the appropriate level,

such as in case of R-reducts. Searching for R-reducts is comparable to other rough

set-based feature reduction techniques. We can use similar search heuristics, like for

instance the method proposed in [6] based on discernibility matrices. To keep the

value of R unchanged, we should check subsets B � A to discern between elementary

sets E 2 U/A belonging to POS�
AðX Þ and NEG�

AðX Þ, which is equivalent to maintain-
ing inclusions (16).

Another possibility is to calculate the gains directly from data using the sort oper-

ations and adapting the order-based genetic algorithms developed in [16]. This ap-

proach was extended into the case of approximate R-reducts satisfying inequality

RB(X) P (1 � e)RA(X), for a preset threshold e 2 [0,1), and successfully applied in

the medical domain [13,14]. The correspondence between approximate R-reducts

and the BRS-like models was reported in [11].
9. Summary and conclusions

The objective of this article is a presentation and elementary investigation of a

modification of VPRS, Bayesian rough set model, where the approximation regions

are defined using prior probability of a set as a reference. The global relative gain

function is used as the model�s information quality measure. The measure captures

the relative degree of increase of average certainty of predictions based solely on
information represented by systems� attributes.

Presented approach appears to be well suited for data mining applications where

the acquisition of probabilistic, rather than deterministic, predictive models is of pri-

mary importance. Further research is planned to evaluate the BRS model in compar-

ison to the VPRS and original Pawlak�s approaches.
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[16] J. Wróblewski, Theoretical foundations of order-based genetic algorithms, Fundamenta Informaticae

28 (3–4) (1996) 423–430.

[17] W. Ziarko, Variable precision rough sets model, J. Comput. Syst. Sci. 46 (1) (1993) 39–59.

[18] W. Ziarko, Decision making with probabilistic decision tables, in: Proc. of the 7th Int. Workshop on

Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC�99), Yamaguchi, Japan,

Springer Verlag, LNAI 1711, 1999, pp. 463–471.

[19] W. Ziarko, Set approximation quality measures in the variable precision rough set model, Proc. of the

2nd Int. Conf. on Hybrid Intelligent Systems (HIS�02), Soft Computing Systems, 87, 2002, pp. 442–

452.


	The investigation of the Bayesian rough set model
	Introduction
	Probabilistic framework
	Rough set framework
	Variable precision rough set model
	Bayesian rough set model
	Connections with Bayesian reasoning
	Certainty gain
	Attribute reduction
	Summary and conclusions
	Acknowledgements
	References


