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Abstract

We characterize grapl such that the complements of their line graphs are pancyclic.
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1. Introduction

By a graphG we mean a simple finite undirected graph. The vertex sét & V (G)
and the edge set i&(G). The order, size and maximum degreef G are denoted by
P(G)(=IV(G))), ¢(G)(=|E(G)]) and4(G), respectively.

We useNg (1) to denote the set of vertices adjacent:tm G, and Eg (1) to denote the
set of edges incident with in G. dg (1) is the degree of in G.

Theline graphof G, denoted by (G), has vertex seE (G); two verticese; andey of
L(G) are adjacent if and only if they are incident as edge& iThe complement graph
Gof G has the same vertex SétG) asG; two vertices are adjacent @ if and only if they
are not adjacent iv. ThusL(G)is the complement of.(G).

If wis an isolated vertex af, thenL(G — w) = L(G) andL(G — w) = L(G). Hence
we can always assume that there are no isolated verticggsnhen we consideL (G) or
L(G).
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A graph ispancyclicif there is a cycle of length for each Xk < p. If a graphG is a
bipartite graph, it does not contain any odd cycles. But if a bipartite géaph(X, Y) is
balancedthat is, the two color classésandY have the same number of vertices, then we
can expect cycles of lengttk 2or 2<k < p/2. Therefore, we define a bipartite graph to be
bi-pancyclicif it contains cycles of length2for 2<k < p/2.

If G, andG2 are vertex disjoint, then we ugg; + G2 to denote the disjoint union of the
two graphs. We also usaG to denote the vertex disjoint union efcopies ofG. Notation
and terminology not mentioned above can be foun@jn

Nebesky[8] showed the following result.

Theorem 1.1. If G is a graph of order>5, then at least one of the following statements
holds

(@) G is connected and(g) is Hamiltonian
(b) G is connected and (G) is Hamiltonian

This result was improved if9] as follows.

Theorem 1.2. If G is a graph of order> 6, then at least one of the following statements
holds

(a) G is connected and (G) is pancyclic
(b) G is connected and.(G) is pancyclic

Though at least one df(G) andL(G) is Hamiltonian or pancyclic, it is NP-complete to
decide which one is. IfY], we studied the Hamiltonian problem for the class of complements
of line graphs, and obtained the following characterization.

Theorem 1.3. The graphlL (G)is Hamiltonian if and only i1(G) <¢/2,dg (1) +dg (v) <
g — 1for any two adjacent verticasandv, and G is not one oR2 graphs in Fig 1.

This characterization provides a linear time recognition algorithm determining géaphs
such thatZ (G)are Hamiltonian.

In this paper, we study the pancyclic property (which is stronger than the Hamiltonian
property) of the class of complements of graphs. We characterize all graphs such that the
complement graphs of their line graphs are pancyclic or bi-pancyclic. Again, this charac-
terization provides a linear recognition algorithm determining grapbsich that. (G)are
pancyclic.

2. The main results

Let # = (2P3, 2K3, 2K1.3, K3 + K13, G1, G2} (seeFig. 2).
We have the following characterization of bi-pancyclic grapké&).

Theorem 2.1. L(G)is bi-pancyclic if and only; is even and5 is in 4 wheng =4, 6,and
there exist two nonadjacent vertices of degy¢2 wheng > 8.
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Proof. If L(G)is bi-pancyclic, therL.(G)must be a balanced bipartite graph. So the vertex
set of L(G)can be partitioned into two independent sets of equal cardinalify=1#, then
L(G)isa4-cycle. Thereforg;=2P3 € 4. If g=6, then corresponding to each independent
set inL(G)is either a triangle or a 3-star i@. It is easy to verify that a triangle cannot
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intersect any triangle or star i, and two stars can intersect h at a maximum of two
vertices of degree one. Therefote,c 4. Suppose now that> 8. Then each independent

set corresponds tog/2-star inG, and the tway /2-stars share no common edge£.66)is

a balanced bipartite graph and contains no isolated vertex. This implies that the two centers
of the two stars are nonadjacent and have degyge

To prove the sufficiency, suppoéess a graph inZ or there are two distinct verticasand
v such thatl(u) =d(v) = ¢q/2. Itis easy to check thdt(G)is bi-pancyclic ifG € %. Now
suppose thag>8 and letNg (1) ={x1, x2, . .., x4/2} andNg (v) ={y1, y2, . .., ¥4,2}. Then
G is the graph obtained by identifying some of the verticeN (i) and some vertices in
Ng (v). Without loss of generality, we assume tliais obtained by identifying the pairs
of vertices(x1, y1), ..., (xk, yx) for somek, or we assume that is a disjoint union of the
two stars. LeiK, /2 ,/2 be a complete bipartite graph on the vertexiégtu) U Ng (v) with
the bipartition(Ng (1), Ng(v)). Let M = {x1y1, ..., x4/2Y4/2} and Hy = K2 472 — M.
ThenH, is a spanning subgraph of(G). Therefore L(G)is bi-pancyclic ifH, is. In the
following, we are going to show thdi, is bi-pancyclic by induction og.

If ¢ =8, itis easy to verify thatlg contains cycles of lengths 8 and 8, and hencHs is
bi-pancyclic. Suppose thai, is bi-pancyclic forg > 8. ThenH, contains cycles of lengths
4,6, ...,q. We need to show tha{, ,, contains all cycles of lengths 8, ..., q,q + 2. It
is obvious that, is a subgraph off, >, thusH, > contains cycles of lengths 8, ..., ¢
by the induction hypothesis. But it is well known thé} > is Hamiltonian (see Chvtal's
result in Exercise 4.2.6 of Bond]), and hence it contains(@ + 2)-cycle. This proves
that H,  » contains all possible even length cycles.]

Let 71 ={G : 4(G)>q/2}, P2 ={G : Ju # v € V(G), dg(u) + dg(v) 24},
P3={2P3, Cs, 2K3, K3+ K13, Wa, K5 — K>} (seeFig. 3) and let?4 be the set of graphs
in Fig. 1L

The following theorem characterizes the pancyclic grap{G).

Theorem 2.2. L(G)is pancyclic if and only if5 is not in U?:lg)i-

Proof. If L(G)is pancyclic, ther.(G)is Hamiltonian. By Theorem 1.3, we hav&G) <
q/2,dc ) + dg(v) <g — 1 for any edgerv of G, andG is not a graph irFig. 1 If there
are two non-adjacent verticesandv such thati; (1) =dg (v) =¢/2, thenL(G)is bipartite
and hence (G)is not pancyclic. It is also easy to verify that f6re 23 the graphL (G)is
not pancyclic since there are no cycles of length B (). This proves the necessity of the
theorem.
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We prove the sufficiency by induction on the number of edge&s.in

Let G be a graph not iv?_; ;.

If ¢ =3, thenG = 3K,. We haveL(G) = K3, which is pancyclic.

If ¢ =4, thenG is either P3 + 2K, or 4K,. We haveL(P3 + 2K2) = K4 — K, and
L(4K2) = K4, which are pancyclic.

If ¢ =5, thenG is one of the graphs if6P2, 3P + P3,2P2 + P4, P> + 2P3, Po +
Ps, P3+ P4, Ps}. We have thal.(Pg)is a 5-cycle with a chord, which is pancyclic.df is
any of the remaining six graphs, thériPg)is a spanning subgraph 6{G), thus,L(G)is
pancyclic.

Nowwe assume > 6. Ifthere is an edgev suchthatG —uv ¢ Uf’zlg’i, thenL(G — uv)is
pancyclic by induction hypothesis. Thii$G — uv)contains cycles of length8k <¢ — 1.
Notice thatL (G — uv)is a subgraph of (G)andL (G )is Hamiltonian by Theorem 1.3. The
Hamilton cycle is of lengtly . Therefore L (G)contains cycles of length8k < ¢ and hence
it is pancyclic. We may assume th@t— uv € Uf;lg”i for any edgeiv € E(G).

Letuv be an edge of; satisfying the following conditions.

1. dg(u) = A(G) anddg (u) + dg (v) is maximum among all the edges;
2. subject to condition 1, the edge is contained in the maximum number of 3-cycles
inG.

If G —uv € 21, then there is a vertexin G — uv of degree larger tha@y — 1)/2. If x
isu orv, thendg (1) >dg—_,,(x) + 1> g /2 by the choice ofi andv. S0G € #24, which is
a contradiction. Ifx # u, thendg (u) +dg(x) > (¢ —1)/2+ (¢ — 1)/2=¢g — 1 implying
thatG € #,, which again is a contradiction.

If G—uv € #2— 21, thenthere are two verticesandy in G — uv such thatlg_,,, (x) +
dG—uy(y) = q — 1. Thisimplies thatlg_,, (x) =dG—uv (y) = (g — 1) /2 sinceG — uv ¢ P1.
Therefore,q is odd. If x and y are not adjacent itG — uv, thenG — uv is the graph
obtained by identifying some degree one vertices of twe- 1)/2 stars with centers
andy, respectively. Ifu ¢ {x, y}, thends (1) <3. In this caseG must be eitheiG7 5 or
G7.6 as shown irFig. L ThusG € 24, which is a contradiction. Ifi € {x, y}, then by
the selection ofi, dg (1) = (¢ + 1)/2 > ¢ /2, which is also a contradiction since¢ #1.
Suppose now thaty is an edge ofG — uv. If uv andxy are incident edges iv, then
dg(x) + dg(y) =¢, which is a contradiction a§ ¢ #,. Souv andxy are independent
edges inG. SinceG ¢ 21, dg(u) <q/2. This further implies thatlg (1) = (¢ — 1)/2.
Moreover, by the selection af, dg(v) = (¢ — 1)/2 (otherwise, select andy instead of
u andv). Counting the number of edges incident with the four vertices u, v, we have
qg>2deWw)+dc(W)+dG—yy(x)+d—uy(y)—e>2(q—1)—¢, wheregis the number of edges
induced by the four vertices, v, x andy. Hence ¢ <2 + ¢<8. Recall thaly is odd,
hence; =7. If e=6, then the four verticas, v, x, y induce aK4 anddg (u)=4 > 7/2=q/2,
whichis a contradiction. Therefore=5 and the four vertices induce a subgraph isomorphic
to K4— K2in G.HenceG € {G7,1,G7.2, G7.3, G7.4, G715, G7,6} C P4 (Se€Fig. 1), which
is a contradiction.

Note thatG — uv has size at least 5. Therefofe— uv # 2P3. Now we only need to
check the cases wheh — uv € (23 — {2P3}) U Z4. We have eithedlg (u) = A(G — uv)
ordg(u) = A(G — uv) + 1 sincedg (u) = A(G).
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Suppose first that; (u) = 4(G — uv). From the selection criterion 1 afandv (dg (1) =
A(G) anddg(u) + dg(v) is the maximum),G — uv can be only one of the graphs in
A={K3+ K13, K5 — K>, Gs, G52, Ge2, Ge 3, Gs.4, G7,1, G7,2, G7,4}. By considering
further the selection criterion 2 of andv (the edgeuv is contained in the maximum
number of triangles), we can reduce the deib {Ks — K2, Gs2, G7.1, G7.2}. We have
(Ks — K2) + uv = K5 € P4, Gs2 + uv =2K3 € #3, G71 +uv = Gg1 € Z4, and
G72+uv=Gg € 4. In any case, we obtain a contradiction.

Now we consider the case whép (u) = 4(G — uv) + 1. From the selection criterion 1
of u andv (dg (u) = 4(G) anddg (1) + dg (v) is the maximum)G — uv can be only one
of the graphs iM = {Cs, 2K3, K3+ K13, G5.1, G52, G5.3, Ge 1, Ge,2, G6.3, Ge.4, G7.2,
G73, G7.4,G75, G76, G7,9, G7.10, Gg.2, Gg.4}. When considering the selection criterion
2 ofu andv (uv is contained in the maximum of triangles),can be further reduced to
{Cs, 2K3, K3 + K13, G52, G53, G62, G6 3, Gg,4, G7,3, G7,.4, G75, G7.6, G7,10}-

If G—uv € {Cs, K3+K13,Gs2,G53,Gs2,Ge 4, G175, G7,6}, thendg (u) +dg (v) >¢q.
ThusG € 25, which is a contradiction.

If G —uv=_Gez, thendg(u) =4>7/3 andG € £1, which is a contradiction. We note
thatG73 4+ uv=Gg3 € Z4, G744+ uv=Gga € Za.

If G —uv = 2K3, thenG is the graphH1 as shown irFig. 4 (uv is the edge with label
7), andL (H)is pancyclic. Finally ifG — uv = G7,10, thenG is the graphH> as shown in
Fig. 4(c) (uv is the edge with label 4).(H>)is the graph as shown Fig. 4(b). It is easy
to check thatl (Ho)is pancyclic.

This completes the proof.[]

It is well known that both the Hamiltonian problem and Hamilton-path problem are NP-
complete for general graphs. For any graphlet G’ be the graph obtained by adding to
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G a new vertexo and edgesu for all u € V(G). It is easy to see thak has a Hamilton
path iff G is pancyclic. Moreover, this transformation is linear. This proves the following
results, which may be not new.

Theorem 2.3. The problem that decides wheth@ris pancyclic on a given graply is
NP-complete

For the class of complements of line graphs, our characterization provides the following
linear time algorithm recognizing pancyclic complements of line graphs.

Theorem 2.4. The problem that decides whethe(¢G) is pancyclic or bi-pancyclic on a
given graphG is linear-time solvable

Proof. It takes time Qp) to determine whethet contains two nonadjacent vertices of
degree; /2 or whethelG € #4; it takes time Qp + ¢) to verify whetherG € 2,; it takes
constant time to check whether a given graplis in 4, #3 or 24. The input ofG takes
time O(p + ¢). Now the theorem follows from Theorems 2.1 and 2.2]

The concept of pancyclic graph was firstintroduced by Bondy. He also made the following
“meta-conjecture”every condition which implies that a graph is Hamiltonian also implies
that it is pancyclic, with the possible exception of a simple family of exceptional graphs
Although this meta-conjecture is sometimes false, it turns out to be true for the family of
complements of line graphs.

Theorem 2.5. L(G)is pancyclic or bi-pancyclic if and only if (G)is Hamiltonian and
G ¢{Cs, Wa, K5 — K2, K23}

Proof. If L(G)is pancyclic or bi-pancyclic, the@ ¢ {Cs, Wa, K5 — K2, K23}, andL(G)is
Hamiltonian.

Conversely, ifL. (G)is Hamiltonian ands ¢ {Cs, Wa, K5 — K2, K23}, thenG ¢ 21U 2.
If L(G)is not a balanced bipartite graph, thérg 23. Note thatdg (1) + dg(v) <g — 1
for any edge:v in G by Theorem 1.3, so it; € #2, then there are nonadjacent vertices
u andv such thatdg (1) + dg(v) <g. This implies thatdg (1) = dg(v) = ¢/2 and thus
L(G)is a balanced bipartite graph. This is a contradiction. TheretoteZ,. By Theorem
2.2,L(G)is pancyclic.

If G is a balanced bipartite graph, then there are two nonadjacent vertices of
degreeq/2 for =8 or G € # U {K3} wheng<6. But G # Kj3, thus L(G)is
bi-pancyclic. O

Combining Theorems 1.3 and 2.5 we have the following characterization.

Corollary 2.6. L(G)is pancyclic or bi-pancyclic if and only i#1(G)<q/2, dc(u) +
dg (v) <g—1forany two adjacent verticesandv, andG ¢ 24U{Cs, W4, Ks— K2, K2 3}.
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