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Abstract

We characterize graphsG such that the complements of their line graphs are pancyclic.
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1. Introduction

By a graphG we mean a simple finite undirected graph. The vertex set ofG is V (G)
and the edge set isE(G). The order, size, andmaximum degreeof G are denoted by
p(G)(=|V (G)|), q(G)(=|E(G)|) and�(G), respectively.

We useNG(u) to denote the set of vertices adjacent tou in G, andEG(u) to denote the
set of edges incident withu in G. dG(u) is the degree ofu in G.

The line graphof G, denoted byL(G), has vertex setE(G); two verticese1 ande2 of
L(G) are adjacent if and only if they are incident as edges inG. Thecomplement graph
GofG has the same vertex setV (G) asG; two vertices are adjacent inG if and only if they
are not adjacent inG. ThusL(G)is the complement ofL(G).

If w is an isolated vertex ofG, thenL(G− w)= L(G) andL(G− w)= L(G). Hence
we can always assume that there are no isolated vertices inG when we considerL(G) or
L(G).
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A graph ispancyclicif there is a cycle of lengthk for each 3�k�p. If a graphG is a
bipartite graph, it does not contain any odd cycles. But if a bipartite graphG = (X, Y ) is
balanced, that is, the two color classesX andY have the same number of vertices, then we
can expect cycles of length 2k for 2�k�p/2. Therefore, we define a bipartite graph to be
bi-pancyclicif it contains cycles of length 2k for 2�k�p/2.

If G1 andG2 are vertex disjoint, then we useG1 +G2 to denote the disjoint union of the
two graphs. We also usenG to denote the vertex disjoint union ofn copies ofG. Notation
and terminology not mentioned above can be found in[3].

Nebeský[8] showed the following result.

Theorem 1.1. If G is a graph of order�5, then at least one of the following statements
holds:

(a) G is connected andL(G) is Hamiltonian.
(b) Ḡ is connected andL(G) is Hamiltonian.

This result was improved in[9] as follows.

Theorem 1.2. If G is a graph of order�6, then at least one of the following statements
holds:

(a) G is connected andL(G) is pancyclic.
(b) Ḡ is connected andL(G) is pancyclic.

Though at least one ofL(G) andL(G) is Hamiltonian or pancyclic, it is NP-complete to
decide which one is. In[7], we studied the Hamiltonian problem for the class of complements
of line graphs, and obtained the following characterization.

Theorem 1.3. The graphL(G)is Hamiltonian if and only if�(G)�q/2,dG(u)+dG(v)�
q − 1 for any two adjacent verticesu andv, andG is not one of22graphs in Fig. 1.

This characterization provides a linear time recognition algorithm determining graphsG

such thatL(G)are Hamiltonian.
In this paper, we study the pancyclic property (which is stronger than the Hamiltonian

property) of the class of complements of graphs. We characterize all graphs such that the
complement graphs of their line graphs are pancyclic or bi-pancyclic. Again, this charac-
terization provides a linear recognition algorithm determining graphsG such thatL(G)are
pancyclic.

2. The main results

LetB = {2P3,2K3,2K1,3,K3 +K1,3,G1,G2} (seeFig. 2).
We have the following characterization of bi-pancyclic graphsL(G).

Theorem 2.1. L(G)is bi-pancyclic if and onlyq is even andG is inB whenq = 4,6,and
there exist two nonadjacent vertices of degreeq/2whenq�8.
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Fig. 2.B.

Proof. If L(G)is bi-pancyclic, thenL(G)must be a balanced bipartite graph. So the vertex
set ofL(G)can be partitioned into two independent sets of equal cardinality. Ifq = 4, then
L(G)is a 4-cycle. Therefore,G=2P3 ∈ B. If q=6, then corresponding to each independent
set inL(G)is either a triangle or a 3-star inG. It is easy to verify that a triangle cannot
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K3 + K1,3  W42K3 C52P3
K5 - K2 

Fig. 3.P3.

intersect any triangle or star inG, and two stars can intersect inG at a maximum of two
vertices of degree one. Therefore,G ∈ B. Suppose now thatq�8. Then each independent
set corresponds to aq/2-star inG, and the twoq/2-stars share no common edges asL(G)is
a balanced bipartite graph and contains no isolated vertex. This implies that the two centers
of the two stars are nonadjacent and have degreeq/2.

To prove the sufficiency, supposeG is a graph inB or there are two distinct verticesu and
v such thatd(u)= d(v)= q/2. It is easy to check thatL(G)is bi-pancyclic ifG ∈ B. Now
suppose thatq�8 and letNG(u)={x1, x2, . . . , xq/2} andNG(v)={y1, y2, . . . , yq/2}. Then
G is the graph obtained by identifying some of the vertices inNG(u) and some vertices in
NG(v). Without loss of generality, we assume thatG is obtained by identifying the pairs
of vertices(x1, y1), …, (xk, yk) for somek, or we assume thatG is a disjoint union of the
two stars. LetKq/2,q/2 be a complete bipartite graph on the vertex setNG(u)∪NG(v) with
the bipartition(NG(u),NG(v)). LetM = {x1y1, . . . , xq/2yq/2} andHq = Kq/2,q/2 −M.
ThenHq is a spanning subgraph ofL(G). Therefore,L(G)is bi-pancyclic ifHq is. In the
following, we are going to show thatHq is bi-pancyclic by induction onq.

If q= 8, it is easy to verify thatH8 contains cycles of lengths 4,6 and 8, and henceH8 is
bi-pancyclic. Suppose thatHq is bi-pancyclic forq�8. ThenHq contains cycles of lengths
4,6, . . . , q. We need to show thatHq+2 contains all cycles of lengths 4,6, . . . , q, q + 2. It
is obvious thatHq is a subgraph ofHq+2, thusHq+2 contains cycles of lengths 4,6, . . . , q
by the induction hypothesis. But it is well known thatHq+2 is Hamiltonian (see Chvtal’s
result in Exercise 4.2.6 of Bondy[3]), and hence it contains a(q + 2)-cycle. This proves
thatHq+2 contains all possible even length cycles.�

Let P1 = {G : �(G)>q/2}, P2 = {G : ∃ u �= v ∈ V (G), dG(u) + dG(v)�q},
P3 ={2P3, C5,2K3,K3 +K1,3,W4,K5 −K2} (seeFig. 3) and letP4 be the set of graphs
in Fig. 1.

The following theorem characterizes the pancyclic graphsL(G).

Theorem 2.2. L(G)is pancyclic if and only ifG is not in
⋃4
i=1Pi .

Proof. If L(G)is pancyclic, thenL(G)is Hamiltonian. By Theorem 1.3, we have�(G)�
q/2, dG(u)+ dG(v)�q − 1 for any edgeuv of G, andG is not a graph inFig. 1. If there
are two non-adjacent verticesu andv such thatdG(u)=dG(v)=q/2, thenL(G)is bipartite
and henceL(G)is not pancyclic. It is also easy to verify that forG ∈ P3 the graphL(G)is
not pancyclic since there are no cycles of length 3 inL(G). This proves the necessity of the
theorem.
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We prove the sufficiency by induction on the number of edges inG.
LetG be a graph not in∪4

i=1Pi .
If q = 3, thenG= 3K2. We haveL(G)=K3, which is pancyclic.
If q = 4, thenG is eitherP3 + 2K2 or 4K2. We haveL(P3 + 2K2) = K4 − K2 and

L(4K2)=K4, which are pancyclic.
If q = 5, thenG is one of the graphs in{5P2,3P2 + P3,2P2 + P4, P2 + 2P3, P2 +

P5, P3 + P4, P6}. We have thatL(P6)is a 5-cycle with a chord, which is pancyclic. IfG is
any of the remaining six graphs, thenL(P6)is a spanning subgraph ofL(G), thus,L(G)is
pancyclic.

Now we assumeq�6. If there is an edgeuv such thatG−uv /∈ ⋃4
i=1Pi , thenL(G− uv)is

pancyclic by induction hypothesis. ThusL(G− uv)contains cycles of length 3�k�q−1.
Notice thatL(G− uv)is a subgraph ofL(G)andL(G)is Hamiltonian by Theorem 1.3. The
Hamilton cycle is of lengthq. Therefore,L(G)contains cycles of length 3�k�q and hence
it is pancyclic. We may assume thatG− uv ∈ ⋃4

i=1Pi for any edgeuv ∈ E(G).
Let uv be an edge ofG satisfying the following conditions.

1. dG(u)= �(G) anddG(u)+ dG(v) is maximum among all the edges;
2. subject to condition 1, the edgeuv is contained in the maximum number of 3-cycles

in G.

If G− uv ∈ P1, then there is a vertexx inG− uv of degree larger than(q − 1)/2. If x
is u or v, thendG(u)�dG−uv(x)+ 1>q/2 by the choice ofu andv. SoG ∈ P1, which is
a contradiction. Ifx �= u, thendG(u)+ dG(x)> (q − 1)/2 + (q − 1)/2 = q − 1 implying
thatG ∈ P2, which again is a contradiction.

If G−uv ∈ P2−P1, then there are two verticesx andy inG−uv such thatdG−uv(x)+
dG−uv(y)�q−1. This implies thatdG−uv(x)=dG−uv(y)= (q−1)/2 sinceG−uv /∈P1.
Therefore,q is odd. If x andy are not adjacent inG − uv, thenG − uv is the graph
obtained by identifying some degree one vertices of two(q − 1)/2 stars with centersx
andy, respectively. Ifu /∈ {x, y}, thendG(u)�3. In this case,G must be eitherG7,5 or
G7,6 as shown inFig. 1. ThusG ∈ P4, which is a contradiction. Ifu ∈ {x, y}, then by
the selection ofu, dG(u) = (q + 1)/2>q/2, which is also a contradiction sinceG /∈P1.
Suppose now thatxy is an edge ofG − uv. If uv andxy are incident edges inG, then
dG(x) + dG(y)�q, which is a contradiction asG /∈P2. Souv andxy are independent
edges inG. SinceG /∈P1, dG(u)�q/2. This further implies thatdG(u) = (q − 1)/2.
Moreover, by the selection ofv, dG(v) = (q − 1)/2 (otherwise, selectx andy instead of
u andv). Counting the number of edges incident with the four verticesx, y, u, v, we have
q�dG(u)+dG(v)+dG−uv(x)+dG−uv(y)−��2(q−1)−�, where� is the number of edges
induced by the four verticesu, v, x andy. Hence 6�q�2 + ��8. Recall thatq is odd,
henceq=7. If �=6, then the four verticesu, v, x, y induce aK4 anddG(u)=4>7/2=q/2,
which is a contradiction. Therefore,�=5 and the four vertices induce a subgraph isomorphic
toK4−K2 inG. HenceG ∈ {G7,1,G7,2,G7,3,G7,4,G7,5,G7,6} ⊂ P4 (seeFig. 1), which
is a contradiction.

Note thatG − uv has size at least 5. ThereforeG − uv �= 2P3. Now we only need to
check the cases whenG− uv ∈ (P3 − {2P3}) ∪ P4. We have eitherdG(u)= �(G− uv)

or dG(u)= �(G− uv)+ 1 sincedG(u)= �(G).
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Suppose first thatdG(u)=�(G−uv). From the selection criterion 1 ofu andv (dG(u)=
�(G) anddG(u) + dG(v) is the maximum),G − uv can be only one of the graphs in
A={K3 +K1,3,K5 −K2,G5,2,G5,2,G6,2,G6,3,G6,4,G7,1,G7,2,G7,4}. By considering
further the selection criterion 2 ofu and v (the edgeuv is contained in the maximum
number of triangles), we can reduce the setA to {K5 − K2, G5,2, G7,1, G7,2}. We have
(K5 − K2) + uv = K5 ∈ P4, G5,2 + uv = 2K3 ∈ P3, G7,1 + uv = G8,1 ∈ P4, and
G7,2 + uv =G8,2 ∈ P4. In any case, we obtain a contradiction.

Now we consider the case whendG(u)= �(G− uv)+ 1. From the selection criterion 1
of u andv (dG(u)= �(G) anddG(u)+ dG(v) is the maximum),G− uv can be only one
of the graphs inA= {C5, 2K3,K3 +K1,3,G5,1,G5,2,G5,3, G6,1, G6,2, G6,3, G6,4, G7,2,
G7,3, G7,4,G7,5, G7,6,G7,9,G7,10,G8,2,G8,4}. When considering the selection criterion
2 of u andv (uv is contained in the maximum of triangles),A can be further reduced to
{C5, 2K3,K3 +K1,3,G5,2,G5,3, G6,2, G6,3, G6,4, G7,3, G7,4,G7,5, G7,6,G7,10}.

If G−uv ∈ {C5,K3+K1,3,G5,2,G5,3,G6,2,G6,4,G7,5,G7,6}, thendG(u)+dG(v)�q.
ThusG ∈ P2, which is a contradiction.

If G− uv=G6,3, thendG(u)= 4>7/3 andG ∈ P1, which is a contradiction. We note
thatG7,3 + uv =G8,3 ∈ P4,G7,4 + uv =G8,4 ∈ P4.

If G − uv = 2K3, thenG is the graphH1 as shown inFig. 4 (uv is the edge with label
7), andL(H1)is pancyclic. Finally ifG− uv =G7,10, thenG is the graphH2 as shown in
Fig. 4(c) (uv is the edge with label 4).L(H2)is the graph as shown inFig. 4(b). It is easy
to check thatL(H2)is pancyclic.

This completes the proof.�

It is well known that both the Hamiltonian problem and Hamilton-path problem are NP-
complete for general graphs. For any graphG, letG′ be the graph obtained by adding to
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G a new vertexv and edgesvu for all u ∈ V (G). It is easy to see thatG has a Hamilton
path iffG′ is pancyclic. Moreover, this transformation is linear. This proves the following
results, which may be not new.

Theorem 2.3. The problem that decides whetherG is pancyclic on a given graphG is
NP-complete.

For the class of complements of line graphs, our characterization provides the following
linear time algorithm recognizing pancyclic complements of line graphs.

Theorem 2.4. The problem that decides whetherL(G) is pancyclic or bi-pancyclic on a
given graphG is linear-time solvable.

Proof. It takes time O(p) to determine whetherG contains two nonadjacent vertices of
degreeq/2 or whetherG ∈ P1; it takes time O(p + q) to verify whetherG ∈ P2; it takes
constant time to check whether a given graphG is in B, P3 or P4. The input ofG takes
time O(p + q). Now the theorem follows from Theorems 2.1 and 2.2.�

The concept of pancyclic graph was first introduced by Bondy. He also made the following
“meta-conjecture”:every condition which implies that a graph is Hamiltonian also implies
that it is pancyclic, with the possible exception of a simple family of exceptional graphs.
Although this meta-conjecture is sometimes false, it turns out to be true for the family of
complements of line graphs.

Theorem 2.5. L(G)is pancyclic or bi-pancyclic if and only ifL(G)is Hamiltonian and
G /∈ {C5,W4,K5 −K2,K2,3}.

Proof. If L(G)is pancyclic or bi-pancyclic, thenG /∈ {C5,W4,K5−K2,K2,3}, andL(G)is
Hamiltonian.

Conversely, ifL(G)is Hamiltonian andG /∈ {C5,W4,K5−K2,K2,3}, thenG /∈P1∪P4.
If L(G)is not a balanced bipartite graph, thenG /∈P3. Note thatdG(u) + dG(v)�q − 1
for any edgeuv in G by Theorem 1.3, so ifG ∈ P2, then there are nonadjacent vertices
u andv such thatdG(u) + dG(v)�q. This implies thatdG(u) = dG(v) = q/2 and thus
L(G)is a balanced bipartite graph. This is a contradiction. Therefore,G /∈P2. By Theorem
2.2,L(G)is pancyclic.

If G is a balanced bipartite graph, then there are two nonadjacent vertices of
degreeq/2 for q�8 or G ∈ B ∪ {K2,3} when q�6. But G �= K2,3, thusL(G)is
bi-pancyclic. �

Combining Theorems 1.3 and 2.5 we have the following characterization.

Corollary 2.6. L(G)is pancyclic or bi-pancyclic if and only if�(G)�q/2, dG(u) +
dG(v)�q−1 for any two adjacent verticesu andv,andG /∈P4∪{C5,W4,K5−K2,K2,3}.
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