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South America has a great diversity in some tribes of the Iridaceae family. Most of the Iridaceae are geophytes,
with underground organs bearing buds and reserve compounds, which favor their occurrence in seasonal
environments, such as the Cerrado. Non-structural carbohydrates (NSC) are the main reserves in geophytes,
essential to support phenological events, and protect plants against abiotic stresses. NSC may also reflect
taxonomic relationships among plant groups. The objective of this study was to determine the contents and
composition of NSC in underground organs of five Iridaceae species from the Cerrado (Cipura paludosa, Cipura
xanthomelas, Trimezia cathartica, Trimezia juncifolia and Sisyrinchium vaginatum), representing the tribes
Tigridieae, Trimezieae and Sisyrinchieae. Soluble carbohydrates and total fructose in oligo and polysaccharide
fractions, and the starch contents were determined, and sugar composition was analyzed by HPAEC-PAD. The
species from the tribes Trimezieae and Tigridieae showed similar NSC profiles, with considerable accumulation
of starch and glucose, fructose, sucrose and maltose. Additionally, T. juncifolia also presented raffinose
and 1-kestose. In contrast, S. vaginatum of the Sisyrinchieae has very low starch content and a distinct carbohy-
drate profile, predominating soluble carbohydrates, possibly of the raffinose family.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Cerrado covers approximately 20% of Brazil surface area, com-
prising several physiognomies, from open grasslands to woodlands in
a mosaic determined by edaphic factors and fire (Coutinho, 2002).
Plants growing in the Cerrado are subjected to seasonal rainfall, fire
events and nutrient-poor soils, leading to different adaptations, like
the presence of underground organs storing carbohydrates. In Cerrado,
the rainy season lasts from October to March, and the dry season from
April to September (Silva et al., 2008). Among the storage carbohy-
drates, fructans are typically found in Asteraceae, one of themost abun-
dant families (Carvalho et al., 2007; Rossatto et al., 2013; Silva et al.,
2008). In another abundant family in the Cerrado, Poaceae, with many
fructan accumulators, these sugars have not been found in any of the
24 accessions in a restrict area of Cerrado (Moraes et al., 2013).

Iridaceae is a species-rich herbaceous and petaloid monocot family
well represented in the Cerrado and with distinct morphology
(Goldblatt, 1990; Eggers et al., 2010). Southern Africa is the major
radiation site for this family. However, the family is also highly diverse
in South America (Goldblatt et al., 2008). In the Neotropics, only the
subfamily Iridoideae occurs and includes the tribes Tigrideae and
Trimezieae, which are restricted to the Neotropics, and the New
hts reserved.
World and Australasian Sisyrinchieae (Goldblatt et al., 2008; Lovo
et al., 2012). In Brazil, there are 18 genera and 160 species of Iridaceae
(Eggers et al., 2010).

One noteworthy feature of many of the Iridaceae species is the
geophytic life form with the presence of underground organs with
perennating buds and reserve compounds. This provides conditions
that allow their occurrence in environments with climatic seasonality
regarding temperature and/or water restriction (Kamenetsky et al.,
2005). During the unfavorable periods, geophytes lose their aerial
parts and become dormant (Dafni et al., 1981; Raunkiaer, 1934). As
soon as the appropriate environmental conditions for growth are
reestablished, geophytes re-grow and complete their life cycle within
this period, which may be considered short for some species. For this
reason, the main focus of a geophyte should be keeping the under-
ground organs alive (Dafni et al., 1981; Rossa and von Willert, 1999).
From a physiological perspective, geophytes go through several cycles
of allocation and mobilization of reserves and nutrients to and from
the storage organ (Rossa and von Willert, 1999; Ruiters, 1995). For
this reason, the metabolism of the storage compounds is essential to
ensure their success in a seasonally impacted environment, such as
the Cerrado.

The main reserves in geophytes are the non-structural carbo-
hydrates (NSC), such as starch, sugars and fructans; however,
glucomannans may also be found (Kamenetsky et al., 2005; Miller,
1992; Ranwala and Miller, 2008). Such reserves support sprouting
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during the favorable season and growthwhen overall photoassimilate
production is low; therefore, NSC are essential to maintain geophytes
phenological events (Dafni et al., 1981). Changes in the pool of NSC
triggered by phenology may lead to increases in low molecular
weight sugars to attend developmental demands (Kamenetsky
et al., 2003). Moreover, soluble carbohydrates may provide protec-
tion against harsh conditions due to their involvement in the protec-
tion against abiotic stresses (Patrick et al., 2013; Valluru and Van den
Ende, 2008).

In addition to the physiological roles, NSC composition may be
influenced by genetic traits, the geographical origin of the species and
their taxonomic relationships (Hendry, 1993; Moraes et al., 2013).
Among the Poaceae, fructans have been found typically in the Pooideae
subfamily, predominant in temperate regions, while in the tropical
subfamilies, these carbohydrates are absent (Chatterton et al., 1989;
Hendry, 1993; Moraes et al., 2013). Although the storage of carbohy-
drates in underground organs is a typical characteristic of Iridaceae,
not all species of this family accumulate fructans (Hendry, 1993), indi-
cating evolutionary traits and metabolic peculiarities of such plants to
overcome the wide range of environmental conditions in habitats
where they occur.

In the present study, we determined the contents and composition
of NSC in underground organs of Iridaceae species occurring in the
Cerrado, aiming to increase the knowledge on the distribution, charac-
terization and function of these compounds inwild species, still scarcely
studied in thismonocot family. In addition, plants from two populations
were collected in distinct locations, one of them slightly higher in alti-
tude but with similar floristic composition, aiming to associate putative
differences with the predominant environmental forces.

2. Materials and methods

2.1. Study sites

This studywas conducted in two Cerrado areas of Goiás State, Brazil,
one located at the Reserva Biológica Prof. José Angelo Rizzo (16°22′–
15°48′S and 50°44′–49°55′W), in Serra Dourada (SD) (Mossâmedes,
GO, Brazil), with altitudes between 700 m and 1080 m. The other site
was Serra dos Pirineus (SP) (15°46′ to 15°50′S; 48°48′ to 48°53′W)
(Pirenópolis, GO, Brazil), with altitude between 800 and 1385 m. Both
sites are in the core of the Cerrado biome and have a gradient of physi-
ognomies, from open grasslands to woodlands, and various soil types
including Neosols with rocky outcrops savanna, known as cerrado
rupestre (Dantas and Silva, 2013; Rizzo, 1970; Santos et al., 2012).

2.2. Plant material

Five species were collected in both study sites in rocky outcrops
and surrounding open field areas (Table 1, Fig. 1). Two from the
tribe Tigridieae (Cipura paludosa Aubl. and C. xanthomelas Mart. ex
Klatt), two from the Trimezieae (Trimezia cathartica (Klatt) Niederl.
and Trimezia juncifolia (Klatt) Benth. & Hook. f.) and one from the
Sisyrinchieae (Sisyrinchium vaginatum Spreng.) The specimens were
identified using Celis et al. (2003), Chukr and Capellari Jr (2003),
Table 1
Voucher information and subterranean organ type for the species studied from Serra Dourada

Tribe Species Undergro

Tigridieae Cipura paludosa Aubl. Bulb
Cipura xanthomelas Mart. ex Klatt Bulb

Sisyrinchieae Sisyrinchium vaginatum Spreng. Rhizome
Trimezieae Trimezia cathartica (Klatt) Niederl. Corm

Trimezia juncifolia (Klatt) Benth. & Hook. f. Corm
Chukr and Giulietti (2008), Goldblatt et al. (1990), Goldblatt and
Manning (2008) and Henrich and Goldblatt (1987). Vouchers were de-
posited in the Herbarium of the Universidade Federal de Goiás (UFG).
All the specimens were collected in the reproductive phase, except for
S. vaginatum Spreng in both sites, which was found only in the vegeta-
tive phase.

Underground organs from approximately four distinct individuals of
each species were collected at each site. The organs were rinsed in tap
water, the lignified cataphylls removed and the freshmass determined.
Approximately 1 g of each specimenwas oven dried at 60 °C to constant
weight, for drymass determination (DM). These datawere also used for
determination of the water content (WC), expressed as percentage of
total fresh mass (FM). Two grams of fresh material were used for non-
structural carbohydrate extraction, except for C. paludosa, of which
only 0.2 g was used for dry mass determination and for NSC analyses,
due to the very small bulbs present in this species. All analyses were
performed in triplicate.
2.3. Soluble carbohydrate analysis

Samples of fresh underground organs were sliced and boiled in
aqueous ethanol (80%) for 5min, homogenized in amortarwith a pestle
and filtered. The residues were re-extracted twice with ethanol 80% at
80 °C for 15min (modified from Pollock and Jones, 1979). The ethanolic
supernatants were pooled and constituted the oligosaccharide fraction.
In sequence, the residueswere extractedwith distilledwater at 60 °C for
30min and filtered. This procedurewas repeated once, and the aqueous
supernatants were pooled and constituted the soluble polysaccharide
fraction. The extracts were stored at−20 °C for quantitative determina-
tions and qualitative analysis.

The soluble carbohydrates in the oligo- and polysaccharide fractions
were quantified by the phenol-sulfuric method, using glucose as stan-
dard (Dubois et al., 1956). Total fructose was determined by using a
modified anthrone method, specific for ketoses (Jermyn, 1956), using
fructose as standard, in order to evaluate the putative presence of
fructans.

Oligosaccharide fractions were deionized in ion exchange columns
containing cationic (Amberlite IRA 120) and anionic (Amberlite IRA
410) resins, and eluted in ultrapure water (18.2 MΩ). The pH was neu-
tralized with ammonium hydroxide. Purified samples were vacuum
concentrated (37 °C) to dryness, resuspended in ultrapure water,
adjusted to the equivalent concentration of 400 μg fructose mL−1 and
filtered through 0.45 μm membranes.

The neutralized extracts were analyzed by high-performance anion
exchange chromatography, with pulsed amperometric detection
(HPAEC-PAD) on a Dionex ICS-5000 chromatographic system, using a
CarboPac PA—100 (4 × 250 mm) column. Carbohydrates were eluted
in a gradient of sodium acetate in NaOH (150 mM), with the following
schedule: 0–2 min, 5 mM; 2.1–8 min, 5–50 mM; 8.1–11 min, 50–
150 mM; 11.1–14 min, 250 mM; 14.1–18 min 5 mM. The eluent flow
was 1 cm3⋅min−1. The applied PAD potentials followed the manu-
facturer's recommendation. Sugars were identified by comparison
with standards chromatographed under the same conditions.
(SD) and Serra dos Pireneus (SP).

und organ Voucher

SD SP

Sartin 400 48924 (UFG) Queiroz 90 46598 (UFG)
Sartin 389 48925 (UFG) Queiroz 91 46599 (UFG)
Sartin 388 48926 (UFG) Queiroz 87 46596 (UFG)
Moraes 131 48927 (UFG) Queiroz 83 46592 (UFG)
Sartin 434 48928 (UFG) Queiroz 84 46593 (UFG)



Fig. 1. Studied Iridaceae species from the Cerrado. Flowers (A, B, D, E, F) and underground organs (C, G). Cipura paludosa (A), Cipura xanthomelas (B, C), Sisyrinchyum vaginatum
(D), Trimezia cathartica. Note the rocky substrate (E) and Trimezia juncifolia (F, G). Scale bars = 2 cm.
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2.4. Starch analysis

The residues from the soluble carbohydrate extraction were oven
dried at 60 °C to constant mass. In sequence, residues were ground to
a fine powder. Starch analysis was performed as described by Amaral
et al. (2007). Aliquots of 10 mg of the fine powder were incubated
with 0.5 mL (60 U) of thermostable α-amylase from Bacillus
licheniformis (Megazyme, Ireland), diluted in 10 mM MOPS buffer,
pH 6.5 (120 U⋅mL−1) at 75 °C for 30 min. Samples were cooled down
to 50 °C and incubated with 0.5 mL (15 U) of amyloglucosidase from
Aspergillus niger (Megazyme, Ireland) diluted in 100 mM sodium ace-
tate buffer, pH 4.5 (30 U⋅mL−1) at 50 °C for 30 min. Both enzymatic
steps were sequentially performed twice. At the end of the incubation,
100 μL of perchloric acid (0.8 mM) was added to the reaction mixture
Fig. 2.Water content expressed as percentage of freshmass inunderground organs of the studie
compare means of Serra dos Pireneus (p b 0.05), except for S. vaginatum, unavailable in the rep
to stop the reaction and precipitate proteins. After centrifugation,
starch was quantified by glucose determination by adding 0.3 mL of
a mixture containing glucose oxidase (11,000 U⋅mL−1) and peroxi-
dase (700 U⋅mL−1), 4-aminoantipyrin (290 μmol⋅L−1) and phenol
(50 mM) at pH 7.5 and incubated at 37 °C for 15 min. Free glucose
was determined colorimetrically at 490 nm.

2.5. Statistical analyses

Statistical analyses were performed using Bioestat 5.0 statistical
software. Differences among species at each study site were evaluated
using Kruskal–Wallis analysis of variance on ranks. Subsequently the
Student–Neuman–Keuls (SNK) post hoc test (p b 0.05) was used for
the following variables: water content of the underground organs,
d species (n=4). Uppercase letters comparemeansof SerraDourada and lowercase letters
roductive phase.

image of Fig.�1


Table 2
Contents of total soluble carbohydrates, total fructose and percentage of fructose in soluble carbohydrates (% F) of the oligosaccharide fraction of subterraneanorgans of the studied species
from Serra Dourada (SD) and Serra dos Pireneus (SP).

Species Soluble carbohydrates (mg⋅g−1 DM) Fructose (mg⋅g−1 DM) % F

SD SP SD SP SD SP

C. paludosa 34.1 ± 9.5a 39.9 ± 12.1a 20.3 ± 1.2a 23.1 ± 6.4a 59.6 57.8
Cipura xanthomelas 49.9 ± 19.4a 41.7 ± 14.4a 31.3 ± 14.6a 15.8 ± 11.4a 62.8 37.9
Sisyrinchium vaginatum 91.1 ± 48.8 116.0 ± 33.1 27.8 ± 14.7 25.7 ± 4.6 30.5 22.2
Trimezia cathartica 65.6 ± 38.6a 44.8 ± 12.4a 43.9 ± 19.6a 14.4 ± 4.1a 66.9 32.1
Trimezia juncifolia 36.3 ± 9.1a 70.1 ± 10.6a 29.8 ± 8.5a 37.2 ± 6.3a 82.1 53.0

Values are means ± standard deviation (n = 4 for SD, n = 3 for SP). Different letters indicate differences in each column (p b 0.05), except for S. vaginatum, unavailable in the
reproductive phase.
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soluble carbohydrates and fructose contents, both in oligosaccharide
and polysaccharide fractions and starch. S. vaginatum data, were not
included in the statistical analyses, since specimens were harvested in
vegetative stage and in different seasons.
3. Results

3.1. Water and non-structural carbohydrate contents

The water content of the underground organs ranged from 58.9 in
T. juncifolia to 79.9% in C. xanthomelas on a fresh mass basis at the
Serra Dourada (SD) site and from 53.3% in C. xanthomelas to 71.5% in
S. vaginatum at the Serra dos Pireneus (SP) site. S. vaginatum was not
found in the reproductive phase in any of the studied sites. Besides, in
SD, this species was found only in the dry season, presenting 42.7% of
water content, in contrast to 71.52% found in plants collected in the
rainy season at SP (Fig. 2). For this reason, S. vaginatum was excluded
from the statistical analysis.

Total soluble carbohydrates (expressed as mg⋅g−1DM) in oligosac-
charide fraction in the different species and sites were 34.1 (SD) and
39.9 (SP) in C. paludosa; 49.9 (SD) and 41.7 in C. xanthomelas; 91.1
(SD) and 116.0 (SP) in S. vaginatum; 65.6 (SD) and 44.8 (SP) in
T. cathartica; 36.3 (SD) and 70.1 (SP) in T. juncifolia (Table 2). In oligosac-
charide fraction, total fructose levels (mg⋅g−1DM) were 20.3 (SD) and
23.1 (SP) in C. paludosa; 31.3 (SD) and 15.8 in C. xanthomelas; 27.8
(SD) and 25.7 (SP) in S. vaginatum; 43.9 (SD) and 14.4 (SP) in
T. cathartica; and 29.8 (SD) and 37.2 (SP) in T. juncifolia (Table 2).
Total fructose ranged from 20.3 to 43.9 mg⋅g−1 DM in SD and from
14.4 to 37.2 mg⋅g−1 DM in SP and represented around 30% in
C. xanthomelas and T. cathartica in SP, and in S. vaginatum from both
sites. For the other species, the fructose percentage was always higher
than 50%, reaching 82% in T. juncifolia from SD (Table 2).

In the polysaccharide fraction, in general, total soluble carbohydrates
were lower than in the oligosaccharide fraction, except for T. cathartica of
SP (Table 3). The levels (mg⋅g−1DM) found in the different species from
both sites were as follows: 11.1 (SD) and 38.0 (SP) in C. paludosa; 33.7
(SD) and 1.6 in C. xanthomelas; 8.5 (SD) and 8.4 (SP) in S. vaginatum;
Table 3
Contents of total soluble carbohydrates, total fructose and percentage of fructose in soluble carb
from Serra Dourada (SD) and Serra dos Pireneus (SP).

Species Soluble carbohydrates (mg⋅g−1 DM)

SD SP

Cipura paludosa 11.1 ± 0.3ab 38.0 ± 28.3a

Cipura xanthomelas 33.7 ± 16.1a 1.6 ± 0.6b

Sisyrinchium vaginatum 8.5 ± 4.0 8.4 ± 6.5
Trimezia cathartica 21.5 ± 14.7a 70.3 ± 33.5a

Trimezia juncifolia 6.9 ± 2.1b 5.4 ± 2.5ab

Values are means ± standard deviation (n = 4 for SD, n = 3 for SP). Different letters indi
reproductive phase.
21.5 (SD) and 70.3 (SP) in T. cathartica; 6.9 mg⋅g−1DM (SD) and 5.4
(SP) in T. juncifolia (Table 3). Total soluble carbohydrates levels in
T. juncifoliawere lowest compared to the other species of the Trimezieae
and species of Tigridieae (p b 0.05). Total fructose levels (mg⋅g−1DM)
in the polysaccharide fraction of the studied species were 1.7 (SD)
and 7.2 (SP) in C. paludosa; 2.4 (SD) and 0.7 (SP) in C. xanthomelas;
0.8 (SD) and 0.9 (SP) in S. vaginatum; 2.2 (SD) and 1.5 (SP) in
T. cathartica; and 2.9 mg⋅g−1DM (SD) and 3.8 (SP) in T. juncifolia. Fruc-
tose represented less than 20% in the majority of species (Table 3).

Compared to the soluble carbohydrates, starch contents were
notably higher in all but one species, S. vaginatum, in which starch
was practically undetectable. However, values varied among the ana-
lyzed species; T. juncifolia and Cipura species presented the highest
starch contents (approx. 80% DM) in SD (Fig. 3).

3.2. Oligosaccharide profile

Glucose, fructose and sucrose were present in the oligosaccharide
fraction in all the studied species in both sites. Maltose was detected
in C. paludosa, C. xanthomelas, T. cathartica and T. juncifolia; however,
the peak area varied depending on the species and location (Fig. 4).
Small peaks of raffinose and 1-kestose were found in T. juncifolia.
S. vaginatum was the only species with substantial proportion of raffi-
nose at both sites, which was confirmed by TLC analysis (data not
shown). Maltose or other oligosaccharides were not detected in this
species (Fig. 4).

4. Discussion

The studied species of Iridaceae showed differences regarding the
nature and amount of the stored carbohydrates. Starch was the major
non-structural carbohydrate in Cipura and Trimezia species, contrasting
with the low contents of soluble carbohydrates found, mainly glucose,
fructose, sucrose andmaltose (Fig. 4). Fructose detected in the oligosac-
charide fraction (Table 2) is probably free fructose and fructosyl moiety
in sucrose since fructans were not detected by the chromatographic
analyses.
ohydrates (% F) of the polysaccharide fraction of subterranean organs of the studied species

Fructose (mg⋅g−1 DM) % F

SD SP SD SP

1.7 ± 0.4a 7.2 ± 1.7a 15.5 19.0
2.4 ± 0.8a 0.7 ± 0.3b 7.1 44.8
0.8 ± 0.3 0.9 ± 0.1 9.7 11.3
2.2 ± 0.9a 1.5 ± 0.7b 10.2 2.1
2.9 ± 1.2a 3.8 ± 1.5ab 42.0 70.3

cate differences in each column (p b 0.05), except for S. vaginatum, unavailable in the



Fig. 3. Starch contents in the underground organs of the studied species (n=3). Uppercase letters comparemeanvalues of plants collected in SerraDourada and lowercase letters compare
mean values of Serra dos Pireneus (p b 0.05). The values for Sisyrinchium vaginatum are excluded from the statistical test due to unavailable plant material in the reproductive phase.
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Starch is themain reserve in several geophytes, but glucose, fructose
and sucrose are also common in lower amounts (Frankova et al., 2003;
Ranwala andMiller, 2008; Theron and Jacobs, 1996). Starch and soluble
Fig. 4.HPAEC-PAD profiles of soluble oligosaccharides of the studied species collected in Serra D
M, maltose; 1-K, 1-kestose; Ny, nystose; and Neo, neokestose.
carbohydrate contents may vary in underground organs of geophytes
influenced by the specific demands of each phenological phase. In
Colchicumautumnale, for instance, Frankova et al. (2003, 2004) reported
ourada (SD) and in Serra dos Pireneus (SP). G, glucose; F, fructose; S, sucrose; R, raffinose;

image of Fig.�4
image of Fig.�3


110 V.O. Almeida et al. / South African Journal of Botany 96 (2015) 105–111
an increase in amylolytic activity and sucrose synthesis were increased
to supply shoot demands. Maltose, one of the degradation products of
starch may also be present in varying amounts (Stitt and Zeeman,
2012; Tetlow et al., 2004), being widespread at least in trace amounts
(Lewis, 1984). This highlights the typical geophytic metabolism, with
NSC turnover to meet the requirements of the alternating sinks
(Frankova et al., 2003; Orthen and Wehrmeyer, 2004).

Despite the predominance of starch, T. juncifolia also presented
1-kestose and raffinose, but these trisaccharides were not detected in
Cipura species or in T. cathartica (Fig. 4). In specimens of both Trimezia
species collected at Serra Dourada, total fructose represented 66% and
82% of soluble carbohydrates in the oligosaccharide fraction, while in
Serra dos Pireneus fructose proportions were 32% and 53% (Table 2).
The higher proportions of fructose in specimens from Serra Dourada
represent the prevalence of sucrose and sucrose-based oligosaccharides
other than fructans in this fraction, as it was confirmed by HPAEC-PAD
analyses (Fig. 4).

Fructans are the main reserve in 15% of the angiosperms and may
occur in Iridaceae (Hendry, 1993). Fructans and starch can co-occur,
such as in bulbs of the geophyte Lachenalia minima (Hyacinthaceae),
which has similar amounts of both carbohydrates (Orthen, 2001).
In specimens of Trimezia collected in Serra Dourada, total fructose repre-
sented approx. 5% of the corms in the oligosaccharide fraction (Table 2).
This is similar to what was reported for tulip bulbs, in which fructans
constitute 5–10% of the dry matter in the underground organs
(Kamenetsky et al., 2003). When co-occurring, fructans and starch
might have different functions. In Lachenaliaminima starch is the carbon
source for re-sprouting and fructans are associated with water status
adjustments (Orthen, 2001). The water status in turn, is associated
with the shift in phenological phase in geophytes (Kamenetsky et al.,
2003; Zemah et al., 1999).

In this study, S. vaginatum presented distinct NSC profile compared
to the other studied species. The starch contentwas nearly undetectable
and the soluble carbohydrates prevailingwere glucose, fructose, sucrose
and raffinose. The presence of high amounts of raffinose has not been
previously reported within Iridaceae. Similar to fructans, raffinose is a
sucrose-based oligosaccharide, differing from thefirst ones by the galac-
tose unit that is linked to sucrose. Therefore, the raffinose amount may
be underestimated in some studies due to its inclusion in the fructan
pool (Chatterton et al., 1989). Additionally, the amount of raffinose
found in S. vaginatummight be yet higher if analyzed in other phenolog-
ical phases and/or environmental conditions, factors that notably affect
NSC composition and distribution in underground organs of geophytes
(Frankova et al., 2003; Orthen and Wehrmeyer, 2004; Orthen, 2001;
Theron and Jacobs, 1996).

Raffinose is the base trisaccharide for the synthesis of the raffinose
family oligosaccharides, the RFOs (Keller and Pharr, 1996). Besides
fructans, RFOs are the most notable class of soluble carbohydrates in
plants (Van den Ende, 2013) being widespread in the plant kingdom.
They occur mostly in seeds and storage organs as reserve compounds
but also have a role in carbon transport and protection against abiotic
stresses (Keller and Pharr, 1996), including prevention of oxidative
damage and osmoprotection (Nishizawa et al., 2008; Van den Ende,
2013). The expressive amounts of raffinose in S. vaginatum indicates
its role as reserve compound, in addition to the putative role in
protecting plants of this species against abiotic stresses that are largely
present in the Cerrado (Coutinho, 2002).

Soluble carbohydrates may reflect the relationships between plant
groups. Fructans have been associated with Poaceae taxa (Smouter
and Simpson, 1989) and their structural analysis can be useful in
distinguishing the supertribes (Bonnett et al, 1997). In thiswork, we ob-
served that species of the tribes Trimezieae and Tigridieae have similar
NSC profile, with substantial accumulation of starch and the presence of
glucose, fructose, sucrose andmaltose. This may reflect the phylogenet-
ic relationships between these sister groups (Goldblatt et al., 2008; Lovo
et al., 2012). However, Trimezia species showed a difference: while
T. cathartica followed this profile, T. juncifolia additionally has raffinose
and 1-kestose. Although it is necessary to expand the number of species
studied in this regard, the difference in the NSC profile of the Trimezia
species may indicate the heterogeneity in this genus, which needs
taxonomic revision as pointed out by Lovo et al. (2012).

Another important aspect to highlight in this study is the predomi-
nance of soluble carbohydrates and the appreciable amount of raffinose
in S. vaginatum, of the tribe Sisyrinchieae. Future studies aiming to con-
firm the association of NSC profile with the taxonomy of Iridaceae, and
with the type of underground reserve organ, should include the analysis
of a larger number of species with reserve organs, concerning carbohy-
drate fluctuation in different phenological stages and environmental
conditions.
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