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Abstract
Let f = (f1,..., fn) be an n-tuple of formal power series in noncommutative indeterminates Z1, ..., Z,
such that f(0) = 0 and the Jacobian detJ#(0) # 0, and let g = (g1, ..., gn) be its inverse with respect to

composition. We assume that f and g have nonzero radius of convergence and g is a bounded free holo-
morphic function on the open unit ball [B(#)"], where B(H) is the algebra of bounded linear operators
an a Hilbert space H. In this paper, several results concerning the noncommutative multivariable operator
theory on the unit ball [B(H)"]l_ are extended to the noncommutative domain

Br(H):={XeBH)": g(f(X))=Xand | f(X)| <1}

for an appropriate evaluation X — f(X). We develop an operator model theory and dilation theory for
B ¢ (H), where the associated universal model is an n-tuple (Mz, , ..., Mz, ) of left multiplication operators
acting on a Hilbert space H%( f) of formal power series. All the results of this paper have commutative
versions.
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0. Introduction

In the last sixty years, the study of the unit ball of the algebra B(#), of all bounded linear
operators on a Hilbert space, has generated the celebrated Sz.-Nagy—Foiag theory of contractions
[37] and has had profound implications in mathematics and applied mathematics. In the last three
decades, a free analogue of Sz.-Nagy—Foiag theory on the unit ball of B(7{)" has been pursued
by the author and others (see [29,31], and the references therein). This theory has already had
remarkable applications in complex interpolation on the unit ball of C", multivariable prediction
and entropy optimization, control theory, systems theory, scattering theory, and wavelet theory.
On the other hand, it has been a source of inspiration for the development of several other areas
of research such as tensor algebras over C*-correspondences and free semigroup (resp. semi-
groupoid, graph) algebras (see [12-14]).

The present paper is an attempt to find large classes of noncommutative multivariable func-
tions g : 2 C [B(H)"]; — B(H)" for which a reasonable operator model theory and dilation
theory can be developed for the noncommutative domain g(£2). In other words, we want to
transfer the free analogue of Sz.-Nagy-Foiag theory from the unit ball [B(7{)"]; to other non-
commutative domains in B(#)", using appropriate maps.

In Section 1, we obtain inverse mapping theorems for formal power series in noncommu-
tative indeterminates Z, ..., Z,, and also for free holomorphic functions. More precisely, we
show that an n-tuple f = (f1,..., fu) of formal power series with f(0) = 0 has an inverse
g =(g1,.-.,gn) with respect to composition if and only if the Jacobian det J;(0) # 0. If, in
addition, f and g have nonzero radius of convergence, we prove that there are open neighbor-
hoods D and G of 0 in B(#H)" such that f|p : D — G and g|g : G — D are free holomorphic
functions inverses to each other.

Let f = (f1,..., fn) be an n-tuple of formal power series in indeterminates Zi, ..., Z,
such that f(0) =0 and det J7(0) # 0, and assume that f and its inverse g = (g1, ..., &) have
nonzero radius of convergence. By re-scaling, we can assume without loss of generality that g is
a bounded free holomorphic function on the open unit ball

[BAA)"], ={X=X1..... X)) e B(H)": X X] +---+ X, X} < I}.
‘We consider the noncommutative domain

Br(H):={X e B(H)": g(f(X))=Xand | f(X)| <1}
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for an appropriate evaluation X — f(X) and using the functional calculus for row contractions
to define g(f(X)). We remark that the domain above makes sense if we remove the condition
f(0) =0 and ask instead that f and g be n-tuples of noncommutative polynomials or certain free
holomorphic functions. In this paper, several results concerning noncommutative multivariable
operator theory on the unit ball [B(#)"]| are extended to the noncommutative domain B s (H).

In Section 2, we introduce three classes of n-tuples f = (f1,..., f) for which an operator
model theory and dilation theory for the domain IB ¢ (#) will be developed. These classes con-
sist of noncommutative polynomials, formal power series with f(0) = 0, and free holomorphic
functions, respectively. When f belongs to any of these classes, we say that it has the model
property. In this case, each domain B { has a universal model (Mz,, ..., Mz,) of multiplication
operators acting on a Hilbert space H“( f) of formal power series.

In Section 3, we show that T = (T, ..., T,) € B(H)" is a pure n-tuple of operators in B r (H)
if and only if there exists a Hilbert space D and a co-invariant subspace M C H?(f) ® D under
Mz, ®lIp, ..., Mz, ® Ip such that the n-tuple (71, ..., T,) is unitarily equivalent to

(PM(Mz, ®@ ID)| M. - ... Prm(Mz, ® ID)| ).
The C*-algebra C*(Mz,, ..., Mz,) turns out to be irreducible and
ME[MZ]':<Zj7Zi>H2(f)IH2(f)7 l,]E{l,,n}

If, in addition, f has radial approximation property, that is, there is § € (0, 1) such that rf has
the model property for any r € (8, 1), we prove that, for any T := (11, ..., T,) € By (H), there is
a unique unital completely contractive linear map

lI’f’T . C*(le, ey Mzn) i B(H)
such that
Wrr(Mz,M7,) =T.T5, o BeF,,

where T, :=T;,---T;, if @ = gi, ---gi, is a word in the free semigroup F," with generators
g1,.-.,8n- As a consequence we obtain a minimal dilation of 7 which is unique up to an iso-
morphism.

We define the domain algebra A(B ¢) as the norm-closure of all polynomials in Mz, , ..., Mz,
and the identity. Under natural conditions on f, we use Paulsen’s similarity result [16] to obtain
a characterization for the completely bounded representations of A(IB 7). We also show that the
set M A ) of all characters of A(B ) is homeomorphic to g(B,), where B, is the closed unit
ball of C”".

In Section 4, we provide a Beurling [5] type characterization of the invariant subspaces un-
der the multiplication operators Mz, ..., Mz, associated with the noncommutative domain
B . More precisely, we show that if f = (fi,..., fu) is an n-tuple of formal power series
with the model property, then a subspace N' C H?(f) ® H is invariant under each oper-
ator Mz, ® Iy, ...,Mz, ® I3 if and only if there exists an inner multi-analytic operator
v HA(f) ® € — H2(f) ® H with respect to Mz,,..., Mz,, i.e., ¥ is an isometry and
UMz, ® Ie) =Mz, ® Iy)¥ foranyi=1,...,n,such that

N=v[H*(f)®£].
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Using some of the results of this section and noncommutative Poisson transforms associated
with the noncommutative domain By, we provide a minimal dilation theorem for pure n-tuples
of operators in B s (), which turns out to be unique up to an isomorphism.

In Section 5, we show that the eigenvectors for M ;1’ e, MZ are precisely the noncommu-
tative Poisson kernels associated with the noncommutative domain B  at the points in the set

B7(C):={reC" g(f()=2rand | f)] <1},

that is, the formal power series

172

FA;:(]—Z!ﬁ(A)V) Y [FW)], fur reBFO).
i=1

ackF’

Moreover, they satisfy the equations M7 = AT, i=1,...,n. We define the noncommu-
tative Hardy algebra H>°(B) to be the "'WOT-closure of all noncommutative polynomials in
Mz, ..., Mz, and the identity, and show that it coincides with the algebra of bounded left multi-
pliers of Hz( f). The symmetric Hardy space ]HI?( f) associated with the noncommutative domain
B s is defined as the subspace H?( ) © J.(1), where J. is the WOT-closed two-sided ideal of the
Hardy algebra H*°(B ) generated by the commutators

MzMz, — Mz, Mz, i,j=1,....n.

We show that ]HIZ( f) =span{l): A € IB%<((C)} and can be identified with a Hilbert space

H 2(]E%< (©)) of holomorphic functions on B< (©), namely, the reproducing kernel Hilbert space
with reproducmg kernel A : IB<((C) X IB<((C) — C defined by

1
Ap(u, h) = A peBI).
S =TS gy, RS

The algebra PHz( f)H B f)|]H[2( ) coincides with the WOT-closed algebra generated by the
operators L; := PHz( f)M Z; |H2( 1) i =1,...,n, and can be identified with the algebra of all

multipliers of the Hilbert space H 2(B< ((C)) Under this identification the operators L1, ..., L,
become the multiplication operators MZ ..., M, by the coordinate functions. The n-tuple
(L1, ..., Ly;) turns out to be the universal model for the commutative n-tuples from B ¢ ().

In Section 6, we define the characteristic function of an n-tuple T = (11, ..., T;) € By (H)
to be a certain multi-analytic operator @7 : H2(f) @ D T —> H2(f) @ D r,7 with respect
to Mz,,...,Mz,, and point out a natural connection with the characteristic function of a row
contraction [19]. We present a model for pure n-tuples of operators in the noncommutative do-
main B¢ (#) in terms of characteristic functions, and show that the characteristic function is a
complete unitary invariant for pure n-tuples of operators in B ().

Using ideas from [27], we introduce in Section 7 the curvature invariantof 7 = (71, ..., T,) €
B (H) by setting

trace[K;T(ng QIp,;)Kyr]

i trace[ K, (Q<m) K .1,

curvg(T) :=

)
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where K 7,7 is the noncommutative Poisson kernel associated with T', and Q;,, m =0,1, ...,
is the orthogonal projection of H?( f) on the linear span of the formal power series f,, o € FY
with |o| < m. We show that the limit exists and provide an index type formula for the curvature
in terms of the characteristic function. One of the main goals of this section is to show that the
curvature is a complete numerical invariant for the finite rank submodules of the free Hilbert
module H?( f) ® K, where K is finite dimensional. Here, the Hilbert module structure of H2( f)
over C[Zy, ..., Z,] is defined by the universal model (Mz,, ..., Mz ) by setting

p-h:=pMgz,,...,Mz)h, peCl[Zy,...,Z,) and h € H>(f).

In our setting, the Hilbert module H?( f) occupies the position of the rank-one free module in
the algebraic theory [11].

In Section 8, we use the commutant lifting theorem for row contractions [18], to deduce
an analogue for the pure n-tuples of operators in the noncommutative domain B (). As a
consequence, and using the results from Section 5, we solve the Nevanlinna Pick interpolation
problem for the noncommutative Hardy algebra H°°(B ). We show that if A1,..., A, are m
distinct points in IB%; (C) and Ay, ..., Ay € B(K), then there exists @ € H* (B ;)®B(K) such
that

[@l<1 and PG j)=A;, j=1,....m,

if and only if the operator matrix

[ Ik — Ai A% }
- 2221 fk(ki)fk()\j) mxm

is positive semidefinite.

We remark that, using the results from Section 5, we can provide commutative versions for all
the results of the present paper. Moreover, a model theory and dilation theory for not necessarily
pure n-tuples of operators in the noncommutative domain B (H) (resp. varieties in B ¢ (H)) is
developed in a sequel to the present paper.

1. Inverse mapping theorem for free holomorphic functions

Initiated in [30], the theory of free holomorphic (resp. pluriharmonic) functions on the unit
ball of B(H)", where B(H) is the algebra of all bounded linear operators on a Hilbert space H,
has been developed very recently (see [32-34]). Several classical results from complex analysis
and hyperbolic geometry have free analogues in this noncommutative multivariable setting.

In this section, we obtain inverse mapping theorems for formal power series in noncom-
mutative indeterminates and for free holomorphic functions. We recall [30] that a free holo-
morphic functions on the open operatorial n-ball of radius y > 0 (or y = 00) is defined
as a formal power series f = Zae]F,T ayZy in noncommutative indeterminates Zi, ..., Z,

with radius of convergence r(f) > vy, ie., {am}aeﬂzzr are complex numbers with r(f y =
1imsupk~>oo(2|a|:k|a01|2)1/2k < 1/y, where F is the free semigroup with n generators
gl,..., 8 and the identity go. The length of « € ;' is defined by |o| := 0 if @ = gy and
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la| :==k if & =g, ---gi,, where i,..., i e {l,...,n}. If (X1,...,X,) € B(H)", we denote
Xy :=Xj - Xj and X := I34. A free holomorphlc function f on the open ball

[BH)"], = {(X1, ..., X)) € BOD": | X1 X+ + X, X572 <y},

is the evaluation of f on the Hilbert space 7, that is, the mapping

[BAD'], > (X1, Xp) > f(X1so, Xn) =) D aoXa € B(H),

k=0 |or|=k

where the convergence is in the operator norm. Due to the fact that a free holomorphic function
is uniquely determined by its representation on an infinite dimensional Hilbert space, throughout
this paper, we identify a free holomorphic function with its evaluation on a separable infinite
dimensional Hilbert space.

A free holomorphic function f on [B(H)"], is bounded if || f||oc := sup || f (X)|| < oo, where
the supremum is taken over all X € [B(H)"], and H is an infinite dimensional Hilbert space.
Let Hb"oll be the set of all bounded free holomorphic functions and let Apan, be the set of all

elements f €H bau such that the mapping

has a continuous extension to the closed ball [B(’H)”] . We showed in [30] that H ball, and Aban
are Banach algebras under pointwise multiplication and the norm || - ||co-

Foreachi =1,...,n, we define the free partial derivation % on C[Zy,..., Z,], the algebra
of noncommutative polynomials with complex coefficients and indeterminats Zy, ..., Z,, as the

unique linear operator on this algebra, satisfying the conditions

ol 0Z; 0Z; e
=0, =1, =0 ifi#j,
0Z; 0Z; 0Z;

and

Aey) 8s0 w 81#
9Z; Yaz;

for any ¢,y € C[Zy,...,Z,] and i, j = 1,...n. Note that if « = g; o 8iys || = p, and ¢

of the g, ..., g, are equal to g;, then gg"_ is the sum of the ¢ words obtained by deleting
J
each occurrence of Zj in Zy := Z;, --- Z;, and replacing it by the identity /. The directional

0Zy

derivative of Z, at Z; in the direction Y, denoted by (57 )[Y ], is defined similarly by replacing

each occurrence of Z; in Zy :=Z;, - -+ Zi, by Y (see [ (aza)[[] These
definitions extend to formal power series in the noncommuting indetermmates Z Loeoes Zy If
F:= ) ayZ, is a power series, then the free partial derivative of F with respect to Z; is the

aEFI
o OF . 2y
power series 37— 1=} gt da 57
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We denote by S[Zy, ..., Z,] the algebra of all formal power series in noncommuting in-
determinates Zi, ..., Z, and complex coefficients. We remark that, for any power series G €
S[Zlv ey Zn]a

oF 0Zy
Gl:= G
<3Zi)[ ] Zaa<321)[ ]
acelF,y
is a power series in S[Z1, ..., Z,]. Indeed, it is enough to notice that all the monomials of degree
m>=1in Zy,...,Z, occur in the sum ijol Zlal:k(%)[G]. Consequently, we can use the

directional derivative of F at Z; to define the mapping

<3F>:S[Zl,...,Z,,]—>S[Zl,...,Z,,], g|—>(8F)[G].

BZi 8Zi
Let H be a formal power series in indeterminates Wy, ..., W, and let G = (G, ..., G,) be an
n-tuple of formal power series in indeterminates Z1, ..., Z, with G(0) = 0. Then we have the

following chain rule

d(H o G) _i{( OH )[8Gk“

where Z =(Zy,...,Zy) and W = (Wy, ..., W,). Let F := (Fy, ..., F,) be an n-tuple of formal

power series in indeterminates Wy, ..., W,,. We define the Jacobian matrix of F to be Jg :=
[;%]nxn with entries in S[Wq, ..., W,]. Note that
J

re= [

nxn

which, symbolically, can be written as

B 0F; IGk
(/L) 0 Jo = [(aWk>[']an ¢ [ﬁ}

which is the substitute for the matrix multiplication from the commutative case. In particular, we
can easily deduce the following result.

Lemma 1.1. Let F := (Fy,..., F,) and G := (G1,...,Gy) be formal power series in n-
indeterminates and such that G(0) = 0. Then

JFoG(0) = Jr(0)JG (0).

If F is an n-tuple of noncommutative polynomials, the condition G(0) = 0 is not necessary.



G. Popescu / Journal of Functional Analysis 262 (2012) 3240-3308 3247

Theorem 1.2. Let f = (f1,..., fu) be an n-tuple of formal power series in indeterminates
Z1, ..., Zy and with the property that

ofi
det J £ (0) := det
et/ (©) e[az

o
Z=0

Then the set { fu}, cFF 18 linearly independent in the complex vector space of all formal power
series in noncommuting indeterminates Z1, ..., Z, and complex coefficients.

J

Proof. First, we consider the case when f(0) =0. Let A := Jy (0)!, where ¢t stands for the
transpose, and let f = G =[G, ...G,] be an n-tuple of power series in noncommuting inde-
terminates Z, ..., Z,, of the form G =[Zy,...,Z,]JA+[0Q1, ..., Q,], where Oy, ..., Q, are
noncommutative power series containing only monomials of degree greater than or equal to 2.
In what follows, we prove that the composition map Cg : S[Zy, ..., Z,] = S[Zy, ..., Z,] de-
fined by Cg¥ := ¥ o G is an injective homomorphism. Let F' be a formal power series such
that F o G = 0. Since A € M, , there is a unitary matrix U € M,,«, such that U~YAU is an
upper triangular matrix. Setting @y :=[Z1, ..., Z,]U, the equation F o G =0 is equivalent to
F'oG' =0, where F':= @y o F o @;;—1 and

G =PyoGo®y_1=[Z,..., Z,JU AU + U701, ..., 0,1U.

Therefore, we can assume that A = [a;;] € M, x, is an invertible upper triangular matrix and,
therefore a;; # 0 forany i = 1, ..., n. We introduce a total order < on the free semigroup I, as
follows. If &, B € F; with |a| < |B| we say that @ < B. If a, B € F;" are such that |a| = | 8], then
=g gand B=gj ---gj forsomeiy,...,ig, j1,..., jx €{1,...,k}. We say thata < B
if either iy < j; or there exists p € {2,...,k} such that iy = ji,...,ip—1 = jp—1 and i) < jp.
The relation < is a total order on F,". According to the hypothesis and due to the fact that A is
an upper triangular matrix, we have

J
Gj=)Y ajZi+Q;. j=1,...n (1.1)
i=1
Consequently, if &« = g;, --- gi, € Fl, i1, ...ix € {1,...,n}, then
Go =G, Giy = L= +aji, -+ iy Za + 9@, (1.2)

where L=% is a power series containing only monomials Zg such that |8| = |«| and 8 < «, and
W@ is a power series containing only monomials Z, with |y| > |a| + 1.

Now, assume that F' has the representation F' = Z;OZO Zlalzp caZy, cq € C, and satisfies
the equation F o G = 0. We will show by induction over p, that Z‘ al=p CaZa =0 for any p =
0,1, .... Note that the above-mentioned equation is equivalent to

>3 Gy =0. (1.3)

p=0|a|=p
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Due to relation (1.1), we have cp = 0. Assume that ¢, =0 for any o € IF;:‘ with |«| < k. Accord-
ing to Egs. (1.2) and (1.3), we have

o
Y L™+ da@Za +¥ D)+ Y D cGa =0,
loe|=k p=k+1|al=p
where da () := aj,i, -+~ aii, if @ =g, -~ g, €FF and iy, ..., ik € {l,...,n}. Since ¥@ is

a power series containing only monomials Z, with |y| > |a| + 1, and the power series G,
|| > k + 1, contains only monomials Z, with |o| > k + 1, we deduce that

> ca(L™ +da()Za) =0. (1.4)
la|=k

We arrange the elements of the set {« € F;/: |a| = k} increasingly with respect to the total order,
ie., B1 < P2 <--- < B, Note that 8| = g/f and B« = g’,f. Relation (1.4) becomes

nk

Z(%L“”' +cp,d(Bj)Zg;) =0. (1.5)
j=I

Taking into account that L =% is a power series containing only monomials Zg such that |8| = |«|
and B < «, one can see that the monomial Zg , occurs just once in (1.5). Consequently, we must

have c,gnkd(,Bnk) =0. Since 0 # afm =d(B,x), we must have By = 0. Then, Eq. (1.5) becomes

nkfl
Y (e, 0PIt cp,d(B))Zp;) = 0.
j=1

Continuing the process, we deduce that cg; =0 for j =1,..., nk. Therefore ¢, = 0 for any
o€ IF;,“ with || = k, which completes our induction. This shows that F = 0.

Now, we consider the case when f(0) £ 0. Then f; = f;(0)/ + G;,i =1, ..., n, for some
n-tuple G =[Gy, ... G,] of formal power series in S[Z1, ..., Z,] with G(0) = 0. According to

the first part of the proof, the set {G4}, F; is linearly independent in S[Z1, ..., Z,]. Conse-
quently, setting My := span{Gq }|a|<k> K = 0, we have dim M =1+n + n?+ ...+ nk. Now,
assume that { fo,}, F is not linearly independent in S[Z1, ..., Z,]. Then there exists m > 1 such

that { fu }|a|<m 18 not linearly independent. This shows that the space Ny = span{ Ja)ja|<m has
dimN,, <1+n+n%+---+n" = dim M,,. On the other hand, note that for each « € Ff, fa
is a linear combination of Gg with 8 € F,f, |B] < |a|, and each G is a linear combination of /8
with B € F;f, |B] < |a|. Consequently, N, = M,, and, therefore, dim \V;, = dim M,,, which is
in contradiction with the strict inequality above. The proof is complete. 0O

Now we prove an inverse mapping theorem for formal power series in noncommuting inde-
terminates.

Theorem 1.3. Let F = (F,..., F,) be an n-tuple of formal power series in indeterminates
Z1, ..., Zy. Then the following statements are equivalent.
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(i) There is an n-tuple of formal power series G = (G1, ..., G,) such that
G0)=0 and FoG=id.

(i) F(0) =0 and the Jacobian det Jr(0) # 0.

In this case, G is unique and G o F =id.

Proof. Assume that item (i) holds. Foreachi =1, ..., n, let

o0 o
Z Z a(i)Zo, and G;j :=Z Z bg)Za

k=0 |a|=k k=1 |a|=k

be such that G;(0) =0 and F o G = id. Hence, we deduce that

n
al’ +3 al)Gi+ Y al’Gy=27;, i=1,...n
j=1 ol >2

Since G;(0) =0, if |¢| > 2, then each monomial in G, has degree > 2. Consequently, we have
aéi) =0fori=1,...,n, ie, F() =0, and Zj_lag/)b(’) = 3p for any i, p € {1,...,n}.
The latter condition is equivalent to Jr(0)Jg(0) = I,, which implies detJr(0) # 0 and
det Jg(0) # 0. Therefore, (ii) holds. Now, we prove the 1mphcat10n (i) = (i). Assume that
condition (ii) is satisfied and let F; := ) oo 1Z\a| calZ,. We need to find and n-tuple

=(G1,...,Gy) with G; := ) 2, Z\a\:k ba Za such that G(0) =0 and F o G = id. There-
fore, we should have

Zaéi)Gazzi, i=1,...,n. (1.6)
lor|>1

We denote by Coefz, (H) the coefficient of the monomial Z,, o € Ft

.+, in the formal power
series H. Due to relation (1.6), we have

Sip = Coefz, () = }_a(f) Coefz,(Gj) =} ag)bg)
Jj=1 j=1

forany i, p € {1, ...,n}. Hence, we deduce that J5(0)Jg (0) = I,, where Jr(0) = [a$)1; j—1....n

and J;(0) = [bgj li,j=1,...,n- This implies that J (0) is the inverse of Jr(0) and, therefore, the
coefficients {by}|q|=1,i=1,..,n are uniquely determined and det J5(0) # 0. Now, we prove by

.....

induction over m that the coefficients {bo, }|a|<m i=1....n are uniquely determined by condi-

tion (1.6). Assume that the coefficients {ba Hal<m—1,i=1,. m > 2, are uniquely determined
by (1.6). Let B=gp, -+ &p,, € F,F with p1,..., pm €{1,. n} and m > 2. Note that condition
(1.6) implies
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Coefzﬁ( > a(gi)Ga)

lo|>1
@ a® N
- Coefzﬂ ( Z a Gfl + Z agngjz GiGpt- -t Z 8/1 < &jm Gj Gf"’)
J1=1 jr. =1 Jtseees jm=1
n n
_ (@) (Jl) @) D 3G2)
St Y (X )
hi=l1 Jij2=1 a102=P,01,02€F; \{g0}
(1) (Jl) (6))
Tt Z gll 8jm gpl bgl’m _O
JlseenJm=1
foreachi =1, ..., n. We consider the matrices
—_[,® [,
Jr(0) = [agjl]i,j.:l ..... n’ Anxnk 1= [ gné’}z g}k]h./l ------ Jk=1,....n

)= [by ® Gl
By = [bﬁ ]i=1 n’ Bnk><1 T |: Z bajll '“bff{ck :| . 1
Jises Jk=1,..n

01-0k=B,01,....0.€F\{g0}

for 2 < k < m. The equality above is equivalent to

TrOBP + A, 2 BD 4+t Ay B =041,

n2x1
where 0,1 is the column zero matrix. Since the entries of the matrices B(2 1 B(’S ) | contain
only coefficients b((uj), where |w| <m — 1 and j =1, ..., n, the relation
Br(li)l = _JF(O)_lAanZB,ilzgll -t J (0) 1An><n"’ Bng’xl

shows that the coefficients {bg)}| Bl=m,i=1,...,n are uniquely determined. This completes our proof
by induction. Therefore, (i) holds. Since G (0) = 0 and det J5 (0) # 0O, the result we proved above
implies the existence of an n-tuple of formal power series H = (H, ..., Hy,) such that H(0) =0
det Jy(0) #0, and G o H =id. Using (i), we deduce that

=idoH=(FoG)oH=Fo(GoH)=Foid=F
and G o F =id. The uniqueness of G is now obvious. The proof is complete. O
The n-tuple G = (G, ..., G,) of Theorem 1.3 is called the inverse of F = (F1, ..., F;,) with
respect to the composition of power series. We remark that under the conditions of Theorem 1.3,

the composition map Cr : S[Z1, ..., Z,] = S[Z1,...,Z,] defined by Cr A := Ao F is an al-
gebra isomorphism.
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Let H, be an n-dimensional complex Hilbert space with orthonormal basis ej, e, ..., e,,
where n € {1,2,...}. We consider the full Fock space of H, defined by

Fz(Hn) =Cle @Hr?k’
k>1

where H®* is the (Hilbert) tensor product of k copies of H,. We denote ey :=¢;, ® - -- ® ¢, if
o =g -8, whereiy,..., i €{l,...,n}, and ey, := 1. Note that {ea}aew is an orthonormal
basis for F2(H,). Define the left (resp. right) creation operators S; (resp. R;),i =1, ..., n, acting
on F%(H,) by setting

Sip:=e; @@, @€ F(Hy),

(resp. Ri¢ := ¢ ® ¢;). Note that S;R; = R;S; for i, j € {1, ...,n}. The noncommutative disk
algebra A, (resp. R,) is the norm-closed algebra generated by the left (resp. right) creation
operators and the identity. The noncommutative analytic Toeplitz algebra F,>° (resp. R;°) is the
weakly closed version of A, (resp. R,). These algebras were introduced in [21] in connection
with a noncommutative version of the classical von Neumann inequality [38] and studied in [20,
23,8].

Let 2 C B(H)" be a set containing a ball [B(H)"], for some r > 0. We say that f : 2 —
B(H) is a free holomorphic function on £2 if there are some complex numbers ay, o € ]F,J[, such
that

o0

FO="3" aeXe. X=(Xi,....Xp) €L,

k=0 |a|=k

where the convergence is in the operator norm. As in [30], one can show that any free holomor-
phic function on £2 has a unique representation as above.

If f=(f1,..., fn)is an n-tuple of formal power series, we define the radius of convergence
of f by setting r(f) = min;=1,_ 7 (fi). According to [30], f; is a free holomorphic function
on the open ball [B(H)"],(s) for any i =1, ..., n. The next result can be viewed as an inverse
function theorem for free holomorphic functions.

Theorem 1.4. Let f = (f1,..., fn) be an n-tuple of formal power series with nonzero radius of
convergence such that f(0) =0 and det Jy(0) # 0. Let g = (g1, ..., &) be the inverse power
series of f with respect to composition.

If g has a non-zero radius of convergence, then there are open neighborhoods D and G of 0
in B(H)" such that f|p : D — G is a bijective free holomorphic function whose inverse is a free
holomorphic function on G which coincides with g|g : G — D.

Proof. First, note that according to Theorem 1.3, since f(0) = 0 and det J £ (0) # 0, there is an n-
tuple g = (g1, . - . , gn) of formal power series such that g(0) =0and go f = f o g = id. Assume
that f and g have nonzero radius of convergence r(f) > 0 and r(g) > 0, respectively. Fix €g > 0
such that €9 < r(g). Since r(f) > 0 and f(0) = 0, the Schwartz lemma for free holomorphic
functions (see [30]) implies that there is 69 € (0, 7(f)) such that || f(Y)]| <r(g) —€p forany Y €
[B(?-l)"]go. On the other hand, using Theorem 1.2 from [33], the composition ¥ +— g(f(Y)) is
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a free holomorphic function on [B(’H,)"]a_o. Due to the uniqueness theorem for free holomorphic
functions and the fact that g o f = id as formal power series, we deduce that g(f(Y)) =Y for
any Y € [B (7—[)”]8_0, Hence, f I[ BH)"; is a one-to-one free holomorphic function.

0

Now, fix ¢g € (0, §p). Since r(g) > 0 and g(0) = 0, using again the Schwartz lemma for free
holomorphic functions, we find y € (0, r(g)) such that ||g(X)|| < 8o —co forany X € [B(H)”];.
As above, the composition X — f(g(X)) is a free holomorphic function on [B(’H)”];. Due to
the uniqueness theorem for free holomorphic functions and that f o g = id as formal power series,
we deduce that f(g(X)) = X for any X € [B(H)"], . Consequently, gliBH)m, is a one-to-one
free holomorphic function.

Set G :=[B(H)"], and D := g([B(H)"],). Note that g and f are free holomorphic (and,
therefore, continuous) on [B(H)"],(g) O G and [B(H)"1s, D [B(H)"1sy—c, D D, respectively.
Due to the fact that f ;g7 5 - [B(H)"]s, = B(H)" is a one-to-one continuous function and
f(g(X)) = X forany X € [B(H)"],, we deduce that the pre-image ((f|[3(’H)n]50)_1 ((B(H)"1y)
is an open set in [ B(H)"]s, which coincides with

[B04],, Ns([B001,) =[BT, , ne([BOH],) = ([B30"],) = D.

Consequently, since D C [B(H)"]s, is an open set in [B(#)"]s,, we deduce that D is an open
setin B(H)". The proof is complete. O

In Theorem 1.4, we conjecture that the condition that g has a non-zero radius of convergence
is a consequence of the fact that f = (f1,..., f,) has nonzero radius of convergence such that
f(0) =0and det J ¢ (0) # 0. We also remark that there is a converse for Theorem 1.4. Let D, G be
open neighborhoods of 0 in B()" andlet¢ : D — G and ¢ : G — D be free holomorphic func-
tions such that ¢ = (1, ..., ¥,) is the inverse of ¢ = (¢, ..., ¢,). Then the associated formal
power series are inverses to each other with respect to composition. Indeed, assume that ¢; has the
representation Y ;7 >, al’ X, on D, and y; has the representation Y 2| > lal=k X,
on G. Then, we ca find 0 < r < 1 such that [B(H)"]. C G and ¢ (¥ (X)) = X for any
X € [B(H)"], where the convergence of the series defining ¥/ (X) and ¢(y(X)) are in the
operator norm topology. Hence, we deduce that ¢ (¥ (rSy,...,rS,)) = (rS1,...,rS,). Since
@i (Y (rSy,...,rSy)) is in the noncommutative disc algebra A,, it has a unique Fourier rep-
resentation Z,fil Z|a|=k cg )r|“‘Sa, where the coefficients cg ) are exactly those of the formal
power series ¢; o Y. The equality above shows that cg )= 0if || =2 and cgj) = §;;. Therefore,
¢ o Y = id. Due to Theorem 1.3, we also deduce that ¥ o ¢ = id, which proves our assertion.

2. Hilbert spaces of noncommutative formal power series

In this section, we introduce three classes: (A), (S), and (F), of n-tuples f = (fi,..., fu) of
formal power series, and the corresponding Hilbert space HZ( f). The associated domain B s (H)
has a universal model (Mz,, ..., Mz,) of multiplication operators acting on HZ( f), which plays
a crucial role in the dilation theory on the noncommutative domain B s ().

Hilbert spaces associated with polynomial automorphisms of B(#)". Let C[Z,..., Z,]
be the algebra of noncommutative polynomials over C (complex numbers) and noncommuting
indeterminates Z1, ..., Z,. We say that an n-tuple p = (py, ..., pn) of polynomials is invertible
in C[Zy,...,Z,]" with respect to composition if there exists an n-tuple ¢ = (g1, ..., qn) of
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polynomials such that p og = g o p = id. We remark that such an n-tuple of polynomials induces
a free holomorphic automorphism of B(H)", i.e., the map @, : B(H)" — B(H)" defined by

¢p(X) = (pl(X)a ] pn(X))a X = (Xla R Xn) € B(H)n'
We say that @, is a polynomial automorphism of B(H)" and write @, € Aut(B(#H)"). Note
that if p, p” are n-tuples of polynomials and @, @, are in Aut(B(#)"), then so is @,y and
Ppop =PpPy-

Theorem 2.1. If p = (p1, ..., pn) is an n-tuple of noncommutative polynomials in Zy, ..., Z,,
then the following statements are equivalent.

(1) p isinvertible in C[Zy, ..., Z,]" with respect to composition.
(i1) There exists an n-tuple q = (q1, - . ., qn) of noncommutative polynomialsin Zy, ..., Z, such
thatg o p =1id.
(i) Zi,..., Z, are contained in the linear span of {py }ae]F;r (where pg :=1).
@iv) The set {pa}o‘eﬂ;;r is a linear basis in C[Z,, ..., Z,].

Proof. First we consider the case when p;(0) =0, i = 1,...,n. The implications (i) = (ii)
and (ii) = (iii) are obvious. To prove that (iii) = (iv), assume that condition (iii) holds.
Since Zy, ..., Z, are contained in the linear span of {p4}, F> there are some complex num-
bers {aé’)}aew’lalgm such that Zi = "5 1< al’ pe(Z), i =1,...,n. Setting ¢ = (q1, ..., qn)
with g; (Z) := Z|a\<m aé’)Za, we have g(0) =0 and g o p = id. Due to Lemma 1.1, we obtain
det J,(0) det J,;(0) = 1, which implies det J,(0) # 0. Using now Theorem 1.2, we deduce that
the set {pq}, eFF is a linearly independent in C[Zy, ..., Z,]. On the other hand, condition (iii)
also implies that C[Zy, ..., Z,] is spanned by {p,},, F - Therefore, condition (iv) holds.

Since (iv) = iii) is obvious, it remains to prove that (iii)) = (i). As above, if (iii) holds, then
there is an n-tuple ¢ = (g1, ..., g») of polynomials with g; (0) = 0 such that g o p = id and the
set {pal, cF; is a linearly independent in C[Z1, ..., Z,]. The latter property shows that p is not a
right zero divisor with respect to the composition of polynomials, that is, if ¥ € C[Z, ..., Z,]"
and ¥ o p =0, then ¥ = 0. Due to relation g o p = id, we obtain (p o g —id) o p =0. Since p
is not a right zero divisor, we deduce that p o ¢ = id, which completes the proof.

Now, we consider the case when p(0) # 0. Assume that (iii) holds. Then p} := p; — p;(0)1,
i =1,...,n, has the property that plf (0) =0 and Zy,..., Z, are contained in the linear span
of {pg}ycry- Applying the first part of the proof to p’:= (py,..., p,), we deduce that the
set {p(’)[}o{dF;r is a linear basis for C[Z, ..., Z,]. Consequently, setting My := span{p/, }jo|<k>
k >0, we have dmM; =1+n + n? + ... + nk. Now, assume that {Pa}aew is not linearly
independent in C[Zy,..., Z,]. Then there exists m > 1 such that {py}aj<m is not linearly
independent. This shows that the space N, := span{ DaYja|<m has dim N, strictly less than
dimM,, =1 4+n +n%+---+ n™. On the other hand, note that for each « € IF,J{, Pe 1s a lin-
ear combination of p//3 with B € ', || < ||, and each p., is a linear combination of pg with
B € F, |B] < |a|. Consequently, N,, = M,, and, therefore, dim N, = dim M,,, which is in
contradiction with the strict inequality above. Therefore, the set {py},cf+ is a linearly indepen-
dentin C[Zy, ..., Z,]. Since C[Zy, ..., Z,] is spanned by {pa}aeF,T’ we deduce that {pa}ae]F,T
is a linear basis in C[Z1, ..., Z,], which shows that condition (iv) holds. Moreover, it shows that
p is not a right zero divisor with respect to the composition of polynomials. Since Z1, ..., Z, are
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contained in the linear span of {pD,}we]F;r ,wefindq € C[Zy, ..., Z,] suchthat g o p = id. Hence,
we obtain (p o g —id) o p =0. Since p is not a right zero divisor, we deduce that p o g =1id,
which implies (i). The proof is complete. O

We say that p = (p1, ..., py) has property (A) if any of the equivalences of Theorem 2.1
holds.

Example 2.2. If

pr=aol +a1Z1+axZy +a3zZ32Z;,
p2=bol +b1Z>+ brZ3 +b3Z§,
p3=col +c1Z3

are polynomials with complex coefficients such that a;bjcy # 0 then p = (p1, p2, p3) has prop-
erty (A).

In what follows we present a large class of polynomial automorphisms of B(H)".

Proposition 2.3. Let p = (p1,..., pn) be an n-tuple of noncommutative polynomials in
Z1, ..., Zy, of the form
[p19"°7pn]:[all’""a}’ll]_l_[zlr'”vzn]A
+ [‘II(ZZ, L] Z}’l)’ 512(23’ sy Zn)» ey ‘Infl(zn), O]Av

where a; € C, A € M, «, is an invertible scalar matrix, and qy, . . ., q,—1 are arbitrary noncom-
mutative polynomials in the specified indeterminates. Then p has property (A).

Proof. According to Theorem 2.1, it is enough to show that Zy, ..., Z, are contained in the
linear span of {pa},cp:- To solve the formal system, multiply (to the right) both sides of the

equality by A~! and solve for the indeterminates Z,, Z,_1, ..., Z in this order. O

As we saw in the proof of Theorem 2.1, if p = (p1, ..., py) is an n-tuple of noncommutative
polynomials with property (A), then the Jacobian matrix

op;
0Z;

T,(0) := [

Z=O:| 1<i, j<n

is invertible. Moreover, for the class of noncommutative polynomials considered in Proposi-
tion 2.3, we have that J,(X) is an invertible operator for any X € B(H)". This leads to the
following question. Is the Jacobian conjecture true in our noncommutative setting? In other
words, assuming that p = (p1, ..., py) is an n-tuple of noncommutative polynomials such that
the Jacobian matrix J,(X) is invertible for any X € B(H)" (or only for X = 0), does this imply
that @, is a polynomial automorphism of B(H)" ? Of course, this is true if each polynomial p;
has degree 1.
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Let p=(p1, ..., pn) be an n-tuple of noncommutative polynomials in Zy, ..., Z, with prop-
erty (A). We introduce an inner product on C[Z1, ..., Z,] by setting (pq, pg) :=8ap, o, B € IF,‘Q‘
Let H?(p) be the completion of the linear space VA{Paly cF; with respect to this inner product.
It is easy to see that, due to Theorem 2.1, the noncommutative polynomials C[Z1, ..., Z,] are
dense in H?(p). We define the noncommutative domain

B, (H) = {(Xl,...,xn) e B Y p(Xps (X <1},
j=1

which will be studied in the next sections.

Hilbert spaces of noncommutative formal power series. We recall (see [30]) that the alge-
bra Hpaq of free holomorphic functions on the open operatorial n-ball of radius one is defined as
the set of all power series f =) wel; da Z with radius of convergence > 1, i.e., {aq}, cF; are

complex numbers with lim Supk%oo(2|a|:k lag|*)1/* < 1. In this case, the mapping

[BH)'], 2 (X1, ... X) > f(X1. .. X)) =) ) auXa € B(H)
k=0 |at|=k

is well defined, where the convergence is in the operator norm topology. Moreover, the series
converges absolutely, i.e., Y po | Z\al:k ag X« < 00, and uniformly on any ball [B(H)"],
with0<y < 1.

Another case when the evaluation of f can be defined is the following. Assume that there

exists an n-tuple p = (p1, ..., p,) of strictly positive numbers such that
1/k
limsup< Z |aa|,0a) <1
k— 00 o=k
Then the series f(Xq,..., X,) = Z,fio Z\a|=k ay Xy converges absolutely and uniformly on

any noncommutative polydisc

P(r):={(X1,....Xp) € BH)": IXjI <rj, j=1,...,n}

of multiradius r = (rq,...,r,) withr; < p;, j=1,...,n.
We should also remark that, when (X1, ..., X,;) € B(H)" is a nilpotent n-tuple of operators,
i.e., there is m > 1 such that X, =0 for all « € IF,J{ with || = m, then f(X1,..., X,) makes

sense since the series defining it has only finitely many nonzero terms.

We need a few more definitions. Let g = Y 2, Z|a\=k ayZy be a formal power series in
indeterminates Zy, ..., Z,. We denote by C,(H) (resp. Cg(?—[), CgOT(H)) the set of all ¥ :=
(Y1,...,Yy) € B(H)" such that the series g(Y1,...,Y,) := ) 1oy Z|a\:k aqYy is norm (resp.
absolutely, SOT) convergent. These sets are called sets of norm (resp. absolutely, SOT) conver-
gence for the power series g. We also introduce the set Cg,“d(H) ofallY := (Yy,...,Y,) € B(H)"
such that there exists § € (0, 1) with the property that rY € C,(H) for any r € (3, 1) and

o0
g(Y1,...,Y,) :=SOT-li lely,
164 ) rl_l)n]§llzkaar ;
= o=
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exists. Note that
CY(H) SCo(H) SCOT(H) and  CJ*(H) S Co(H)ST.

Now, consider an n-tuple of formal power series f = (f1,..., fn) in indeterminates
Z1, ..., Z, with the property that the Jacobian

8 L
det J£(0) := det|:ai

J

n
} £0.
Z=04di,j=1

Due to Theorem 1.2, the set {fO,}O[eIF;r (where fo:=1) is linearly independent in S[Z1, ..., Z,].
We introduce an inner product on the linear span of {fo},cp+ by setting (fo, fg) = dugp,
a,B € Fl. Let H2(f) be the completion of the linear space \/{fy} ek} with respect to this
inner product. Assume now that f(0) = 0. Theorem 1.3 shows that f is not a right zero divi-
sor with respect to the composition of power series, i.e., there is no non-zero power series G in
S[Z1, ..., Z,] such that G o f =0. Consequently, the elements of Hz( f) can be seen as formal
power series in S[Z1, ..., Z,] of the form Zaeﬂ?j{ ag fo, Where Zaeﬁ?f{ lag|? < oo.

Let f = (f1,..., fu) be an n-tuple of formal power series in Z1, ..., Z, such that f(0) =0.
We say that f has property (S) if the following conditions hold.

(81) The n-tuple f has nonzero radius of convergence and det J 7 (0) # 0.

(S2) The indeterminates Zy, ..., Z, are in the Hilbert space H2( f) and each left multiplication
operator Mz, : H2(f) — H2(f) defined by

Mz =Ziy,  y €B(f).
is a bounded multiplier of H?( f).

(S3) The left multiplication operators M £t H2( f)— HZ( ), M £ Y = f;v, satisfy the equa-
tions

ijij(le,...,MZ”), j=1,...,l’l,
where (Mz,, ..., Mz,) is either in the convergence set C?OT(HZ(f)) or C;"d(Hz(f)).

We remark that if f is an n-tuple of noncommutative polynomials, then the condition (S3)
is automatically satisfied. We should also mention that, in case (Mz,,..., Mz,) is in the set
C}“d (H%( f)), then the condition (S3) should be understood as

My, = fj(Mz,, ..., Mz,) := SOT- lim fi(rMz,.....rMz,), j=1.....n.
N r

Remark 2.4. If p = (p1,..., py) is an n-tuple of noncommutative polynomials with prop-
erty (A), then it has property (S).

Proposition 2.5. If f = (f1,..., fu) is an n-tuple of formal power series with f(0) =0 and
property (S), then C[Zy, ..., Z,] is dense in the Hilbert space H?( f).
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Proof. Since Z; € H*( f) and Mz are bounded multipliers of HZ( f), we deduce that
Zy € Hz(f) for any o € IF,J[ and, therefore, C[Z,,...,Z,] C Hz(f). Let f;, j=1,...,n,

have the representation fj(Zi,...,Zy) = Y rop D weF ul=k ¢ Z,. First, we assume that
(Mz,, ..., Mz,) is in the set C3°T (H?(f)) and

o0
fj(MZIa"'aMZ,,):Z Z ctgt])MZa’
k=0qeF;!, |a|=k
where the convergence of the series is in the strong operator topology. Then, for any € > 0 and

any polynomial ¢ € C[Zy, ..., Z,], there exists N; > 1 such that

<e, j=1,...,n. 2.1)
H2(f)

Nj
fitMz,, ..., Mz,)¥ —Z Z o' Mz,

k=0 e}, || =k

Fixi, j e{l,...,n}. By (2.1), we can find polynomials p and g such that

€

| £iMz,. ... Mz ) = plliayy < 5o and || £j(Mz,..... Mz,)p = ap ;) <

€
20My, | 2

Hence, and using condition (S;), we deduce that

I £ fi —apllgecy < | fiMz,. ... Mz,) fi(Mz,, ..., Mz,)1 — fj(Mz,.....Mz,)p|
+ | fiMz,,....Mz)p —ap|

<|fitMz,, ..., Mz,)| : :

+
20My,] " 2

An inductive argument shows that each power series f, o € F;", can be approximated in H(f)
by polynomials in C[Zy, ..., Z,]. Taking into account that span{ f Ve is dense in H2( 1), we
deduce that C[Z, ..., Z,] is dense in H2(f).

Now, we consider the case when (Mz,, ..., Mz,) is in the set C;“d(Hz(f)) and

o
fi(Mz,..... Mz,) = SOT- lim YT Pr"My,,
k=0 g eF; ,|a|=k

where the convergence of the series is in the operator norm topology for each 0 < r < 1. Hence,
we deduce that, for any € > 0 and any polynomial ¢ € C[Zy, ..., Z,], there exists rg € (0, 1)
such that

o0
fiMz,, ..., Mz, )¢ — Z Z Céj)réaleazlf

k=0 e}, |a|=k

H2(f)
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Using the convergence of the series in the operator norm topology, we find N; > 1 such that

Nj
FitMz, o Mz =>" Y D Mg,y <e. j=l...n
k=0 geF; |oo|=k H2(f)
Now, one can proceed as in the first part of the proof to show that C[Zy, ..., Z,] is dense in the

Hilbert space H?(f). The proof is complete. [

According to [30] and [32], the noncommutative Hardy space ban(B(S G)) can be iden-
tified to the operator space F.°®B(E, G) (the weakly closed operator space generated by the
spatial tensor product), where F>° is the noncommutative analytic Toeplitz algebra. More pre-
cisely, a bounded free holomorphic function F is uniquely determined by its (model) boundary
function Fe F°°®B(S G) defined by F :=SOT- lim, .1 F(rSy,...,rS,). Moreover, F is the
noncommutative Poisson transform [26] of FatXe [B(H)'11,1.e., F(X) =(Px® I)[F] Sim-
ilar results hold for bounded free holomorphic functions on the noncommutative ball [B(H)"],,
y > 0.

The next result provides a characterization for the n-tuples of formal power series with prop-
erty (S).

Lemma 2.6. Let f = (f1,..., fu) be an n-tuple of formal power series with f(0) = 0. Then f
has property (S) if and only if the following conditions hold:

(i) the n-tuple f has nonzero radius of convergence and det J ¢ (0) # 0;
(ii) the inverse of f, say g = (g1, ..., gn), is a bounded free holomorphic function on [B(H)"11;
(iii) the model boundary function g = (g1, ..., g) satisfies either one of the following condi-
tions:
(a) g is inC?OT(HZ(f)) and S; = fi(Z1,....8), i=1,....n
(b) g is in C}“d(IHP(f)) and S; = SOT-lim, 1 f;(rgi,....r8), i = 1,...,n, where

(S1,...,S,) are the left creation operators on the full Fock space F*(H,).
If f is an n-tuple of noncommutative polynomials, then condition (iii) is automatically
satisfied.

Proof. Since condition (S7) coincides with (i), we show that condition (S>) holds if and only if
f satisfies condition (ii). To prove the direct implication note that, by Theorem 1.3, the compo-
sition map Cy : S[Z1,..., Z,] — S[Zy, ..., Z,] defined by C ¢y := v o f is an isomorphism.
Therefore, there is an n-tuple g = (g1, ..., gn) of power series such that f o g =g o f =id.
On the other hand, condition (S;) implies the existence of an n- tuple x = (X1,..., xn) of for-
mal power series with x(0) =0 and x; € Hball’ ie., i = Za cF; aa Z for some aé) € C with
ZaeIF,T |a(§f)|2 < 00, and such that x o f = id. Consequently, (f o x —id) o f =0 and, using
the injectivity of C s, we deduce that f o x = id. Since the inverse of f is unique, we must have
g§=Xx-
Due to condition (57), the left multiplication operator Mz, : H2(f) — H2(f) defined by

Mz =Ziy, ¢ eHA(f),



G. Popescu / Journal of Functional Analysis 262 (2012) 3240-3308 3259

is a bounded multiplier of H?( f).Let U : Hz(f ) — F2(H,) be the unitary operator defined by
U(fot) =€y, 0 € F;zi_ Note that Z; = Zaeﬂ“f{ aé’)fa = U_l((pi), where 0 = ZaeF:{ aé’)ea c

F2(H,). One can easily see that My, is a bounded multiplier of H2( f) if and only if ¢; is a
bounded multiplier of F2(H,,). Moreover, Mz, = U’lwi(Sl,...,Sn)U, where ¢; (S1,...,S,)

is in the noncommutative Hardy algebra F,>° and has the Fourier representation ), cFF aéf )Sa.

According to Theorem 3.1 from [30], we deduce that g; = Zaew agf)Za is a bounded free
holomorphic function on the unit ball [B(?)"]; and has its model boundary function g =
;i (S1, ..., Sy). Therefore, condition (S,) is equivalent to item (ii). Since each g € HZ( f) has
a unique representation g =) cFt da fo With Yo F laq|> < oo, the multiplication operator

My, : H?(f) — H?(f) defined by

Alf/( ZE: a“fa>:= j{: ag fj fo

ackF; ackF;
satisfies the equation

My =U"'S;U, j=1,....n, 2.2)

where Si,..., S, are the left creation operators on F 2(H,,). Consequently, My, = U -ls,U,
a € Ff. Since Mz, = U™'3;U, where g; is the model boundary function of g; € Hpsys it is
easy to see that the equality ij = fi(Mz,,....,Mz,)), j=1,...,n, of (53) is equivalent to
condition (iii). This completes the proof. O

Let g = (g1, - .-, gn) be the n-tuple of power series, as in Lemma 2.6, having the representa-
tions

gi:=i Y a7y i=1.....n,

k=0 g eF;l | |a|=k

where the sequence {ag)} welF; is uniquely determined by the condition g o f = id. We say that
an n-tuple of operators X = (X1, ..., X,;) € B(H)" satisfies the equation g(f (X)) = X if either
one of the following conditions hold:

(a) Xe C?OT(’H) and either X; =Y 7o, ZaeF,T,|a|:k a,gi)[f(X)]a, i=1,...,n, where the con-
vergence of the series is in the strong operator topology, or

o0
- ; i) s .
XI_SOT—rll_r)an Z ag r'“‘[f(X)]a, i=1,...,n;
k=1 geF;f,|a|=k

(b) X € C(H) and either X; = Y22 3 et a1 a1 F (X)), i =1,...,n, where the con-
vergence of the series is in the strong operator topology, or

o0
Xi= SOT-rli_IH Z Z aé")rl""[f(X)]a, i=1,...,n.

k=1 geF;F |a|=k
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We consider the noncommutative domains
Br(H):={X=(X1,....Xp) € BH)": g(f(X))=Xand | f(X)| <1}
and
B (M) :={X =(X1,..., Xy) € B(H)": g(f(X)) =X and | f(X)| < 1}.

We say that (71, ..., T,) € B(H)" is a pure n-tuple of operators in B 7 (#) if

SOT-lim 37 [f(],[r(D];=0.

ael,, |a|=k
The set of all pure elements of B ¢ (#) is denoted by B’}ure (H). Note that

B (H) C B (H) SBy(H).
An n-tuple of operators X := (X1,..., X,) € B(H)" is cal_led nilpotent if there is m > 1 such
that X, = 0 for any & € ;" with |a| = m. We denote by IB%’}’Z (H) the set of all nilpotent n-tuples
inBr(H).
Proposition 2.7. Let g € H*(D) be such that g(0) = 0 and g’ (0) #£ 0, and let f be its inverse

power series with respect to composition. If S is the unilateral shift on the Hardy space H?(D)
and

f(g®)=s

for an appropriate evaluation of f at g(S) (where g(S) is defined using the Nagy—Foias func-
tional calculus), then f has the property (S).

Proof. According to [6], the power series associated with g has an inverse f, with respect to
composition, with nonzero radius of convergence. Using the fact that S = f(g(S)) and applying

Lemma 2.6 when n = 1, we deduce that f has the property (S). O

In what follows, we present several examples of n-tuples of formal power series with prop-
erty (S). First, we consider the single variable case.

Example 2.8. The power series defined by
1 \!
f=Z<I+—Z> , a>?2,
a

has property (S) and

[BAH)], S [BH)] « CBs(H).

a—1
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Proof. A straightforward computation shows that the inverse power series of f is g =
Z(I — Ll—lZ )~1. The corresponding function z > g(z) is analytic and bounded on ID. Moreover,

1 2 1 3
g =5— -8+ =58+
a a

is a bounded operator, where the convergence is in the operator norm topology, and || g(S)|| < 2.
Taking into account that || %g(S )|l < 1, we deduce that

1 -1 1 \! 1 1\ !
f(g(8)) =2g(S) (1 + —g(S)> = S<I - —S) (1 + —S(I - —S) ) =S.
a a a a

Therefore, f has property (S). Consider the noncommutative domain
Br(H):={X € B(H): X=g(f(X))and | f(X)| <1}.
Note that if | X| < a, then f(X):= X + %X)_1 is well defined. If, in addition, || f(X)| < 1,

then one can easily see that

1 —1
g(f(X))=f(X)<I—;f(X)) = X.
Hence
{X e BA): |X|l <aand || f(X)] <1} CBs(H).

Note also that if | X| < =%, then

a—1"’

1
| O] < IX|— < 1.
1+ X1

Since a > 2, we have 1 < %7 <a and

[BAH)], C[BM)] o CBs(H).

a—1

This completes the proof. O
Now we consider some tuples of noncommutative polynomials with the property (S).
Example 2.9. If

Q=7 - %lez,
and gy =27, - $ 737,

{p1=zl—zz—%zlz2,
q3 = Z3,

P2=2

then p = (p1, p2) and g = (g1, 2, g3) have property (S).
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Proof. Note that

2
2 2
ZIZ(P1+P2)(I+%+<%) +>

Zr = p».

Setting g1 := (Z1 + Z2)({ + % + (%)2 + ---) and gr = Z», it is easy to see that po g =
g o p =id. On the other hand, g = (g1, g2) is a bounded free holomorphic function on [B (’H)2]1
and the model boundary function g = (g1, g2) is given by g1 := (S1+82)(I + %Sz + (%Sz)2 +-)
and g> = S;. According to Lemma 2.6, p = (p1, p») has property (S). The second example can
be treated similarly. Setting r = (r1, 2, r3), where

1 1 —19-1
=Z2\1—-=Z|1—-=Z ,
1 1|: 3 2( 2 3) ]
1 -1
=\l —-=Z ,
r2 2( ) 3)

r3 =123,

one can check that r o ¢ = g o r and the model boundary functions 7} =
SilI — %SQ(I — %53)_1]_1, =5 - %53)_1 and 73 = S3 are in noncommutative disc al-
gebra Az. Applying again Lemma 2.6, we deduce that ¢ = (g1, g2) has property (S). O

Example 2.10. Let y > 0 and a € C with |a| > 1 and let

Then f = (f1, f2) has property (S).

Proof. First note that f = (fi, f2) satisfies condition (Sy). Since Z1 =y f1 + y Z?Ozl(%fg)j,
Zy=Lf, and > ﬁ < 00, we deduce that Zy, ..., Z, are in H2(f). Let U : H>(f) —
F?(H,) be the unitary operator defined by U(fy) := eq, @ € IF;r Note that the multiplication

operator Mz, € B (H2(f)) is unitarily equivalent to the operator ¢1(S1, S2) € B(F 2(H,)) defined
by

91(51,5) ==yS1 +y Z(;&) :

j=1
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which is in the noncommutative disc algebra A,. Similarly, the operator Mz, € B(Hz(w)) is
unitarily equivalent to ¢»(S1, S2) := %Sz € A,. Therefore, condition (S,) is satisfied. It remains
to check condition (S3). Since |a| > 1, we have |[Mz, || < y and, therefore,

1 >/ 1 J
f(Mz,, Mz,) = = Mz, —Z<;M22> ,

j=1

where the convergence is in the operator norm topology. On the other hand, since the operator
My € B(HZ(f)) is unitarily equivalent to the left creation operator S; on F2(H,), the condition
My = limmﬁoo[%Mzl -3 (%Mzz)j] is equivalent to

. © 1 J " o J
S1= lim |8+ Z<g52> ~ Z<552> :
Jj=1 Jj=1
which is obviously true. This completes the proof. O
Similarly, one can treat the following

Example 2.11. If

A=Z1—Za— 222\ - 2373
f2=22,,

then f = (f1, f2) has property (S).

Hilbert spaces of free holomorphic functions. Let ¢ = (¢1, ..., ¢,) be an n-tuple of free
holomorphic functions on [B(H)"],, y > 0, with range in [ B(#)"]1. We say that ¢ is not a right
zero divisor with respect to the composition with free holomorphic functions on [B(H)"]; if for
any non-zero free holomorphic function G on [B(H)"];, the composition G o ¢ is not identically
zero. We recall (see [33]) that G o ¢ is a free holomorphic function on [B(H)"],. Consider the
vector space of free holomorphic functions

H2(¢) := {G o ¢: G € HEy),

where the noncommutative Hardy space Hlfa“ is the Hilbert space of all free holomorphic func-
tions on [B(#H)"]; of the form

o
fXL LX) =) Y aaXe, Y laal* <00,
k=0 |o|=k acl;

with the inner product (f, &) := 220 >4 =k agby, where g =Y 72, > lal=k ba Xq is another
free holomorphic function in H&an. Note that each element ¥ € H?(¢) is a free holomorphic
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function on [B(H)"], which has a unique representation of the form ¥ = G o ¢ for some
Ge Hﬁau. We introduce an inner product on H?(¢) by setting

(Fop,Gog)mpy :=(F,G)py .

ball

It is easy to see that H?(p) is a Hilbert space with respect to this inner product. We make the
following assumptions:

(F1) the n-tuple ¢ = (¢1,...,¢,) of free holomorphic functions on [B(#)"], has range in
[B(H)"]1 and it is not a right zero divisor with respect to the composition with free holo-
morphic functions on [B(H)"];.

(F2) The coordinate functions Xi,..., X, on [B(H)"], are contained in H2(¢) and the left
multiplication by X; is a bounded multiplier of H2 (¢), foreachi=1,...,n.

(F3) Foreachi=1,...,n, the left multiplication operator M, : H2(¢) — H2(¢) satisfies the
equation

M(/Jl' z(pi(lev--~7MZ )7

n

where (Mz,, ..., Mz,) is either in the convergence set CgOT(H2 (p)) or C;“d (H?()).

If ¢ is an n-tuple of noncommutative polynomials, then the condition (F3) is automatically
satisfied. Under the above-mentioned conditions, the free holomorphic function ¢ is said to have
property (F). We remark that, unlike the power series with property (S), ¢(0) could be different
from 0.

Using Theorem 2.1 from [33], we can show that ¢ has property (F) if and only if there exists
g=1(g1,-..,gn) abounded free holomorphic function on [B(?)"]; such that

glp(X)) =X, Xe[BH)"],, (2.3)

where ¢(X) is in the set of norm-convergence of g, and the model boundary function g =
(g1, ..., gn) satisfies either one of the following conditions:

(a) gisin CoOT(HA(¢)) and S; = ¢;(§1..... 8n)ri=1,....m;
(b) gisinC*(H(p)) and S; = SOT-lim, 1 9;(rg1,....7gn),i =1,...,n, where (S1, ..., )
are the left creation operators on the full Fock space F 2(H,).

Example 2.12. If

—lZ lZ lZ ’
<P1—61 82 2

1

==7.
¥2 342

Then ¢ = (¢1, ¢2) is a free holomorphic function on [B(’H)2]2 and has property (F). In this
case, Hz(cp) is a Hilbert space of free holomorphic functions on [B(H)?1,.



G. Popescu / Journal of Functional Analysis 262 (2012) 3240-3308 3265

The theory of noncommutative characteristic functions for row contractions [19] was used in
[33] to determine the group Aut(B(#)}) of all free holomorphic automorphisms of the noncom-
mutative ball [B(H)"];. We showed that any ¥ € Aut(B(H)") has the form

¥ =¢yoy,,
where @y is an automorphism implemented by a unitary operator U on C”, i.e.,
¢U(X17 7Xn) = [X17 7Xl’l]U7 (X17 7Xn) € [B(H)n]]’

and ¥, is an involutive free holomorphic automorphism associated with A := w~10) e B,. The
automorphism ¥, : [B(H)"]; — [B(H)"]; is given by

-1

n

(X1, Xn) = A= A (IH -~ Ziixi) (X1, ... XulAsr,  (X1o..., Xp) €[BAD"],.
i=1

where A; and A+ are the defect operators associated with the row contraction A := (A1, ..., A,).
Note that, when A = 0, we have ¥y(X) = —X. We recall thatif A € B, \ {0} and y := HAIHz , then
¥, is a free holomorphic function on [B(#)"], which has the following properties:

(1) ¥, (0)=Aand ¥, (1) =0;
(ii) ¥, is an involution, i.e., ¥, (¥, (X)) = X for any X € [B(H)"];
(iii) ¥, is a free holomorphic automorphism of the noncommutative unit ball [B(H)"]1;
(iv) ¥ is a homeomorphism of [B(#)"]; onto [B(H)"];;
(v) the model boundary function lI~/A is unitarily equivalent to the row contraction [Sy, ..., S,].

Proposition 2.13. Any free holomorphic automorphism of [B(H)"]1 has property (F).

Proof. Let ¢ € Aut(B(H)7). Since the composition of free holomorphic functions is a free holo-
morphic function, one can easily show, by contradiction, that condition (F7) is satisfied by ¢.
Now, taking into account the properties of the free holomorphic automorphisms of [B(#)"];
and the remarks above, we have ¢ € Hyy, and (¢ (X)) = X for all X € [B(H)"]1, which shows
that condition (/7) holds. Moreover, since the multiplication My, : H2 (@) — H?2 () 1is unitarily
equivalent to the model boundary function ¢ acting on F 2(Hn), and My, : H? (p) — H?2 (p) is

unitarily equivalent to S; € B(F 2(Hn)), the equation My, = ¢;(Mz,, ..., Mz,) is equivalent to
the equation S; = ¢; (@1, ..., @), where (@1, ...,¢,) is in the convergence set C(ff‘d(Hz((p)).

Due to the functional calculus for row contractions [22], the latter equality holds for any
¢ € Aut(B(H)'). Therefore, ¢ satisfies condition (F3), which proves our assertion. O

We saw above that, due to condition (F7), there is a bounded free holomorphic function
g [B(H)"]l1 = B(H)" such that X = g(¢(X)) for any X e [B(H)"],. We consider the non-
commutative domain

By(H) :={Y =(¥1,....Y,) € BH)": g(p(¥)) =Y and (V)| <1}

which will be studied in the next sections. Note that the ball [B(#)"], is included in B, (#).
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3. Noncommutative domains and the universal model (Mz,, ..., Mz,)

Throughout this section, unless otherwise specified, we assume that f = (fi, ..., f) is either
one of the following:

(i) an n-tuple of polynomials with property (A);
(ii) an n-tuple of formal power series with f(0) = 0 and property (S);
(iii) an n-tuple of free holomorphic functions with property (F).

In this case, we say that f has the model property. We denote by M the set of all n-tuples f
with the model property. The noncommutative domain associated with f is

By(H):={X=(X1,....Xp) € BH)": g(f(X))=Xand | f )| <1},
where g := (g1, ..., gy) is the inverse power series of f with respect to composition, and the

evaluations are well-defined (see previous section). We recall that the condition g(f (X)) = X is
automatically satisfied when f is an n-tuple of polynomials with property (A).

In this section, we present some of the basic properties of the universal model (Mz,, ..., Mz,)
associated with the noncommutative domain B y.
Two n-tuples (Ay, ..., Ay) € B(H) and (By, ..., B,) € B(K) are said to be unitarily equiva-

lent if there is a unitary operator U : H — K such that A; = U*B;U foralli =1,...,n.

Theorem 3.1. Let T := (T4, ..., T,) be an n-tuple of operators in B(H)" and let f have the
model property. Then the following statements are equivalent:

(i) T=(T1,...,Ty,) is a pure n-tuple of operators in B s (H);

(ii) there exists a Hilbert space D and a co-invariant subspace M C H2(f) @ D under each
operator Mz, ® Ip, ..., Mz, ® Ip such that the n-tuple (T, ..., T,) is unitarily equivalent
to

(PM(Mz, ® ID)| M, - -, Pm(Mz, @ ID)| M)

Proof. We shall prove the theorem when f is an n-tuple of formal power series with f(0) =0
and has property (S). The other two cases can be treated similarly. Let g = (g1, ..., gx) be the
inverse of f with respect to composition. Note that condition (S3) implies

n n n
Do fiMzy, . Mz,) fj(Mz,, ..., Mz,)* =" My M7}, = U—1<Zsjs;‘)u <1,
j=1 j=1

j=1

where U : H2(f) — F%(H,) is the unitary operator defined by U(fy) := eq, @ € F;I. Since
Mg =[f(Mz,,...,Mz,)]a, My, = U 'S,U, o € F, and SOT-lim_, oo Z|a|=p SaSp =0,
we deduce that the n-tuple Mz := (Mz,, ..., Mz,) is a pure element with || f(Mz)| < 1. Now
let us show that Mz is in the noncommutative domain B f(Hz( f)). It remains to prove that
g(f(Mz)) = Mz which, due to condition (S3), is equivalent to

gi(Mys, ..., Mg)=Mz, i=1,...,n. (.1)
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According to Lemma 2.6, if g; = Zae]F,T aéi)Za, then Mz, = U_lgoi(Sl,...,Sn)U, where

@i (S1,...,8,) € F° has the Fourier representation ) _, F; ag) S. Proving the equality above is
equivalent to showing that

o0
SOT'}E;”Zkayr'“'Sa =St S, i=1,....n.
=0 |a|=

The latter relation is well known (see [22]). Therefore, Mz € By (H2(f)). If D is a Hilbert space
and M C H2(f) ® D is a co-invariant subspace under Mz, ® Ip, ..., Mz, ® Ip, then

[f(PMMz, @ ID)| M, - -, Pm(Mz, ® ID)IM)], = PMm{[f(Mz,, ..., Mz,)], ® Ip}| 4
for any « € ;. Due to relation
g[(j](ﬂlzl,...,ﬂ4zn),...,fh(ﬁlzl,...,ﬂlzn)) =Mz, i=1,...,n,

we deduce that

oo
- 0] - P
SOT—rh_r)nlgo:El ka(; rf(Mz,.....Mz)], =Mz, i=1,...n.
=0 |x|=

Taking the compression to the subspace M C H?(f) ® D, we deduce that
8i(f(PM(Mz, @ ID)|Mm. ... Prm(Mz, ® ID)| ) = Pr(Mz, ® Ip)|m

foreachi =1,...,n.Since (Mz,,..., Mz,) is a pure element in IB%f(Hz(f)), we deduce that the
n-tuple (Pp(Mz, ® ID)| M - .., PM(Mz, @ Ip)|a) is a pure element in B r (M). Therefore,
the implication (ii)) = (i) holds.

Now, we prove the implication (i) = (ii). Assume that condition (i) holds. Let T =
(Ty, ..., T,) € By (H) be a pure n-tuple of operators. Consider the defect operator

n 1/2
Agri= (1 - Zf,~<T>f,-<T)*)
Jj=1

and the defect space Dy, 1 := A ¢ (T)H. Define the noncommutative Poisson kernel K r7 : H —
H2(f) ® Dy.r by setting

Kprhi=>" fa®Apr[f(D]ih, heH. (3.2)

aGFI

We need to prove that K7 is an isometry and Kf,TT,.* =Mz ® IDf,T)Kf,T for any i =
1,...,n.Indeed, a straightforward calculation reveals that
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2
H Y @A S I T
ael; al<q B (NeH aely, lal<q
= > ([rm], A% [FD]h. )
aeFy, lal<q

||h||—<( > [f(T)]a[f(T)]Z>h,h>

aeFy, lal=q

for any g € N. Since T = (71, ..., T,) is a pure n-tuple in B s (#{) we have

SOT-qango Z [r(D],[F(D]; =0.

acly,, la|=q

Consequently, we obtain || K f,7h|l = ||h|| for any & € H. On the other hand, for any h,h’ € H
and o € F;\, we have

(K57 (fa® ). W) =(fa®h. Ks1h)
=(n. Apr[f(D]H)
=([f (D], Aprh. ).

Therefore,
sr(fu®m=[F(D],Aprh, heH. (33)

Since the n-tuple f has property (S),foreachi=1,...,n,Z; Hz(f), i.e., there is a sequence
D12 < 00 such that

{ag)}aeIF,T with Zae]F,T |aé
Zi = Z ag'>[f(2)]a.

WGFI

Taking into account that T := (T1,...,T,) € By(H), we have either T € C]SCOT(’H) or T €

C}“d(”r’-[). Let us consider first the case when T € C;OT(’H). The equation T = g(f(T)) shows
that either

oo
=Y Y al[fm],. i=L...n (3.4)
k=0 qelFy, |a|=k
where the convergence of the series is in the strong operator topology, or

o
T =SOT-lim» " > alr[f(D)],. i=1..n 3.5)

k=0 g eF;, |a|=k
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When relation (3.4) holds, we have
T,[F (D], Z > al[fD][fMD]g i=1....n, BeF,, (3.6)
k=0 g eF;,|a|=k

where the convergence of the series is in the strong operator topology. Using relation (3.3), we
deduce that

P P
K},T<Z > al fufs ®h> = (Z > a&"’[f(T)]a[f(T)]ﬁ>Af,Th, heH,

k=0 |ot|=k k=0 |at|=k

for any p € N. Hence, due to relation (3.6) and the fact that Mz, fg = ZaeF,T ag)fa fpin H2(f),
we obtain

Kir(Mz, fp ®h) = Ti[f(T)]ﬂAf,Th, heH,

which, combined with relation (3.3), implies

Kir(Mz; @ D(fp®h) =TiK} 1 (fp ®h)
forany B € F;f andi =1,...,n. Consequently
KprT) = (M3, ® Ky

for any i = 1,...,n. Now, we assume that relation (3.5) holds. Then, using relation (3.3), we
deduce that

P P
*T<Z > alrll g, £y ®h> = (Z > ag,”r'a[f(T)]a[f(T)]ﬂ)Af,Th, heH,

k=0 |a|=k k=0 |a|=k

forany p e Nand r € [0, 1). Taking first p — oo and then r — 1, we obtain K (le fe®h) =
T;[f(T)lgAysrh, h € H. This implies K 7, 7T* = (MZ ® DKy forany i = 1 ,n. The case
when T € C;“d (H) can be treated similarly. The proof is complete. O

Any n-tuple (T, ..., T,) € By (H) gives rise to a Hilbert module over C[Z1, ..., Z,] by set-
ting

p-h:=pT,....T,)h, peC(Z,...,Z,]Jand h e H,

which we call B ¢-Hilbert module. The homomorphisms in this category are the contractive
operators intertwining the module action. If K C # is a closed subspace of # which is in-
variant under the action of the associated operators with #, i.e., Ty, ..., T,, then K and the
quotient /K have natural B ;-Hilbert module structure coming from that of . More pre-
cisely, the canonical n-tuples associated with JC and H/K are (Tilk, ..., Tulx) € B (K) and
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(PerTilger, oo, PeaTylger) € B f(ICJ-), respectively, where Py is the orthogonal projection
of H onto K+ :=H o K.

Each noncommutative domain B ; has a universal model (Mz,, ..., Mz,) € B f(Hz( f)). The
module structure defined by Mz,, ..., Mz, on the Hilbert space H2(f) occupies the position
of the rank-one free module in the algebraic theory [11]. More precisely, the free B s-Hilbert
module of rank one H?( f) has a universal property in the category of pure B r-Hilbert modules
of finite rank. Indeed, it is a consequence of Theorem 3.1 that if # is a pure finite rank 1B -Hilbert
module over C[Z1, ..., Z,], then there exist m € N and a closed submodule M of HZ( ) ® Igm
such that (H2( ) ® Icm) /M is isomorphic to H. To clarify our terminology, we mention that the
rank of a B y-Hilbert module # is the rank of the defect operator A 7, while H is called pure if
T is a pure n-tuple in B ¢ (H).

We introduce the dilation index of T = (Ty, ..., T,) € By (H), denoted by dil-ind(T'), to be
the minimum dimension of the Hilbert space D in Theorem 3.1. According to the proof of the
latter theorem, we deduce that dil-ind(7') < dim D7 =rank A 7. On the other hand, let G be
a Hilbert space such that # can be identified with a co-invariant subspace of H?(f) ® G under
Mz, ®Ig,i=1,...,n,and such that T; = Pyy(Mz, ® Ig)|H fori =1,...,n. Then

Iy —Zfi(T)fi(T)* = PH|:<IH2(f) _Zfi(MZp'--’MZV,)fi(MZp“wMZ,,)*) ®1g:|

i=1

i=1

H
= P’H(A%MZ ®Ig) |y, = Pr(Pc ® Ig)|3.

Hence, we obtain rank A s 7 < dim G. Therefore, we have proved that dil-ind(T) =rank A s 7.
Corollary 3.2. If (T, ..., T,) is a pure n-tuple of operators in B s (H), then
T.Tf =K} r[(Mz,M},) ® I|Kyr, o, BeF,,

and

<

m
Zqz'(Tl,---,Tn)qz'(Tl,u-,Tn)*
i=1

m
qu'(Mz., s Mz)qi(Mz,, ..., Mz,)*
i=1

forany q; € C[Zy,...,Z,) and m € N.

Theorem 3.3. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B y.
Then the C*-algebra C*(Mz,, ..., Mz,) is irreducible and coincides with

span{Mz, M7 : o, p €T},

Proof. Let M C H?(f) be a nonzero subspace which is jointly reducing for M Zys+o-» Mgz, and
lety=>", eF; da fo be a nonzero power series in M. Then there is B € F;| such that ag # 0.
Since f = (f1,..., fu) is an n-tuple of formal power series with the model property, we have
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My, = fi(Mz), where Mz := (Mz,, ..., Mz,) is either in the convergence set C?OT(Hz(f)) or
C }"d (H?(f)). Consequently, we obtain

ag = PcMj,y = (1 - fi(Mz)fi(Mz)*) [f(M2)],y
i=1

Taking into account that M is reducing for Mz,, ..., Mz, and ag # 0, we deduce that 1 € M.
Using again that M is invariant under Mz,, ..., Mz, , we obtain C[Z, ..., Z,] C M. Since,
according to Proposition 2.5, C[Z1, ..., Z,] is dense in H?(f), we conclude that M = H?(f),
which shows that C*(Mz,, ..., Mz,) is irreducible.

Since f has the model property, we have Z; =Y, g+ do O fo € H?(f) and the multiplication
Mz, is a bounded multiplier of H?( f) which satisfies the equation

Mz, = SOT- hmZ > alrimy,, =1,

r—1

k=0 |a|=k
Hence, and taking into account that

[ilMz)* f;(Mz) = MMy, =8;1, i, jell,....n},

we deduce that, for any x, y € ]HI2(f),

(MZ Mz;x, y = 11m<z Z a(” “3' f(Mz) Z Z a(') |a| f(Mz)] >

k=0 |B|=k k=0 |a|=k

:rli_rgmli_)moo< Z Z Z a(z) (J) laH_lﬁl[f(MZ)]Z[f(MZ)]ﬂX,y>

la|<m k=0 |B|=k
00 _
_ 1 : @) () |e|+IBl
_rh_IHmleoo< Z Z Z ag’'ag’r 8aﬂx,y>
la|<m k=0 |B|=k

= lim lim a(l) (J) 2|”"(x,y)

= hm Z Z a(l) Drlix, yy = (z;, Zi)wz(py (X, YIm(p)-
V=0 =k

Hence, we deduce that
MZMZ_, =(Zj, ZiypppyIm2 (). 0, J €{L,...,n},
and, therefore, C*(Mz,, ..., Mz,) coincides with
span{Mz, M7 : o, B €T, }.

The proof is complete. O
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Let f = (f1,..., fn) be an n-tuple of formal power series with the model property. We say
that f has the radial approximation property, and write f € M,,q, if there is § € (0, 1) such
that (rfi,...,rf,) has the model property for any r € (8, 1]. Denote by M/ the set of all
formal power series f = (fi,..., f») having the model property and such that the universal
model (Mz,, ..., Mz,) associated with the noncommutative domain B s is in the set of norm-
convergence (or radial norm-convergence) of f. We also introduce the class M ﬂa . of all formal
power series f = (fi,..., f,) with the property that there is § € (0, 1) such that rf € M/l for
any r € (6, 1].

Lemma 3.4. Let f = (f1,..., fn) be an n-tuple of formal power series with the model prop-
erty and let g = (g1,...,8n) be its inverse with respect to the composition. Setting g; =
Y F; aé’ )Za, the following statements are equivalent.

(i) The n-tuple f has the radial approximation property.

0]
(ii) There is § € (0, 1) with the property that g; (%S) =), eFF %Sa is the Fourier representa-
tion of an element in F° and

1 1 1
=S :f,(gl(—S>,...,gn(—S>>, i,je{l,...,n}, re(,1],
r r r

where g(%S) is either in the convergence set C?OT(FZ(H,,)) or C}ad(Fz(Hn)), and S =

(S1,...,Sy) is the n-tuple of left creation operators on FZ(H,,). If f is an n-tuple of non-
commutative polynomials, then the later condition is automatically satisfied.

Moreover, f € M !ad if and only if item (ii) holds and g(%S) is in the set of norm-convergence

(or radial norm-convergence) of f.

Proof. The proof is straightforward if one uses Lemma 2.6 (and the proof) and its analogues
when f is an n-tuple of polynomials with property (A) or a free holomorphic function with
property (F). O

Remark 3.5. In all the examples presented in this paper, the corresponding n-tuple f =
(f1,---, fn) is in the class Mﬂa 4+ Moreover, any n-tuple of polynomials with property (A) is
also in the class Mﬂad.
Proposition 3.6. Let f = (f1, ..., fn) be an n-tuple of formal power series with f(0) =0 and
det J7(0) #0, and let g = (g1, ..., gn) be its inverse. Assume that f and g have nonzero radius
of convergence. Then

(i) f(g(X)) = X for any X € [B(H)"]),, where 0 < y1 < r(g) and g([B(H)"],) C
[B(H)" 1r(f)-

(ii) g(f(X)) = X for any X € [B(H)"]y,, where 0 < y» < r(f) and f((B(H)"ly,) C
[B(H)n]r(g)-

If y1 > 1, then f € Mﬂad, and, if 0 <y < y1 < 1, then %f has the same property.
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Proof. Since g has nonzero radius of convergence and g(0) = 0, the Schwartz lemma for free
holomorphic functions implies that there is y; € (0,7(g)) such that ||g(X)| < r(f) for any
X € [B(H)"],. On the other hand, using Theorem 1.2 from [33], the composition f o g is a
free holomorphic function on [B(#)"],,. Due to the uniqueness theorem for free holomorphic
functions and the fact that f o g = id, as formal power series, we deduce that f(g(X)) = X for
any X € [B(H)"],,. Item (ii) can be proved similarly. Now, using Lemma 3.4, we can deduce
the last part of the proposition. O

We remark that Proposition 3.6 does not imply the existence of a free biholomorphic function
from [B(H)"],, to [B(H)"],, (see the examples presented in this paper).

Let f = (f1,..., fn) be an n-tuple with the model property and let T := (T1,...,T,) €
B (#H). We say that an n-tuple V := (V1,..., V) of operators on a Hilbert space IC D H is
a minimal dilation of T if the following properties are satisfied:

1) (V1,..., Va) € B (K);
(ii) there is a x-representation 7 : C*(Mz,,..., Mz,) — B(K) such that 7(Mz,) =V, i =
1,...,n;
(i) V¥ |y =T fori=1,...,n;
@iv) IC:\/%]F;r VoH.

Without the condition (iv), the n-tuple V is called dilation of 7. For information on completely
bounded (resp. positive) maps, we refer to Paulsen’s book [17].

Theorem 3.7. Let f = (f1, ..., fn) be an n-tuple of formal power series with the radial approx-
imation property and let T := (T1, ..., T,) be an n-tuple of operators in the noncommutative
domain B y (). Then the following statements hold.

(1) There is a unique unital completely contractive linear map
Yrr: C*(le vooosMz,) — B(H)
such that

Wi (Mz,M3) =T, T, o BeF,.

(i) If f € Myaa N MU, then there is a minimal dilation of T which is unique up to an isomor-
phism.

Proof. According to Lemma 3.4, thereis § € (0, 1) such that, foreachr € (§, 1]andi =1, ..., n,
the multiplication operator M(Zr’_ ) H2(rf) — H2(rf), defined by M gl_)l/f := Z;, is unitarily

equivalent to an operator q)i(%S) € F;° having the Fourier representation cF; ag)ﬁSa.
Therefore, for any ay g € C,

*
>
|l | B1<m

(3.7)

E %) —]S @ —1S '
a, .
o, BPa , B -

el |BI<m
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Note that (77, ..., T,) is a pure n-tuple in B, (H) for any r € (8, 1). Applying Theorem 3.1, we
deduce that

*
2. aapMy Myl
lal,[Bl<m

(3.8)

> austuti] <
lal,|Bl<m

On the other hand, according to [30], (pi(£S) is in the noncommutative disc algebra A, for
any ¢ € (0, 1), and the map (0,1) >¢ — ¢i(§S) is continuous in the operator norm topology.

Consequently,
I > Lo)gs(Ls) > ($)gp(S)*
im - - =
Ao, fPa ; @B ; Ao, pPa(D)Pp
lal,|Bl<m lal,[Bl<m
= Z aa,ﬂMZaM;ﬁ .
], |BI<m

Combining this with relations (3.7) and (3.8), we have

S austili| <] X auph s,
lal,|1BI<m la], | Bl <m

A similar inequality can be obtained if we pass to matrices with entries in C*(Mz,, ..., Mz,).
Now, an approximation argument shows that the map

Y awpMz My > Y agpTaTy
o], 1BI<m o], BI<m

can be extended to a unique unital completely contractive map on Span{Mz, M ;ﬁ: a, B eF).
Since, due to Theorem 3.3, the latter span coincides with C*(Mz,, ..., Mz, ), item (i) fol-
lows. Now, we assume that f € M,,s N M. Applying Stinespring’s dilation [36] to the uni-
tal completely positive linear map ¥y 7 and taking into account that C*(Mz,,..., Mz,) =
Span{Mz, MZS: a, B € F;'}, we find a unique representation 7w : C*(Mz,, ..., Mz,) — B(K),
where K 2 H, such that 7(Mz,)*|lyy =T, i=1,...,n, and K = \/MF;r w(Mz,)H. Setting
Vii=mn(Mz),i=1,...,n,itremains to prove that (Vi, ..., V,) € B¢ (K). To this end, note that
since (Mz,,...,Mz,) € Ml we have filtMz,,...,.Mz,)eC*"(Mgz,,...,Mz)fori=1,...,n.
Consequently, the inequality Y /', fi(Mz,,...,Mz,) fi(Mz,,...,Mz,)* < Iy () implies

Y filx(Mgz). ... w(Mz,)) fi(1(Mz,). ..., m(Mz,))" < Ix.

i=1

On the other hand, since g(f(Mz,,..., Mz,)) = Mz,, where the convergence is in the operator
norm topology, we deduce that g;(f(w(Mz,),...,mn(Mz,))) =n(Mz,), i =1,...,n. There-
fore, the n-tuple (w(Mz,), ..., w(Mz,)) is in the noncommutative domain B ; (). The proof is

complete. 0O
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Let S C C*(Mgz,, ..., Mz,) be the operator system defined by
S:={pMz,,....Mz,)+q(Mz,,....Mz,)*: p,.q€Cl[Zy,..., Z,]}.

Theorem 3.8. Let f = (f1, ..., fn) € MyaaN MV and (Ty, ..., T,)) € B(H)". Then the following
statements are equivalent:

@) (Ty,...,Ty) e B (H);
(ii) themap q(Mz,,...,Mz,)— q(T1, ..., T,) is completely contractive;
(iii) The map ¥ : S — B(H) defined by

U(pMz,,....Mz,)+qMz,,....Mz,)"):=p(Ti,....T) +q(T1,..., T,))*
is completely positive.

Proof. The implication (i) = (ii) and (i) = (iii) are due to Theorem 3.7. Since the implication
(iii) = (ii) follows from the theory of completely positive (resp. contractive) maps, it remains
to prove the implication (ii) = (i). To this end, assume that the map g(Mz,,..., Mz,) >
q(Ty,...,Ty) is completely contractive. For each j =1,...,n, assume that f; has the rep-
resentation Zaew ¢ Zy and let ¢S : =200 X =k ¢ Zy, m € N. Since the universal
model My = (M Z,»---»Mz,) is in the set of norm convergence for the n-tuple f, we have
fiMz) =limy, o0 gm )(M z) with the convergence in the operator norm topology. On the other

hand, due to Theorem 3.7, we have

las (T, .. Ty — g (T, T | <l Mz, ... Mz) —q (M, ...,

for any m, k € N. Consequently, {q(] ) (T, ..., T}, is a Cauchy sequence in B(#) and, there-

fore, f;(T1, ..., Ty) :=1limy o qm (T1, ..., T,y) exists in the operator norm. Now, since

IasP (T, ... T, . g (T, ... T
<|[alP Mz, ... Mz,), ... g8 (Mz,, ..., Mz)]|,

taking the limit as m — oo, we obtain || f(T)|| < || f(Mz)| < 1. Since f = (f1,..., fn) has
the radial approx1mat10n property, relation (3.1) and Lemma 3.4 show that the sequence p,g,) =
Yo Z‘ ol=k aa Z of noncommutative polynomials satisfies the relation

Mz, =8i(f(Mz)) = lim p3(f(M2)),

where the limit is in the operator norm. Therefore, we have || p(l)( fMz)) — Mz, || — 0 as
m — oo. Using the von Neumann type inequality

meN,

[ (f (D) = T < [P (f (M2)) =

we deduce that T; = lim,,,, oo p,gi)( f(T)) in the operator norm and, therefore, g; (f(T")) = T; for
alli =1,...,n. This shows that (71, ..., T;) € By(H) and completes the proof. O
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We introduce the noncommutative domain algebra A(B ¢) as the norm closure of all polyno-
mials in Mz, ..., Mz, and the identity.

Theorem 3.9. Let f = (f1, ..., fn) € Mua N M and (A4, ..., A,) € B(H)". Then there is an
n-tuple of operators (Ty, ..., T;) € B s (H) and an invertible operator X such that

Ai=X'Tx, foranyi=1,...,n,

if and only if the n-tuple (A1, ..., A,) is completely polynomially bounded with respect to the
noncommutative domain algebra ABr).

Proof. Using Theorem 3.8 and Paulsen’s similarity result [16], the result follows. O

Lemma 3.10. Let f = (fi, ..., fu) be an n-tuple of formal power series in the class M, and
let g = (g1, ..., 8n) be the inverse of f. Then the following statements hold.

(i) The set IB%? (H) coincides with g([B(H)"11). When H = C, the result holds true when f has
only the model property.
(ii) The set B"""(H) coincides with the image of all pure row contractions under g.
(iii) If £(0) =0, then IB%? (H) contains an open ball in B(H)" centered at 0, and

{X € BAH)": X is nilpotent and || f (X)|| < 1} =B} (H) C B} (H).

Proof. We shall prove items (i) and (ii) when f is an n-tuple of formal power series with prop-
erty (S). The other two cases (when f has property (A) or property (F)) can be treated similarly.
First, note that IB%; (H) € g([B(H)"]1). To prove the reversed inclusion let ¥ = g(X), where

X € [B(H)"]1. According to Lemma 2.6 part (iii), we have either g € CJSCOT (H2(f)) and

Si=fi(g1,....8), i=1,....n, (3.9
or g € C*(H?(f)) and
S; = SOT- 1im1 firgl,....rgn), i=1,...,n. (3.10)
rF—>
Since f € M/, the n-tuple (Mz,, ..., Mz,) is in the set of norm-convergence (or radial norm-
convergence) for the n-tuple of formal power series f = (f1, ..., f). This implies that the con-

vergence above is in the operator topology. Applying the noncommutative Poisson transform Py,
we deduce that X; = f;(g1(X), ..., g.(X)),i =1,...,n. This implies that f(¥Y) = f(g(X)) =
X and g(f(Y)) = g(X) =Y, which shows that Y € B? (H). Therefore, ]B%Jf (H) =g(BH)"T1),
the function g is one-to-one on [B(H)"]; and f is its inverse on IBS? (H). Now consider the case
when H = C and assume that f has the model property. Since IBS? (C) < g(B,), we prove the
reverse inclusion. Let 4 = g(A) for some A € B, and assume that one of the relations (3.9) or

(3.10) holds, say the latter. Setting z; := ZaeJF,T Agla € F2(H,,), we deduce that

A =(8S;(0, ) = lim(f; 081, @) (1), 22)

=r11_1311 fi(rgi), ....rga) = £i(g)).
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This implies that () = f(g(X)) = A and g(f(un)) = g(A) = wu, which shows that pu € IB%? (©).
Therefore, IB%? (C) = g(B,,), the function g is one-to-one on B, and f is its inverse on IB%? B,).
Similarly, one can assume that relation (3.9) holds and reach the same conclusion.

To prove item (ii), set [B(H)”]Ilmre :={X € [B(H)"]{: X is a pure row contraction} and note
that B’}um (H)C{g(X): Xe [B(’H)"]’7 "}, The reversed inclusion follows similarly to the proof
of item (i) using the noncommutative Poison transform Py, where X is a pure row contraction.
In this case, we also show that f(g(X)) = X and deduce that g : [B(’H)”]’f“m — B’}m (H) isa
bijection with inverse f : IEBI}W(H) — [B(H)"]"". Now we prove part (iii). Since f has nonzero
radius of convergence and f (0) = 0, the Schwartz lemma for free holomorphic functions implies
that there is ¥ > 0 such that | f(X)|| < 1 for any X € [B(H)"],. On the other hand, using
Theorem 1.2 from [33], the composition g o f is a free holomorphic function on [B(#)"], . Due
to the uniqueness theorem for free holomorphic functions and the fact that g o f = id, as formal
power series, we deduce that g(f (X)) = X for any X € [B(H)"],.

If X € B(H)" is a nilpotent n-tuple with || f(X)|| < 1, then taking into account that f(0) =0,
we deduce that [ f1(X), ..., f»(X)] is a nilpotent n-tuple. Hence and using that g o f = id, we
deduce that g(f (X)) = X, which completes the proof. O

Lemma 3.11. If f = (f1, ..., fa) is an n-tuple of formal power series in the class ./\/lmd, then
By () =s([BH)"])),
where g = (g1, ..., &) is the inverse of f with respect to the composition of power series. More-

over, the function g : [B(H)"]] — By (H) is a bijection with inverse f :Br(H) — [B(H)"]].
When H = C, the result holds true when f has only the radial approximation property.

Proof. First, note that By (H) € g([B(H)"]}). To prove the reverse inclusion, let ¥ := g(X)

and X = (X1,...,X,) € [B(H)"]]. Since f has the radial approximation property, g =

ZaeF+ aa)Zo, is a free holomorphic function on [B(H)"], for some y > 1. Moreover, ac-

cordlng to Lemma 3.4, there is § € (0, 1) with the property that for any r € (3, 1], the series
(@)

gi(%S) = Z}:io Zm:k %Sa is convergent in the operator norm topology and represents an

element in the noncommutative disc algebra .A4,,, and

1SA/ =fj (&(lS),...,gn(ls)), je{l,....n}, re(.1], @3.11)
r r r

where g(%S ) is in the norm-convergence (or radial norm-convergence) of f. Applying now the
noncommutative Poisson transform P, x, we deduce that X; = f;(g(X)) for j =1, ..., n. This
also shows that g is one-to-one on [B(H)"]; . On the other hand, the relation above implies
Y =g(X)=g(f(g(X)=g(f(Y)) and || f(Y)]l <1, which shows that Y € B (). Therefore,
Br(H)=g(B(H)"];) and f is one-to-one on B ¢ (H).

Now consider the case when 7 = C and assume that f has only the radial approxima-
tion property. Since B¢ (C) € g(B,), we prove the reverse inclusion. Let u = g(1) for some
A € B, and assume that relation (3.11) holds, where g( S) is either in the convergence set
CSOT(FZ(HH)) or Cmd(Fz(H )). For example, assume that g(1$) € CSOT(FZ(H )). For each

r € (8, 1), consider z,), := Zaew rar'®e, € F2(H,), and note that
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1 1 1
Aj =<;Sj(1),zr/\> = <fj <81<;S>,...,gn<;S>)(1),ZM>
=fi(g1 ), ..., g W) = fi(g().

This implies that /(1) = f(g(X)) =A and g(f(n)) = g(A) =t which shows that 1 € B £ (C).

Therefore, B 7 (C) = g(By,), the function g is one-to-one on B, and f is its inverse on B, (O).
Similarly, one can treat the case when g(% SyeC ’f"d(F 2(Hy)). The proof is complete. O

In what follows, we identify the characters of the noncommutative domain algebra A(B ;).
Let A= (A1,...,A,) bein B (C) and define the evaluation functional

D). : P(Mz,,...,Mz,) — C, @5 (p(Mz)) = p(),

where P(Mz,, ..., Mz,) denotes the algebra of all polynomials in Mz,, ..., Mz, and the iden-
tity. According to Theorem 3.7, we have |[p(L)| = |[p(A )| < |[p(Mz)|. Hence, @, has a
unique extension to the domain algebra A(IB ;). Therefore @;, is a character of A(B ).

Theorem 3.12. Let f = (fi1,..., fn) be an n-tuple of formal power series with the radial ap-
proximation property and let M A ) be the set of all characters of A ). Then the map

¥ BC)— MA®,), UL =Dy,
is a homeomorphism and B  (C) is homeomorphic to the closed unit ball B,.

Proof. First, notice that ¥ is injective. To prove that ¥ is surjective, assume that @ : AB ) — C
is a character. Setting A; := ®(Mz;), i =1, ...,n, we deduce that @(p(Mz)) = p(A) for any
polynomial p(Mz,, ..., Mz,) in A(B). Since @ is a character it follows that it is completely
contractive. Applying Theorem 3.8 in the particular case when A; := A;Ic,i =1,...,n, it fol-
lows that (A1 Ic, ..., Ay lIc) € Bf(C). Moreover, since

D (p(Mz)) = p(h) =D, (p(My2))

for any polynomial p(Mz) in A(Bs), we must have @ = @;. Suppose now that A% :=
A, ..., Ay, a e J,isanetin By (C) such that limgey A = A := (A1, ..., A,). Itis clear that

lim @, (p(M2)) = lim p(1%) = p(2) = P, (p(M2))

for every polynomial p(Mz). Since the set of all polynomials P(Mz,,..., Mz,) is dense in
ABy) and sup,e; [Pl < 1, it follows that ¥ is continuous. According to Lemma 3.11,
Br(C) = g(B,,) is a compact subset of C" and g : B,, — B (C) is a bijection. Since both B 7 (C)
and M A, are compact Hausdorff spaces and ¥ is also one-to-one and onto, we deduce that
¥ is a homeomorphism. On the other hand, since the map A — g(1) is holomorphic on a ball
(C"),, for some y > 1, one can see that B ¢ (C) is homeomorphic to the closed unit ball B,,. The
proof is complete. O
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4. The invariant subspaces under Mz,, ..., Mz

n

In this section we obtain a Beurling type characterization of the joint invariant subspaces
under the multiplication operators Mz, , ..., Mz, associated with the noncommutative domain
B s and a minimal dilation theorem for pure n-tuples of operators in B / (H).

An operator A : H>(f) ® H — H*(f) ® K is called multi-analytic with respect to
Mz, ...,Mz, it A(Mz, ® Iyy) = (Mz, ® Iic)A for any i = 1,...,n. If, in addition, A is a
partial isometry, we call it inner.

Theorem 4.1. Let f = (f1,..., fn) be n-tuple of formal power series with the model prop-
erty and let Mz := (Mz,, ..., Mz,) be the universal model associated with By. If Y €
B(H?(f) ® M), then the following statements are equivalent.

() There is a Hilbert space & and a multi-analytic operator ¥ : H?(f) ® € — H?(f) @ H with
respect to the multiplication operators Mz, , ..., Mz, suchthat Y =WW¥*.

(i) Prmei(Y) < Y, where the positive linear mapping @y, : BH2(f) @ H) —
B(H?(f) ® H) is defined by

n

Drm,ei(Y) =Y (filMz) ® In)Y (fi(Mz) ® In)".
i=1

Proof. First, assume that condition (ii) holds and note that ¥ — @? My® ;(Y) = 0 for any
m=1,2,....Since (Mz,, ..., Mz,) is a pure n-tuple with respect to the noncommutative do-
main IB%f(Hz(f)), we deduce that SOT-lim,;, _, oo <D’;fMZ®I(Y) =0, which implies Y > 0. Denote

M :=range Y'/2 and define
Qi(Y'2x) =Y (fi(M2)* ® I))x, x eH*(f)®H, 4.1)
foranyi =1,...,n. We have
n n
SOl 2o P < YoMt @ B)x | = (@ pnger (Dxx) < ¥
i=1 i=1

for any x € H2(f) ® H, which implies || Q:YV2x %2 < | YV/2x)2, for any x € H2(f) ® H. Con-
sequently, Q; can be uniquely be extended to a bounded operator (also denoted by Q;) on
the subspace M. Setting A; := QF, i =1,...,n, we deduce that ) ;_; A;AF < . Denoting
oa(Y):=3"_| A Y A7 and using relation (4.1), we have

(O (DY'2x, Y1 2x) = (@7 o (Nx, x) S Y@ 4y, 0 (DX, x)
for any x € H?(f) ® H. Since SOT-lim,;, _, o % 11,01 (1) =0, we have SOT-limy, 00 ¢y (1) =
0. Therefore A := (A1, ..., Ay) is a pure row contraction. According to [26], the Poisson kernel

K4 : M — H?(f)®E (€ is an appropriate Hilbert space) defined by

Kahi=Y" fu®AaAjh, heM,

aclF;
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where Ag = (I — A1AT — ..., A, A¥)1/2 is an isometry with the property that
AiK3i=Ki(M;Q®Ig), i=1,...,n. 4.2)

Let ' := Yl/zK;'; ‘H2(f) ® £ — H2(f) ® H and note that, due to the fact that f has the model
property, My, = fi(Mz,,...,Mz,) fori =1, ...,n. Consequently, we have

My, ®Ig)=Y'PKi(Ms. @ Ie) =Y'? A K,
= (/iM2) ® Iy)Y'?K}, = (M, @ )W

for any i = 1,...,n. Now, let g = (g1,..., gn) be the inverse of f = (fi,..., fn) with re-
spect to the composition of power series. In the proof of Theorem 3.1, we showed that
gMy,...,My)= Mgz forall i =1,...,n. Hence, we deduce that the operator Mz, is in
the SOT-closure of all polynomials in My, ..., My, and the identity. Consequently, the rela-
tion I'(My, @ Ig) = (My. @ Iy)I" implies I'(Mz, ® Iy) = (Mz, @ Iy)I" fori =1,...,n,
which shows that I” is a multi-analytic with respect to Mz,, ..., Mz,. Note that we also have
rr= YI/ZKI’L“KAYI/2 =Y. The proof is complete. O

The next result is a Beurling [5] type characterization of the invariant subspaces under the
multiplication operators Mz, ..., Mz, associated with the noncommutative domain B f.

Theorem 4.2. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let (Mz,, ..., Mz,) be the multiplication operators associated with the noncommutative
domainB ;. A subspace N C Hz(f) ®H is invariant under each operator Mz, ® Iy¢, ..., Mz, ®
Iy if and only if there exists an inner multi-analytic operator ¥ : H?(f) ® € — H2(f) ® H with
respectto Mz, , ..., Mz, such that

N=v[H () €]

Proof. Assume that N’ C H?( f) ® H is invariant under each operator Mz, ® I, ..., Mz, ® Iy.
Since Pnr(Mz, ® I3)) Pny = (M7, @ Iyg) Py forany i =1, ...,n,and Mz :== (Mz,,...,Mz,) €
B/ (H2(f)), we have

D myen,(Pyn) = P/\/|: Z(fi(Mz) ® In() P (fi(M2)* @ 17-[)1| Py

i=1

< P/\/’|: D (fitM2) ® Iy) (fi(M2)* & Iy)} Py

i=1

n
= PN<ZMﬁM; ®IH>PN< Py

i=1

Here, we also used the fact that My = f;(Mz,, ..., Mz,). Applying now Theorem 4.1, we
find a multi-analytic operator ¥ : H?(f) ® £ — H?(f) ® H with respect to the operators
Mz,, ..., Mz, such that Pnr = ¥ W™, Since Py is an orthogonal projection, we deduce that

n
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¥ is a partial isometry and A" = W[H?(f) ® £]. Since the converse is obvious, the proof is
complete. O

Theorem 4.3. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model property
andlet (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B 5.
If N CH?*(f) @ H is a coinvariant subspace under Mz, @Iy, ..., Mz, @ Iy, then there is a
subspace £ C H such that

span{(Mz, ® )N a e F[} =H(f) ® E.

In particular, N is cyclic for the operators Mz, ® ly,...,Mz, ® Iy if and only if
(Pc ® I1)N = H, where Pg is the orthogonal projection on C.

Proof. Let & := (Pc ® I)N C H, where 1 ® H is identified with H, and let & € N be a nonzero
vector with representation 1 = ", g+ fu ® ha, ho € H. Choose g € F," with hg # 0. Since N/
is a co-invariant subspace under Mz, ® Iy,..., Mz, ® I3, and f has the model property, we
have My, = fi(Mz,,...,Mz,) fori =1, ..., n, and deduce that

(Pc® Iy)([f (M2)], ® In)h = (PcMy, ® In)h =hp € E.

This implies (M f, ® I31)(1 @ hg) = fp @ hp € H2(f) ® & for any B € F;f. Hence, we deduce
that h =3, i+ fo ® ho € H2(f) ® £. Therefore, N' C H?(f) ® £, which implies

G :=span{(My ® )N: a e F;} CH* () ®E.

Now, we prove the reverse inclusion. Let g € &€, hg # 0. Due to the definition of the subspace &,
there exists x € M such that x =1 ® hg + Zm;l fo ® hy. Hence, we obtain

n
ho = (Pc @ Iy)x = (1 - ZMﬁM;:i ® IH>x.
i=1

Since My, is a SOT-limit of polynomials in Mz,, ..., Mz,, and N is a co-invariant subspace
under Mz, ® Iy, ..., Mz, ® Iy, we deduce that iy € G. Therefore, £ C G and (Mz, ® I3) X
(1® &) C G for a € F,f. Since, due to Proposition 2.5, C[Z1, ..., Z,] is dense in H2(f), we
deduce that H?>(f) ® £ C G. The last part of the theorem is now obvious. The proof is com-
plete. O

A simple consequence of Theorem 4.3 is the following result.

Corollary 4.4. A subspace N' C H?(f) ® H is reducing under each operator M 7, @Iy, i =
1,...,n, ifand only if there is a subspace & C H such that N =TH?*(f) ® €.

We remark that, in Theorem 4.2, the inner multi-analytic operator ¥ : H>(f) ® £ — H*(f) ®
H with respect to Mz, , ..., Mz, and with the property that A" = W[H?(f) ® €] can be chosen
to be an isometry. Indeed, let M := {x € H*(f) ® &: |¥ (x)| = ||x||}. Since f has the model
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property, we deduce that f;(Mz,,..., Mz,) = My, is an isometry for eachi =1, ..., n. Conse-
quently, we have

|& My, @ Ie)x|| = |¥fi(Mz, ® I¢, ..., Mz, ® Ie)x||
=|fiMz, @ Ipy, ..., Mz, @ h)¥ (x)|
=|vm|=lxll=]fitMz, ®I¢..... Mz, @ Ie)x | = | (M, ® Ig)x||

for any x € M and i =1, ..., n. This implies that M is an invariant subspace under M, ® I¢,
i=1,...,n. Using the fact that Mz, = g;(My,,...,My,),i=1,...,n, where g = (g1, ..., gn)
is the inverse of f = (f1, ..., fu), we deduce that M is invariant under Mz, ® I¢, ..., Mz, ® I¢.
On the other hand, since M+ = ker ¥ and UMz, ® Ig) = (Mz, ® Iy)¥, it is clear that Mt
is also invariant under Mz, ® Ig, ..., Mz, ® Ig, which shows that M is a reducing subspace
for Mz, ® Ig, ..., Mz, ® I¢. Now, due to Corollary 4.4, M = H?(f) ® G for some subspace
G C &. Therefore, we have

N =0[H(f)® ] =¥ (M) =¥[H(f) ®]]

and the restriction of ¥ to H?(f) ® G is an isometric multi-analytic operator, which proves our
assertion.
The next result can be viewed as a continuation of Theorem 3.1.

Theorem 4.5. Let T = (T1,...,T,) € By(H) be a pure n-tuple of operators and let f =
(f1, ..., fn) have the model theory. Then the noncommutative Poisson kernel Kysr : H —
HZ( f) @ Dy r defined by relation (3.2) is an isometry, the subspace K s, 7 (H) is co-invariant
under Mz, ® 134, ..., Mz, ® Iy, and

T, = K?,T(MZ,* ® Ipf,T)Kf’T, i=1,...,n.
Moreover, the dilation above is minimal, i.e.,

H(f)®Drr=\/ Mz, ® Ip, ) K 1.7 (H),

QGF;
and unique up to an isomorphism.

Proof. The first part of the theorem was proved in Theorem 3.1. Due to the definition of the
noncommutative Poisson kernel K ;s 7, we have (Pc ® Ip /.,T)Kf,T('H) =Dy r. Applying The-
orem 4.3, we deduce the minimality of the dilation. To prove the uniqueness, consider another
minimal dilation of (77, ..., Ty), that is,

T,=V*Mz, ®1Ic)V, i=1,....n, (4.3)

where V : H — Hz(f) ® & is an isometry, V(H) is co-invariant under Mz, ® I¢, i =1,...,n,
and

H(f)@E=\/ (Mz, ® Ig)V(H).

ackF;
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According to Theorem 3.3 and Theorem 3.1, we have
span{Mz, M : o« BT, } =C*(Mz,..... Mz,)

and there is a completely positive linear map @ : C*(Mz,, ..., Mz,) — B(#) such that
DMz M 23) =T, Tg, a, B € F;}. Note that relation (4.3) and the fact that V (H) is co-invariant

under Mz, ® I¢, i =1, ..., n, imply that
D(X)= K;;_’TJ'[](X)Kf’T = V*JTz(X)V, X e C*(MZI, AU MZ,,):

where 1, are the x-representations of C*(Mz,, ..., Mz,) on H2(f) ® Dy and H2(f)®E
given by m(X) ' =X ® Ipﬂ. and m(X) := X ® Ig, respectively. Since 1, 7 are mini-
mal Stinespring dilations of @, due to the uniqueness [36], there exists a unitary operator
W :H(f) ® D1 — H?(f) ® & such that

WMz ®Ip,,) =Mz, @ )W, i=1,..n,

and WKy = V. Hence, we also deduce that W(M* ® IDfT) = (M* ® Ie)W for i =
1,...,n. Since, due to Theorem 3.3, the C*-algebra C* (M ZysesMz,) is 1rreduc1ble we must
have W = Iyps) ® I', where I € B(Dyr, €) is a unitary operator. Consequently, we have
dimDyr = dimc‘,’ and WK 7,7V (H) = V(H), which proves that the two minimal dilations are
unitarily equivalent. The proof is complete. O

Corollary 4.6. Let (Mz,,..., Mz,) be the universal model associated with the noncommuta-
tive domain B y. The n-tuples (Mz, @ Iy, ..., Mz, ® Iyy) and (Mz, @ Ik, ..., Mz, ® Ix) are
unitarily equivalent if and only if dim H = dim /C.

Proof. Let W : H?(f) ® H — H?(f) ® K be a unitary operator such that WMz, ® Iy) =
Mz, @ Iic)W fori =1, ...,n.Since W is unitary, we have W(M* RIy) = (M* QI)W,i=
1,...,n. Using the fact that C*(Mz,, ..., Mz,) is irreducible, we deduce that W'= IHz(f) ®I
for a unitary operator I" € B(H, K), Wthh shows that dim H = dim /C. The converse is obvious,
so the proof is complete. O

5. The Hardy algebra H*° (B ) and the eigenvectors of M ;1 yeeoo M ;n

Let f = (f1,..., fu) be an n-tuple with the model property. We define the noncommuta-
tive Hardy algebra H*°(B) to be the WOT-closure of all noncommutative polynomials in
Mz,,..., Mz, and the identity. Assume that f € M. We say that F : IB%?(”H) — B(H) is a
free holomorphic function on IB%; (H) if there are some coefficients ¢, € C such that

F) =Y Y clfM], YeBjH),

k=0 |or|=k

where the convergence of the series is in the operator norm topology. Since, according to
Lemma 3.10, we have IB%?(H) =g([B(H)"]1) and f(g(X)) =X, X € [B(H)"]1, the uniqueness
of the representation of F follows from the uniqueness of the representation of free holomorphic
functions on [B(H)"];.
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Theorem 5.1. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model property
and let B ¢ be the corresponding noncommutative domain. Then the following statements hold.

(i) H*®By) coincides with the algebra of bounded left multipliers of H2(f).
(i) If f € M, then H>® (B ) can be identified with the algebra H* (]B%?) of all bounded free
holomorphic functions on the noncommutative domain IB%? (H), which coincides with

{po f:BF(H) > BOH): ¢ € Hyg ).

(iii) If v € H®(By), then there is a unique ¢ =, cqSq in the noncommutative analytic
Toeplitz algebra F° such that

¥ =SOT- lim DY e fMp)],. ca€C,

k=0 |ot|=k

where Mz .= (Mz,, ..., Mgz,) and the convergence of the series is in the operator norm
topology.

Proof. According to the proof of Lemma 2.6, My, = U_lSjU, j=1,...,n, where Sq,..., S,
are the left creation operators on the full Fock space F 2(H,), and M z; = U-! @;i(S1,....,5)U,
where ¢;(Si, ..., S,) is in the noncommutative Hardy algebra F°. We recall that F,° is the
WOT closure of the noncommutative polynomials in Sy, ..., S, and the identity. Since H*° (B f)
is the WOT-closure of all noncommutative polynomials in Mz,, ..., Mz, and the identity, we
deduce that H*(B;) C U _1F,‘l’° U. On the other hand, using again Lemma 2.6, the creation
operator S; is in the WOT-closure of polynomials in ¢1(S1, ..., Sp), ..., @, (S1, ..., Sy) and the
identity. Consequently, we have U_lSjU € H®By), j =1, ..., n, which implies U_lF,?OU -
H*(By). Thus, we have proved that

H®By) =U"'F>U. (5.1

Taking into account that U (H?( f)) = F?(H,) and that the algebra of bounded left multipliers
on F2(H,) coincides with F*°, we deduce item (i).

To prove (ii), we recall (see [30]) that if ¢ € HpY,, then ¢(X) = > 72, Z\a:k ag Xy, X €
[B(H)"]1, where the convergence is in the operator norm topology. Moreover,
supx crppyr, 19 (X)Il < oo, and the model boundary function ¢ := SOT-lim, Y heg X
Z|a=k agr'®'s, exists in F*. Since, according to Lemma 3.10, IB%;(H) =g([B(H)"*]1) and
f(g(X)) =X for X € [B(H)"],the map F : IB%?(”H) — B(H) defined by

F)=Y) Y clfM],, YeBFH),

k=0 |a|=k
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is well defined with the convergence in the operator norm topology. Consequently, F' = ¢ o
f is a bounded free holomorphic function on IB%? (H). Now, let G € H*® (]BS?). Then there are
coefficients ¢, € C such that

G)=) > clf(N], YeBFH),

k=0 |a|=k

where the convergence is in the norm topology and SUPy B (W) IG(Y)| < oo. Taking ¥ =

g(rSi,...,rSy), we deduce that sup,.¢q 1) |l Yo Zm:k car!® Sy || < 0o, which shows that the
map ¢ : [B(H)"]1 = B(H), defined by p(X) = ;2 Z\a|=k caXqisin Hig, and G=go f.
This shows that

H®®B7)={go f:BF(H) - B(H): ¢ € Hoy}-

Hence, using relation (5.1) and the fact that F,>° can be identified with Hy,, we deduce item (ii).

To prove part (iii), let v € H*°(By). Due to relation (5.1), the operator Uy U ~!is in the
Hardy algebra F° and, therefore, there are coefficients ¢, € C such that

o
UyU~" =SOT-lim Y~ > " a,r'ls,,

r—1
k=0 |a=k

where the convergence of the series is in norm. Since f has the model property, we have My, =

fitMz,,...,Mz,), j=1,...,n. Using now relation ij = U’lSjU, we deduce that item (iii)
holds. The proof is complete. O

Theorem 5.2. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let Mz := (Mz,, ..., Mz,) be the universal model associated with the noncommutative do-
main B . The eigenvectors for M ;1 ey M}n are precisely the noncommutative Poisson kernels

12
Iy= (1 - im(x)yz) SN [F®], for A= i) €BFO).
i=1 aelF,
They satisfy the equations
My Do=hxilh, i=1,...,n
Ifxe B?(C) and ¢(Mz) is in H®By), then the map
O, :H®Bs) > C,  Pu(p(Mz)):=p(}),

is WOT-continuous and multiplicative and ¢(A) = (p(Mz)I, I.). Moreover, o(Mz)*I) =
o) Ty, and . — @()) is a bounded holomorphic function on IB%? ©€)ccn
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Proof. AssumethatA = (A1,...,A,) € IB%? (©). According to Theorem 3.1, the noncommutative
Poisson kernel associated with the noncommutative domain B 7 at A, which is a pure element, is
the operator K5 : C — H?(f) ® C defined by

n 1/2
K@= Y fu® (1 —Zlﬁ-(x)ﬁ) [F®)],z zeC,
i=1

aeFI

which satisfies the equation (M}i R Ic)K 1y = Kf,;h()_\i Ic) for i =1,...,n. Under the natural
identification of H(f) ® C with H?(f), we deduce that I', = K 7, and

MZF)L:XiF)u iZl,...,l’l.

Conversely, let & := ) B CB fp(Z) be a formal power series in H2(f) such that & # 0
and assume that MZ& =)E,i=1,...,n, for some A = (Aq,...,A,) € C". Let f; have the
representation f; = Zae]F,T ao(f)Za. Since f = (f1,..., fn) has the model property, we have
Mg =filMz,,...,Mz)=> 1, > ll=k ag)Mza, where (Mz,, ..., Mz,) is either in the con-
vergence set C?OT (H2(f)) or C}“d (H2(f)). We shall consider just one case since the other can be

treated similarly. For example, assume that (Mz,,..., Mz,) € C‘}OT(]HIz( £)) and let n € H2(f).
Then we have

(fi(Mz,,....Mz,)"&,n)

m m .
o 5 owe)= i (32 5 v )

k=1 |a|=k k=1 |o|=k

m — m —
mli_r)noo< > alka, n> = lim 373" a'ha(En)

k=1 |a|=k k=1 |a|=k
=(fiWE. ),
which shows that
fitMz,, ..., Mz )€ =fi(ME, i=1,...,n. (5.2)
Hence, and using the fact that M, = f;(Mz,,..., Mz,),i =1, ..., n, we deduce that

cp= (& Mg 1) =(6.[f(Mz,.....Mz,)],1)
=([fMz,..... Mz g 1) = [FW)]ptE. 1)

=co[f(M)]p

forany g8 € IE‘,T Therefore, we have

E=co Y [fW]s fp-

BEF,
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Since £ € Hz(f), we must have

SAGP+ -+ 0P = S 0], < cc.

k=0 ﬁe]F,f

Hence, we deduce that | f1(1)[2 +--- + | fu(M)]? < 1.

Now, due to relation (5.2) and using again that My, = fi(Mz,,...,Mz,),i=1,...,n, we
deduce that M* £ = f;(1)&. On the other, according to the proof of Theorem 3.1 (see relation
(3.1)), we have

My, =gi(Mf1,...,an)=SOT—rli_I)1’}gi(erl,...,I‘an).

As above, one can show that g; My, ..., My )€ =gi(f(A)E fori =1, ..., n. Combining this
relation with the fact that MZE =M€, i=1,...,n, we conclude that A = g(f(A)). Therefore,
A E IB%? (©).

According to Theorem 5.1, part (iii), we have ¢(Mz) = SOT-lim,_, 1 Y =, Z|a|=k car'®! x
[f(Mz)]y for some coefficients ¢, € C. Using relation (5.2), we deduce that

[¢(M2). 1) = SOT- lim 3~ 3~ cor™(I, [f (M), T3)
k=0 |a|=k

=SOT-lim } | > " car (I3 [f)]aT3)

k=0 |a|=k

=SOT-lim [ 13117} Y car™[f V)], =0 ().

k=0 |a|=k

Similarly, one can show that ¢ (Mz)* I = m I;.. According to Lemma 3.10 part (i), the map-
ping f|B;(C) : IBS; (C) — B, is the inverse of g|g, : B, — B?(C). Since g is a bounded free
holomorphic function on [B(H)"];, the map B, > A — g(}) € IB%; (©) is holomorphic on B, and
its inverse ]B%; (C) > A+ f(1) €B, is also holomorphic. On the other hand, according to Theo-
rem 5.1, part (iii), there is ¥ € Hyy), such that (1) = ¥ (f (1)) for A € IB%;r (©). Hence, we deduce
that A — ¢@()) is a bounded holomorphic function on IB%; (C). This completes the proof. O

Theorem 5.2 can be used to prove the following result. Since the proof is similar to the corre-
sponding result from [9], we shall omit it.

Corollary 5.3. A map @ : H* (B ) — C is a WOT-continuous multiplicative linear functional if
and only if there exists ). € B?((C) such that

D(A) =Dy (A):= (AL, ), A€ H By),

where I’y is the noncommutative Poisson kernel associated with the domain B s at A.
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Assume that f = (fi,..., f,) is an n-tuple of formal power series with the model property.
Using Theorem 5.1, one can prove that J is a WOT-closed two-sided ideal of H>*(B) if and
only if there is a WOT-closed two-sided ideal Z of F,;° such that

J={o(f(M2)): 9 €T}

We mention that if ¢(Si,...,S,) € F2° has the Fourier representation ¢(Si,...,S,) =
Zae]F,T Ca Sy, then

#(f(M2))=SOT-lim 3 3 * car®/[f(M2)],
k=0 |a|=k

exists. Denote by H*(Vy ;) the WOT-closed algebra generated by the operators B; :=
PnryMz,\Ny, fori =1,...,n, and the identity, where

Nyp=H*(f)eM; and M :=JH(f).
The following result is a consequence of Theorem 4.1 from [2] and the above-mentioned remarks.

Theorem 5.4. Let J be a WOT-closed two-sided ideal of the Hardy algebra H* (B ). Then the
map

I':H®®ys)/J — BWNy) definedby I'(p + J) = Ppr, 0| p,
is a completely isometric representation.

Since the set of all polynomials in Mz, , ..., Mz, and the identity is WOT-dense in H*°(B ),
Theorem 5.4 implies that Par, H* B f)| s, is a WOT-closed subalgebra of B(Ny) and, more-
over, H° (Vs j) = Pxr HX (B 1), -

We need a few more definitions. For each A = (A1,...,A,) and each n-tuple k :=
(ki, ..., ky) € NI, where No := {0, 1,...}, let AK := A% ... A} If k € No, we denote

Ak = {aeFlJ{: Aa:kkforallke(:"}.

Foreachk e Ng, define the formal power series

1 k|!
K= — 3" fu eHE(f),  where = card Ak = <k1v|..|.k |>'
acAg . "

Note that the set {o®: k € Np} consists of orthogonal power series in H2(f) and [|o® || = \/LW

We denote by ]HI%( f) the closed span of these formal power series, and call it the symmetric
Hardy space associated with the noncommutative domain B 7.

Theorem 5.5. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
andlet (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B y.
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Let J. be the WOT-closed two-sided ideal of the Hardy algebra H* (B ;) generated by the com-
mutators

MzMz, —Mz Mz, i,j=1,....n.
Then the following statements hold.

() H2(f) =span{l;: 1 € BF (©)} =N, :=H*(f) © J(D).
(i1) The symmetric Hardy space H?( f) can be identified with the Hilbert space H Z(IEB? ©))
of all holomorphic functions  : IB%? (C) — C which admit a series representation W (L) =

D ken, kS W* with

1
lvla=>" |ck|2E < 00.

keNy

More precisely, every element W = ZkeNO ckw® in H?( f) has a functional representation
on IB%?((C) given by

YO) =, @)= Y afMWY, A=, ... k) €BF(O),

keNy
here §2), := —=—===——=T and
wnere Sz 1*Z?=1|fi()»)|2 2 an
112
[y < A=, k) €BFO).

JI- TP
(iii) The mapping Ay : B; (©) x IB%; (C) — C defined by

1

A = e ) = e T
i=1Ji i

3,1 € B3 (O),
is positive definite.
Proof. First, note that 2, = ZkeNg f (A)kykw(k), = ]B%? (©), and, therefore,

span{ [y 2 € BF (O)} S HI(f).

Now, we prove that o® e N J.=F 2(H,) © J.(1). First, we show that J. coincides with the
WOT-closed commutator ideal of H*(IB r). Indeed, since Mz, Mz = Mz i Mgz, € J. and every
permutation of k objects is a product of transpositions, it is clear that Mz, Mz s —Mz,Mz, € J.
forany «, 8 € Fjl‘ Consequently, Mgz, (MZQMZIS — MZﬁMZQ)MZw € Joforany o, B,y,w e IE‘,;L
Since the polynomials in Mz,, ..., Mz, are WOT dense in H*°(B ), the result follows. Note
also that J.(1) C H?(f) coincides with

span{Zygjgilg — Zyg,.gj,g: v, B EIF,T, i,j= 1,...,n}.
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Similarly, one can prove that the WOT-closed two-sided ideal generated by the commuta-
tors Mf/. My — My, Mf/., i,j€{l,...,n} coincides with the WOT-closed commutator ideal of
H* (B r). Combining these results, we deduce that J, coincides with the WOT-closed two-sided
ideal generated by the commutators M £ Mg —MpM £ i,je{l,...,n}and

Je(D) =span{ fyg0p — freigip: v-BEFL. i,j=1,....n}.
Consequently, since

< D Ju My, (MM, _Mfiij)Mfﬂ(l)>=0

aeAk

for any k € N7, we deduce that o® e N J.- Hence, we have H?( /) € Nj,. To complete the proof
of part (i), it is enough to show that

span{l: » € BF(C)} =N,

Assume that there is a vector x := Zﬂe]Fj{ cgfpeNj andx L I forall i € IB%? (C). Then

< > cﬂfﬁ,m>= Yo eslrm], = Z( > c,s)m)":o

BelF;h BeF,; keNj ~ Bedk

for any A € IB%; (©). Since IB%; (C) contains an open ball in C", we deduce that

Z cg=0 forallkeNj. (5.3)
BeAx

Fix fo € Ak and let B € A be such that 8 is obtained from Sy by transposing just two generators.
So we can assume that By = yg;giw and B = yg;gjw for some y,w € Ftandi#j,i,j=
1,...,n.Since x e Nj, = H2(f) © J.(1), we must have

(x, My, (MgMy, — My Ms)My, (1)) =0,

which implies cg, = cg. Since any element y € Ak can be obtained from By by successive
transpositions, repeating the above argument, we deduce that cg, = ¢, for all y € Ak. Now
relation (5.3) implies ¢, = 0 for any y € Ak and k € Njj, so x = 0. Consequently, we have
span{l}: A € ]B%;(C)} =Nj..

Now, let us prove part (ii) of the theorem. Note that

1 1
® 2)=—(> ,Q>=—§ M, = fO)E
(0™, 2:) yk<ﬂeAkfﬁ x Vk,seAk[f( =13

for any X € ]B%Jf((C) and k € Njj. Hence, every element ¢ = ZkeNO ckw® in ]HI?( f) has a func-
tional representation on ]B%; (C) given by

YO = @)= Y afMW, A=, ..., k) €BF(O),

keNy
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and

112

W] < W22, = |
J1= X 1P

The identification of Hf(f) with HZ(IB?((C)) is now clear. If (A1, ..., A,) and (4, ..., u,) are
in B3 (C), then we have '

Ap(u, )= (2, 20) = Y [Fw]s[f W) ]g,
BEF,

which implies item (iii). The proof is complete. O

If A € B(H) then we denote by Lat A the set of all invariant subspaces of A. WhenU/ C B(H),
we define Lat{f = (1) 4, Lat A. Given any collection S of subspaces of H, then we set

AlgS = {A € B(H): S C LatA}.
We recall that the algebra U C B(H) is reflexive if U/ = AlgLatl{.

Theorem 5.6. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
andlet (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B 5.
If H®(Vy, ;) is the WOT-closed algebra generated by the operators

Li = PHAZ(f)MleHz(J‘)’ i=1,...,n,
and the identity, then the following statements hold.

(i) H*®(Vy,y,) can be identified with the algebra of all multipliers of the Hilbert space
H2 (B} (C)).
(i) The algebra H* (Vy,;,) is reflexive.

Proof. According to the remarks following Theorem 5.4, we have H>(Vy,) =
orem 5.5, since §2; € H2(f) for A € B7(C), and ¢(Mz)*$2;, = ¢(1)£2), (see Theorem 5.2), we
have
[o(L)¥] ) = (oL, 2:) = (p(M2)V, 2:)
= (¥, o(M2)*2:) = (V. o(1) 2,
=pM)Y )

for any ¢ € Hf( f)and A € IB%? (C). Therefore, the operators in H* (Vy, ;,) are “analytic” multi-
pliers of ]H[f( f). Moreover,

le)|| = sup{ligxlla: x € HZ(), Ixl <1}
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Conversely, suppose that ¥ = Zk€N0 ckw™® is a bounded multiplier, i.e., My € B(Hf( ). As

in [9] (see Lemma 1.1), using Cesaro means, one can find a sequence g, = Y _ cl((m)w(k) such that
M,, converges to My in the strong operator topology and, consequently, in the w*-topology.
Since M, is a polynomial in L1, ..., L,, we conclude that My € H*(Vy,;.). In particular L;
is the multiplier M, by the coordinate function.

Now, we prove part (ii). Let Y € B(Hg( f)) be an operator that leaves invariant all the invariant
subspaces under each operator Ly, ..., L,. According to Theorem 5.2, we have L} I = riD,
for any A € IB%?((C) andi =1,...,n. Since Y* leaves invariant all the invariant subspaces under
Ly,....Ly, the vector £2; must be an eigenvector for ¥*. Consequently, there is a function ¢ :
B7(C) — C such that Y*£2; = 0 (L) 2, forany A € B7(C). Due to Theorem 5.5, if f € H2(f),
then Y f has the functional representation

YHG) =Y, 2) =(f,Y*2) =) f(1) forall x e BF(C).

In particular, if f = 1, then the functional representation of Y (1) coincide with ¢. Therefore,
¢ admits a representation ZkGNO ek f (LK on IB%;((C) and can be identified with X (1) € Hf( ).

Moreover, the equality above shows that ¢ f € H? (]B%]f (C)) forany f € H?( f)- Applying the first
part of this theorem, we deduce that Y = M, € H*°(Vy,;.). The proof is complete. O

We remark that, in the particular case when f = (Z1, ..., Z,), we recover some of the results
obtained by Arias and the author, Davidson and Pitts, and Arveson (see [24,1,2,7,9,3]).

6. Characteristic functions and functional models

In this section, we introduce the characteristic function of an n-tuple T = (T1,...,T,) €
B s (H), present a model for pure n-tuples of operators in the noncommutative domain B ¢ (#) in
terms of characteristic functions, and show that the characteristic function is a complete unitary
invariant for pure n-tuples of operators in B r(H).

Let f = (f1,..., fn) be an n-tuple of formal power series with the model property and let
(Mz,,...,Mz,) be the universal model associated with the noncommutative domain B ;. We
introduce the characteristic function of an n-tuple T = (71, ..., T,) € By (#) to be the multi-
analytic operator, with respect to Mz,, ..., Mz,

O HX(f)®@Dyr+ — HX(f) @Dy

having the formal Fourier representation

-1
n

—Ipe ) ® f(T) + (I r) ® Af 1) (I]I-Hz(f)@)% — Z A ® f,-(T)*)
i=1

X[A1 @Iy, ..., Ap @ Iy (U2 py) ® A g 1),
where Ay, ..., A, are the right multiplication operators by the power series f1, ..., f,, respec-

tively, on the Hardy space Hz( f), and the defect operators associated with T := (T1, ..., T,) €
By (H) are
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n 1/2
Agri= (IH - Zfi(T)f,»(T)*) € B(H) and

i=1

Aprei= (1= f() £(D))* € B(H™M),

while the defect spaces are Dy := Ay7H and Dy7+ := A f,T*’H(n), where H™ denotes the

direct sum of n copies of H. We remark that when f = (f1,..., fu) = (Z1,..., Z,), we recover
the characteristic function for row contractions. We recall that the characteristic function asso-
ciated with an arbitrary row contraction T := [Ty, ..., T,], T; € B(H), was introduced in [19]

(see [37] for the classical case n = 1) and it was proved to be a complete unitary invariant for
completely non-coisometric (c.n.c.) row contractions. Related to our setting, we remark that

Onr=(U"®Ip,;)Orm(U®Ip,.), (6.1)

where @ ¢(r) is the characteristic function of the row contraction f(T) = [fi1(T),..., fu(T)]
and U : H?( f)—F 2(H,) is the canonical unitary operator defined by Uf, =e,, @ € Fjl‘ Con-
sequently, due to Theorem 3.2 from [28], we deduce the following result.

Theorem 6.1. Let f = (fi, ..., fn) be an n-tuple of formal power series with the model property
andletT =(Ty,...,T,) € By(H). Then

IH2(f)®/Df,T - @f’T@?’T = Kf’TK}kc’T, (62)
where © g 1 is the characteristic function of T and K ¢, is the corresponding Poisson kernel.

Now we present a model for pure n-tuples of operators in the noncommutative domain B s (H)
in terms of characteristic functions.

Theorem 6.2. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
andlet (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B 5.
IfT =(T1, ..., T,) is a pure n-tuple of operators in B y (H), then the characteristic function ® f,7
is an isometry and T is unitarily equivalent to the n-tuple

(PH/',T (MZ| ® I’D/',T)le,T s PH_/;T (MZH ® I'D/',T)le‘T)v (63)

where Py, ; is the orthogonal projection of H2(f) ® Dy,1 on the Hilbert space
Hyr:=(H(/)®Dysr) © O (H () ®Dyr+).

Proof. According to Theorem 4.5, the noncommutative Poisson kernel K7 : H — H2(f) ®
Dy,7 is an isometry, K s 7 is a co-invariant subspace under Mz, ® IDﬂT, i=1,...,n,and

Ti=K} Mz, ®Ip, )Ksr, i=1,...n. (6.4)

Hence, Ky7 K% 7 is the orthogonal projection of H(f) ® Dy,r onto K ;7H. Using relation
(6.4), we deduce that Kz, 7K and @7 @;T are mutually orthogonal projections such that

KprKyr + 05105 =Ip(5)ep, ;-
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This implies
KprH=(H*(f)®Dsr)© Opr(H*(f) @ Ds1+).

Taking into account that K 7,7 is an isometry, we identify the Hilbert space H with Hy 1 :=
K ¢ 7H. Using again relation (6.4), we deduce that T is unitarily equivalent to the n-tuple given
by relation (6.3). That @y 7 is an isometry follows from relation (6.1) and the fact that the
characteristic function of a pure row contraction is an isometry [19]. The proof is complete. O

Let @ : H(f) ® K1 — H*(f) ® K» and @' : H?(f) ® K} — H?(f) ® K be two multi-
analytic operators with respect to Mz,,..., Mz,. We say that @ and @’ coincide if there
are two unitary multi-analytic operators W; : H2(f) @ K > H2(f) ® IC;., j =1,2, with re-
spect to Mz,,..., Mz, such that @'W; = W,®. Since WMz ® I;C,.) =Mz ® Ii)W;,

K J
i=1,...,n, wealsohave W;(M; ® Iic;) = (M, ® I )W;,i=1,...,n. Taking into account
1 1 J
that C*(Mz,, ..., Mz,) is irreducible (see Theorem 3.3), we conclude that W; = IHz(f) ® 15,
J =1,2, for some unitary operators 7; € B(K;, IC;.).

The next result shows that the characteristic function is a complete unitary invariant for pure

n-tuple of operators in B 7 (H).

Theorem 6.3. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let T = (Ty,...,T,) € By(H) and T' = (T}, ..., T,) € By(H') be two pure n-tuples of
operators. Then T and T’ are unitarily equivalent if and only if their characteristic functions

Oy and O 1 coincide.

Proof. Assume that 7 and T are unitarily equivalent and let W : H — H’ be a unitary operator
such that 7; = W*T/W fori =1, ..., n. Note that

n n
WAsr=ArW and ( @ W) Aprr=Ag7e ( @ W) .
i=1 i=1
Consider the unitary operators 7 and t’ defined by

: 'Df,T* — 'Df,T/*.

n
t:=Wlp,, :Dyr — Dy and t':= <@ W)
i=1 Djrs
Using the definition of the characteristic function, we deduce that (IHz( n® )Ofr =
@f,T’(I]HIZ(f) ® T/).
Conversely, assume that the characteristic functions of 7 and T’ coincide. Then there exist
unitary operators 7 : Dyr — Dy and 4 : Dypx — D T such that

(IHZ(f) ® T)@f’T == @f,T/(I]H[Z(f) ® T*). (65)

Hence, we deduce that V := (]Hz(f) ® T)|Hﬂ :Hyf 7 — Hy 7 is a unitary operator, where H ¢, 7
and H 7+ are the model spaces for the n-tuples T and T", respectively, as defined in Theorem 6.2.
Since

(M2, @ Ip ;) (I @ 77) = (B gy @ T7) (M7, ®Ip, 1)), i= 1,00,
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and H 7 (resp. Hy, 7/) is a co-invariant subspace under Mz, ® IDf_T (resp. Mz, ® ID/T’)’ i=
1,...,n, we deduce that B

[(M;, ® I’Df,T) |HfT]V* = V*[(M;z ® I,D./VYT’)

Hf,T’]’

Consequently, we obtain
V[P]H[f,T (MZ,' & Iij)'Hf,T] = [PHJ-‘T/ (MZi ® IDf,T’)|Hf,T’]V’ i = 17 e,

Now, using Theorem 6.2, we conclude that T and T’ are unitarily equivalent. The proof is com-
plete. O

Theorem 6.4. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
andlet (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain B 5.
Then the following statements hold.

1) If M, My C Hz(f) are invariant subspaces under the operators Mz, ..., Mz,, then
the n-tuple (PM]LMZIL/\/H‘,..., PM]lMZnU\/lf‘) is equivalent to (PM%_MZJM;,...,
PMZLMZH I./\/lé‘) if and only if M1 = Ma.

i) fMC Hz(f) is an invariant subspace under Mz, , ..., Mz, , and

T:=(Ty,..., Ty, Ty i= PpLMz,IM*, i=1,...,n,
then M = @f,T(Hz(f) ® Dy 1+), where O 1 is the characteristic function of T .

Proof. Assume the hypotheses of item (ii). Since f = (fi, ..., fu) is an n-tuple of formal power
series with the model property, M, = fi(Mz,,..., Mz,), where (Mz,, ..., Mz,) is either in the
convergence set C?OT(]HIZ(f)) or C;.“d(Hz(f)). Since M is invariant under MZ ey M;n, we
deduce that

n
Apr=Ipe =Y fi(Th . T fi(Th. . T

i=1
= PML(IH2(f) _Mf,-M;kf,.)|Mi = P Pelpaqe.

Hence, rank A ¢ 7 < 1. On the other hand, since [My,, ..., M,] is a pure row contraction, so is
LA(T), ..., fu(T)]. Therefore, T is pure n-tuple in B ¢ (M) and rank A1 # 0, which implies
rank A s, 7 = 1. Therefore, we can identify the subspace D7 with C. The Poisson kernel K £T:
Mt S HX(f)®D .7 can be identified with the injection of M-t into H2(f), via a unitary
operator from H?(f) ® D7 to H(f). Indeed, note that if Y, cq fu € ML C H2(f), then,
taking into account that A r7 = P41 Pc|aqr and [ f(T)]e = Ppqr My, | pqL, We have

Kf,T<anfa> =) f3® PMLPC|MLM?ﬁ<ZCafa) = D cpfp® Pru(D),

o BeF;; o BeF;f
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which implies our assertion. As a consequence, we deduce that the n-tuple (71,...,7T,) is
unitarily equivalent to (K;Z,TMZ] Kir,. .., K;TMZn K 7). Due to Theorem 4.5, the n-tuple
(Mz,, ..., Mz,) is the minimal dilation of (T, ..., T,).

Now, using this result under the hypotheses of item (i) and the uniqueness of the minimal
dilation (see Theorem 4.5), we obtain that the n-tuple (PMILMZ1 IMf‘, e, PM]LMzn |Mf‘) is

equivalent to (P M- Mz, I./\/lé‘, P MZLM Zn |/\/lé‘) if and only if there exists a unitary operator
W :H2(f) — H2(f) such that WMz, = Mz, W,i=1,...,n, and W(M7) = M5 . Hence we
deduce that WMZ = MZ_W, i=1,...,n. Since C*(Mz,,..., Mz,) is irreducible (see The-

orem 3.3), W is a scalar multiple of the identity. Therefore, we must have M| = M, which
proves part (i).
To prove part (ii), note that, due to Theorem 6.2, we have

Hyr =H(f) © 057 (H(f) ® Dy1+)

and T = (Ty,...,T,) is unitarily equivalent to (PHf,TMZI|H”, e PHf,TMZn|Hf,T)- Using
part (i), we deduce that Hy 7 = M- and therefore M = © T H2(f) @D r.7+). This completes
the proof. O

The commutative case. Assume that f = (f1, ..., f,) has the model property. According to
Theorem 5.5 and Theorem 5.6, if J. is the WOT-closed two-sided ideal of the Hardy algebra
H> (B ) generated by the commutators

MZ,'MZ]‘_MZJ'MZL‘7 i,j:l,...,n,

then Ny, = H2(f), the symmetric Hardy space associated with B ;. Moreover, H2(f) can be
identified with the Hilbert space H 2(IB%Jf((C)) of holomorphic functions on IB%;((C), namely, the
reproducing kernel Hilbert space with reproducing kernel A : IB%? (C) x IB%? (C) — C defined by

1
=Y W)

Ap(p, )= A,MGB;((C).

The algebra P2 pHH™ (IB%A,«-)|H?( ) coincides with the WOT-closed algebra generated by the
operators L; := PH%( f)M Z; |H3( ) i =1,...,n, and can be identified with the algebra of all
multipliers of the Hilbert space H Z(IB%; (©)). Under this identification the operators Ly, ..., L,
become the multiplication operators M, , ..., M;, by the coordinate functions zi, ..., z,, re-
spectively. Now, let T := (T1, ..., T,) € By(H) be such that T;T; = T,T;,1, j =1, ...,n. Under
the above-mentioned identifications, we define the characteristic function of 7' to be the multi-
plier Oy . 7: H 2(]1337 (C)®Dysr+— H 2(]13%7 (C)) ® Dy, 1 given by the operator-valued analytic
function on IB%? (©

. ~1
Ofr.r@)==f(T)+Arr (1 - Zfi(z)fi(T)*> [f1@ I3 - fa@ 1] A f s

i=1

forz=(z1,...,20) € IEB?((C). All the results of this section can be written in this commutative
setting. '
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7. Curvature invariant on B ; (#)

In this section, we introduce a curvature invariant on the noncommutative domain B s (H)
and show that it is a complete numerical invariant for the finite rank submodules of the free
B r-Hilbert module H?(f) ® K, where K is finite dimensional. We also provide an index type
formula for the curvature in terms of the characteristic function.

Let f = (f1,..., fu) be an n-tuple of formal power series with the model property and let
(Mz,,...,Mz,) be the universal model associated with the noncommutative domain B . Let
T=(T,...,T,) € By(H) be such that

; 12
rank ¢ (T) ::rank([ - Zfi(T)fi(T)*> < o0.

i=1

We define the curvature of T by setting

. trace[K 7 (Q<m ® ID; 1)K 1.7]
curvy(T):= lim =
m—>00 trace[Kf’MZ(ng)Kf,Mz]

’

where Q¢,, m =0, 1, ..., is the orthogonal projection of H?( f) on the linear span of the formal
power series fy, @ € IF,J[ with |a| < m. In what follows, we show that the limit exists and we
provide a formula for the curvature in terms of the characteristic function. We denote by Q,,,
m =0,1, ..., the orthogonal projection of H?(f) on the linear span of the formal power series
far @ € FF with [a| =m.

Theorem 7.1. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model property
andletT = (T, ..., T;) € By(H) be such that rank ¢ (T') < co. Then

curv s (T) =rank s (T) — trace[@f,T(Qo ® Ipf.T*)@;Z,TN],

where Oy is the characteristic function of T and

1
N = — I .
IPTLLR

Proof. Since
traCG[K;’MZ(ng)Kf,MZ] =trace[Qgml=1+n+---+ n",

we can use Theorem 6.1 to deduce that

Y, trace[ K% 7 (Qk @ Ip, 1)K 7]
curvy(T) = lim
m— 00 I+n+4---+n™
) trace[K;T(Qm (29 IDf,T)KfyT]
= lim

m— 00 nm
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trace[(Qm ® ID; ) K 1,7 K5 71(Qm ® ID 1)

= lim
m—00 nm
trace[(Qm ® Ip,,)O£10% (0 ® ID, )]
=rank/(T) — lim mE T f; p.7&m® D)1
m—0oQ n

provided the latter limit exists, which we should prove now. Since @ ¢ 7 is a multi-analytic oper-
ator with respect to Mz,, ..., Mz, and

o0
DD My QoM}, = Iy,
k=0 |a|=k

we deduce that
(Qm ®Ip; )0 (1O 7(Om ® ID; 1)

m
=YY (QuM; @ DOs1(Q® Ip,,.)O% (M}, 0n @)
k=0 |o|=k

Hence, and taking into account that }°,, <, M}, OmMy, =3}, n¥ Q_, we obtain

trace[(Qu ® Ip, ;)0 70% (O ® Ip, )]
nm
 tracel(©7,7(Q0 ® I, ;)% 1) (X g M, On M, @ 1D, )]
_ =

= trace[@ . 7(Q0 ® Ip, 1.)OF 7N,

where N, :=Y 1, nlk Qi ® Ip, ;. Consequently, we have

trace[(Qm ® ID; )0 1, 7O% 7(Om ® ID; ;)]

nm

0 < trace[@£,7(Qo ® Ipf’T*)@}‘-,TNm] <

<NOsrl>dimDyr =dimDy 1 < oo.
Since {N,,} is an increasing sequence of positive operators convergent to N, we deduce that
trace[@ﬁ r(Qo® Ip, . )@)?’ T N] = mli_)moo trace[@f, 7(Qo® Ip, ;. )@3;’ 7Nm ] .
Combining this result with the relations above, we complete the proof. O

We remark that the proof of Theorem 7.1 is simpler than that of the corresponding result
from [27], in the particular case when f = (Z1, ..., Z,).
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Corollary 7.2. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model prop-
erty. If T = (T, ..., T;) e By(H) and rank ¢ (T) < o0, then

trace[] — q)’;?;l(l)]
curvy(T) = lim =

m—oo |l4+n4.--4+nmn =curv(f(T)),

where the ® r,7(Y):= ", fi(T)Yf;(T)* and curv(f(T)) is the curvature of the row contrac-
tion f(T).

Proof. Due to the properties of the noncommutative Poisson Kernel K 7, we have

K X My, 1)K = S [O) KK [
la|=k

|a|=k

= Y [FDLIFD]; - @57,

la|=k

where (pfr (I) :=SOT-1limg_, oo QD?T (I). Consequently, we obtain

K;T(Qm ® I)Kf,T = q);frfT (I - Zfl(T)fl(T)*>

i=1
Now, using the equalities from the proof of Theorem 7.1, the result follows. O

Theorem 7.3. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let (Mz,, ..., Mz,) be the universal model associated with the noncommutative domain
By. If an n-tuple T = (T4, ..., T,) € By(H) is such that rank ¢ (T) < oo, then T is unitarily
equivalent to the n-tuple (Mz, @ I, ..., Mz, ® Ix) with dimK < oo if and only if T is pure
and

curv ¢ (T) =rank ¢ (T).

Proof. Assume that T := (T1,...,T,) € By(H) is unitarily equivalent to (Mz, ® I, ...,
Mz, ® Ix), where dim K < co. Note that due to the fact that f = (fi,..., f,) has the model
property, we have

n

12
rank 7 (7) =rank<1 — Zf,-(le Qlic,.... Mz, @ I) fi(Mz, Q I, ..., Mz, ® IIC)*)
i=1

- rank(l - Z(Mf,. ® I)(Mys, ® IK;)*) =dimK.
i=1

On the other hand, according to the definition of the curvature, we have

trace[ K * O<m @ IK fmyeix]
curv(T) = lim AT - S 28Tk

. =dim K.
m—00 trace[Kf’MZ(ng)Kf,Mz]



3300 G. Popescu / Journal of Functional Analysis 262 (2012) 3240-3308

Conversely, assume that T is pure and curv ¢ (7') =rank s (7). According to Theorem 6.1,

KprKr=hppep,, —OrrOfr

where ® 7 is the characteristic function associated with 7. Since the noncommutative Poisson
kernel K 7,7 is an isometry, @ s r is an inner multi-analytic operator. On the other hand, Theo-
rem 7.1 implies

curv s (T) =rank s (H) — trace[(-v)f,T(Q() ® ID”*)@;TN],

where N is the number operator. Therefore, trace[@f71(Qo ® Ip j’.T*)@;;,TN ] = 0. Since
trace is faithful, we obtain @ 7(Q¢ ® Ipf,T*)(H)},TQj =0 for any j =0,1,.... This im-
plies O 1(Q0 ® ID”*)@;T = 0. Taking into account that O is an isometry, we infer
that @ 7(Qo ® Ip”*) = 0. Since @y, is multi-analytic with respect to Mz, ... Mz,, and
ClZ,, ..., Z,] is dense in Hz(f), we deduce © 7 = 0. Using again the fact that Kf,TK;T +
Or1O0% 1 = I (f)oD, > We deduce that K7 : H — H2(f) ® Dy.r is a unitary operator. Ac-
cording to the properties of the Poisson kernel, we have

K5 Mz, ® Ip, )Kpr =T, i=1,....n.

This shows that the n-tuple (Ti,...,7,) is unitarily equivalent to (Mz, ® IDN), e
Mz, ® Ip, ;) and dimDy 1 < oo. This completes the proof. O

In what follows we show that the curvature on B (#) is a complete numerical invariant for
the finite rank submodules of the IB s-Hilbert module H2(f) ® K, where K is finite dimensional.

Theorem 7.4. Let f = (f1,..., fn) be an n-tuple of formal power series with the model prop-
ertyand let Mz := (Mz,, ..., Mz,) be the universal model associated with the noncommutative
domain B r. Given M, N C Hz(f) two invariant subspaces under Mz, , ..., Mz,, the following
statements hold.

(1) Ifrank f(Mz|am) < 00, then curv p(Mz| pq) =1ank f (Mz| pq).
(i) If rank f(MzIp) < 00 and rankf(Mz|n) < 00, then Mz|aq is unitarily equivalent to
Mz|n if and only if

curv s (Mzpm) =curvp(Mz|n).

Proof. Let g = (g1, ..., gy) be the inverse of f = (f1,..., fu) with respect to the composition
of formal power series. Since f has the model property, we have

f,‘(MZl,...,MZn) :Mfi and g,'(Mfl, ...,an)ZMZ,.

forany i = 1,...,n. Hence, we deduce that a subspace M is invariant under Mz, ..., Mz, if
and only if itis invariant under M, ..., Ms,. Werecall that M . = U-! S;U,i=1,...,n,where
U :Hz(f) — F2(H,,) is the unitary operator defined by U (fy) = ey, @ € ]F,J[, and Si,..., S,
are the left creation operators. Now, one can easily see that M is an invariant subspace under
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Mgz, ..., Mz, if and only if UM is invariant under Si, ..., S,. Hence, using Corollary 7.2 and
the fact that U PpqU ' = Py a4, we have

rank (M z| pm) = rank(fi1(MzIp)s - o fu(MzIp))
=rank(U~'S1U|pm, ..., UT'S,UIm)
=rank(S1lym; ---» Snlusm)
and
curv p(Mz|p) = curv(fi(MzIp), -, fu(MzI M)
:curv(U_1S1U|M, e, U_IS,,UIM)
=curv(Silum, - Sulum)-
According to Theorem 3.2 from [27], we have
rank(S1ly s - -+ Sulum) =curv(Stlums - -+ Sulum)-
Combining the results above, we deduce item (i). To prove part (ii), note that the direct im-
plication is due to the fact that, for any T = (T},...,T,) € By(H) and T' = (T},...,T)) €

By (H'), if T is unitarily equivalent to 7", then curv (T') = curv s(T"). Conversely, assume that
curv s (Mz|p) =curv s (Mz| ). As shown above, the latter equality is equivalent to

curv(Silum, - --» Snlum) = curv(Siluass - - Snlun)-
Applying again Theorem 3.2 from [27], we find a unitary operator W : UM — UN such that
W(Silum) = (Silun)W, i=1,....n.
Consequently, we have
(U'WUIM)(UT'SiUIM) = (U 'S UIN) (U WU M), i=1,....n,

which implies

(U'WUIM)(M gD = Mg (U WU M), i=1,...,n.
Using now relation g; (My,,..., M) =Mz,,i =1,...,n, we obtain

(UT'WUI M) Mz I p) = Mz ) (U WU M), i=1,...,n.

Since U"'WU | : M — N is a unitary operator, we conclude that the n-tuples (M ZiIMs s
Mz, |pm) and (Mz,|p/, ..., Mz, |n) are unitarily equivalent. The proof is complete. O

We remark that all the results of this section have commutative versions when T =
(T1,...,Ty) e By(H), T;T; = T;T;, and the universal model (Mz,,..., Mz,) is replaced by
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the n-tuple (Ly,...,Ly), where L; := PH%(f)MZJH%(f), i=1,...,n,and Hf(f) is the sym-
metric Hardy space associated with the noncommutative domain B . In this case, we obtain
analogues of Arveson’s results [4] concerning the curvature for commuting row contractions, for
the set of commuting n-tuples in the domain B ¢ (H).

8. Commutant lifting and interpolation

In this section, to provide a commutant lifting theorem for the pure n-tuples of operators in
the noncommutative domain B s (#) and solve the Nevanlinna Pick interpolation problem for the
noncommutative Hardy algebra H*°(B).

First, we present a Sarason [35] type commutant lifting result in our setting.
Theorem 8.1. Let f = (f1, ..., fu) be an n-tuple of formal power series with the model property
and let (Mz,, ..., Mz,) be the universal model associated with By. Let £; C H2(f) ® Kj,

J =1,2, be a co-invariant subspace under each operator Mz, ® Irc;,, i =1,...,n.
If X : & — & is a bounded operator such that

X[Pe,(Mz, ® Ic)lg,] = [Pe,(Mz, ® Iy g, [X. i=1.....n,
then there exists a bounded operator Y : H2(f) ® K1 — H2(f) ® K with the property
YMz, @Ic) =Mz, @ Ic,)Y, i=1,...,n,
and such that Y*E) C &1, Y*|Ey = X*, and ||Y || = || X]|.
Proof. Setting A; := Pg,(Mz, ® Ix,)|g, and B; := Pg,(Mz; ® Ix,)ls,, we have XA; =
BiX,i=1,...,n. Since f has the model property and & is a co-invariant subspace under
each operator Mz, ® Ixc;, i =1,...,n, we deduce that &1 is a co-invariant subspace under
fi(MZI,...,MZn)@)I]Cl =Mfi ®I’C1 and
[i(AL, o A = Pg [ fiMz,, ... . Mz,) ® Ik, ]| ¢ = Pe, (M, @ Ic)lgy,  i=1,....n.
Similarly, & is a co-invariant subspace under f;(Mz,,..., Mz,) ® I, = My, Q Ixc, and

fiBi,..., B)) = Pe,[ fi(Mz,, ... Mz,) ® I, || ¢, = Pe, (M, ® Iic,)lg,,  i=1,...,n.

Using the canonical unitary operator U : HZ( f)—F 2(H,), defined by U(fy) = ey, @ € ]F,J{,

we have My, = U*S;U and the subspace U (&) is co-invariant under S; ® I, oo, S ® Iy
where Sp, ..., S, are the left creation operators on F 2(H,,). Similarly, we have that U (&) is
co-invariant under each operator S| ® Ix,, ..., Sy ® Ixc,. Now, since XA; = B; X, we deduce

that Xf; (A1, ..., Ay) = fi(B1,...,By)X,i=1,...,n, which together with the considerations
above imply

g[PU(SI)(Si ® Ix)lueEy] = [Pue)(Si ® IIC2)|U(82)]§, i=1,...,n,

where X : U(&) — U(&) is defined by X = UXU*|ye,). Note that [S) @ Ix,,...,
Sy ® Ix,] is an isometric dilation of the row contraction [Py g, (S1 ® Ix)luE)---»
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Py (Sn @ Ix)lueEp]- Applymg the noncommutative commutant lifting theorem from [18],
we find a bounded operator Y:F? (H)®K| — F2(H ) ® K2 with the properties Y(Sl ®Ik,) =
(S; ®IK£)Y fori=1,...,n, Y*(U(Sg)) cu), Y+ lueE) = X*, and ||Y|| = ||X|| Now, setting
Y:=UYU*, we deduce that Y H?(f) @ Ki — H2(f) ® K> has the property

Y(Mp ® ) = (Mg, ® Ix,)Y, i=1,...,n,

and also satisfies the relations Y*& C &, Y*|& = X*, and ||Y| = || X||. Once again, tak-
ing into account that f has the model property, we have Mz, = g;(My,,..., My,) for i =
1,..., where g = (g1, ..., gn) is the inverse of f = (fi,..., fn) with respect to composition,

and g;(My,, ..., My,) is defined using the radial SOT-convergence. Consequently, the above-
mentioned intertwining relation implies

Y(Mz, @ Ix) =Y [gi(My,,....Mp) ® I, | =[gi(My,. ... My,) ® I, |Y = (Mz, ® Ixc,)Y
fori =1, ...,n. The proof is complete. O

Recall that, due to Theorem 5.5 and Theorem 5.2, we have H?( f)=span{l): A € IBS? (C)} and
M FA =x; 1 faralli = 1,..., n. This shows that Hf( f) is a co-invariant subspace under each

operator Mz, ...,Mz, We remark that this observation can be used together with Theorem 8.1
to obtain a commutative version of the latter theorem, when &; C H?(f YRKj, j=1,2, are
co-invariant subspaces under each operator L; ® I Ko i=1,...,n

Now we can obtain the following Nevanlinna and Pick [15] interpolation result in our setting.

Theorem 8.2. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model property.
If A, ..., Ay are m distinct points in IB%? (C) and Ay, ..., A, € B(K), then there exists ® €

H*® (B r)®B(K) such that
2l <1 and P(j)=A;, j=1,...,m,

if and only if the operator matrix

|: I — A A% i|
1 - Z:] fk()ti)fk()‘j) mxm
is positive semidefinite.

Proof. Let A := (Aj1,...,Aj,), j =1,...,m, be m distinct points in IB%?((C). Consider the
formal power series

n 1/2

2 - .

ry, = (1—Z|ﬁ(xj>|> S oD far J=10im,
i=1 aclF,

andset £2,; := (1 - Y it j))’l/ ZFM. According to Theorem 5.2, they satisfy the equations

My T, =hjilh,, i=1,...n. (8.1)



3304 G. Popescu / Journal of Functional Analysis 262 (2012) 3240-3308

Note that the subspace M :=span{l};: j=1,...,m} C H?( f) is invariant under MZ for any
i =1,...,n. Define the operators X; € B(M ® K) by setting X; := PyMz,|m ® I, i =
1,...,n. Since f is one-to-one on IB%? (©), we deduce that f(11),..., f(A,) are distinct points
in B,,. Consequently, the formal power series Iy, ..., I'),, are linearly independent and we can
define an operator T € B(M ® K) by setting

T*(F)Vj Qh)= F)Lj ® Ajh (8.2)

forany h € L and j =1,..., k. A simple calculation using relations (8.1) and (8.2) shows that
TX;=X;Tfori=1,...,n. Since M is a co-invariant subspace under each operator Mz,, i =
1,...,n, we can apply Theorem 8.1 and find a bounded operator ¥ : H?(f) ® K — H?(f) ® K
with the property

YMz, @Ixx)=Mz, @ I)Y, i=1,...,n, 8.3)
and such that

YYM@K)CM®K, Y MK=T* (8.4)

and ||Y|| = ||T||. Due to relation (8.3) and the fact that My, = f;(Mz,, ..., Mz,), we deduce that
YMyp@Ix) =My ®I)Y,i=1,...,n, which implies

UI)Y(Ur®Ix)Si®Ix) =S I)UI)Y (U@ Ik), i=1,...,n,

where U : H3(f) — F2(H,) is the canonical unitary operator defined by U (fy) := ey. Using
the characterization of the commutant of {S; ® [, ’C}?:l (see [23]), we deduce that (U ® Ix)Y x
(U* ® Ix) € R°®B(K) and has a unique Fourier representation ZaeF,T Ry ® C(a), Cio) €
B(K), that is,

o
UIYU*RIk) = SOT-rninlkZO ;kralRa ® Clo)-
=0 |x|=

Using the flipping unitary operator W : F2(H,) — F*(H,), defined by W (ey) := eg, where @ is
the reverse of a € ', we define @ (Mz) € H>®[By) ® B(K) by setting

D(Mz):=(U*W*U ® Ix)Y (U*WU ® Ix). (8.5)

Note that

oo
®(Mz)=SOT-lim } > " r¥I[f(M2)], ® Caa.
k=0 |o|=k

Hence, and using the equations MZ_ FAj = )_\jil"kj, i=1,...,n, we deduce that
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(@M (2 @h),y @)= <m ®hlim Y > [ f(Mz)],y ® Cah!

k=0 |a|=k

= 1im 3 3 A2 © b, [£(M2)],y ® Cih)

1
k=0 |a|=k

=rh—I>an > O ]a (822 )R, Caph)

k=0 |a|=k

= (2, y><h, lim > r'“'[f<x)]aC<a>h’>

k=0 |a|=k
= (2. Y)(h. @Wh') = (2, @ P(W)*h, y @ h)

for any A € IEB; (C), y e H3(f), and h, b’ € K. Therefore,
D (M2)*" (2, @h) =2, @ P(V)h.
Hence, and using relation (8.5), we can show that
YN, Qh) =1 ®(A)*h, re B3 (C), h, nek.
Now, we prove that ®(A;) = Aj, j=1,...,k, if and only if
PpeY mex =T.
Indeed, due to relation (8.7), we have

(Y*(r,; ®x), I, ® y) =(@(Mz)" (I, ®x), I, ® )
= (1, ®00,)"x. I3, ®))
= (F)»/" FX,>(®()‘-])*-X7 y)

On the other hand, relation (8.2) implies
(T ®x), Iy, ® y) = (I3, i) A%x, y).

Due to Theorem 5.2, we have

20
1= 01 frQa) fie(hj)

($20;, 82,;) = Ay (Aj, hi) =

forany j =1, ..., k. Consequently, the above relations imply our assertion.

3305

(8.6)

(8.7)

Now, since ||Y|| = ||T||, it is clear that ||Y|| < 1 if and only if TT* < Ix4. Note that, for any

hi,..., hy € K, we have
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k k k k
<Z‘Q)~j®hj7Z‘Q)»j®hj>_<T*<Z‘Q)~j®hj)’T*(Z‘QAj®hj>>
=1 =1

Jj=1 Jj=1

k
> (82, 2T — Aj AT hi )
i,j=

—_

Z A, a)|(Iic — AjAF)hi, hj).

Ic—A; A%

Consequently, we have ||Y| < 1 if and only if the matrix [m
k=1 Tk i) fi

lmxm 1S positive

semidefinite. This completes the proof. O
Corollary 8.3. Let f = (f1, ..., fn) be an n-tuple of formal power series with the model property

and let Ay, ..., Ay be m distinct points in IBS?((C). Given Ay, ..., A, € B(K), the following
statements are equivalent:

(i) there exists W € H*® (B ;)QB(K) such that

IPI<1 and YAj)=A;, j=1,....,m;
(ii) there exists @ € H°°(]B%? (CH®B(K) such that

o<1 and @A) =A;, j=1,...,m,

where HOO(IB%? (©)) is the algebra of multipliers of HQ(IB%? (©));
(iii) the operator matrix '

[ I — A A% }
1- ZZ:] fk()\i)fk()”j) mxm
is positive semidefinite.
Using this corollary, we can obtain the following result.
Corollary 8.4. Let f = (f1, ..., fu) be ann-tuple of formal power series with the model property
and let ¢ be a complex-valued function defined on IB%? (C) C C". Then there exists F € H® (B )
with || F|| < 1 such that

@@t ) =F(z1,...,20) forall (z1,...,2:) € BF(C),

if and only if for each m-tuple of distinct points A1, ..., Ay € IB%? (©), the matrix

|: 1 —oi)e()) :|
1- ZZ:] fk()\i)fk()‘j) mxm

is positive semidefinite. In this case, ¢ is a bounded analytic function on IB%? (©).
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Proof. One implication follows from Corollary 8.3. Conversely, assume that ¢ : IB%? (€©)—Cis
such that the matrix above is positive semidefinite for any m-tuple of distinct points A1, ..., Ay €
IB%? (C). Let {&; }?":1 be a countable dense set in IB%? (©). Applying Theorem 8.2, for each m € N,
we find F,,, € H*°(B) such that || F;,|| < 1 and

Fn(Aj)=9A;) forj=1,...,m. (8.8)

Since the Hardy algebra H*°(B ) is w*-closed subalgebra in B(H?(f)) and || F¢|| < 1 for any
m € N, we can use Alaoglu’s theorem to find a subsequence {Fy,,}°>>_, and F € H*(By) such
that Fy,, — F, as m — oo, in the w*-topology. Since A; := (Aj1,...,Aj,) € IB%?((C), the n-tuple
is also of class C.g. Due to Theorem 3.1 and Theorem 4.5, the H°(B f)-functional calculus for
pure n-tuples of operators in B y(H) is W OT -continuous on bounded sets. Consequently, we
deduce that Fy,, (A;) — F(X}), as m — oo, for any j € N. Hence, and using relation (8.8), we
obtain ¢(A ;) = F(A;) for j € N. Given an arbitrary element z € ]B%? (C), we can apply again the
above argument to find G € H*(B/), |G|l < 1 such that

G()=¢(z) and G@j)=¢(;), jeN.

Due to Theorem 5.2, the maps A +— G(X) and A — F(A) are analytic on B?((C). Since they
coincide on the set {)‘j}iil’ which is dense in IB%?((C)), we deduce that G(A) = F (X)) for any
NS B? (C). In particular, we have F(z) = ¢(z). Since z is an arbitrary element in IB%?((C), the
proof is complete. O

We remark that, in the particular case when f = (Zy, ..., Z,), we recover some of the results
obtained by Arias and the author and Davidson and Pitts (see [25,2,7]).
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