
Science of Computer Programming 13 (1989/90) 73-l 10

North-Holland

73

ELEMENTARY DATA STRUCTURES IN ALGOL-LIKE
LANGUAGES*

R.D. TENNENT

Department of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada

Communicated by D. Bjflmer

Received August 1988
Revised May 1989

Abstract. J.C. Reynolds has pointed out that ALGOL 60 has a set of properties not shared by most

of the languages usually regarded as being its successors. We propose to use this ALGOL-like

framework to design a language that could adequately support both applicative and imperative

programming while also retaining the advantages of each of the “pure” frameworks. This paper

discusses elementary data-structuring facilities (products, arrays, sums) for such a language, taking

advantage of recent developments, such as this author’s “quantification” notation, and the notion
of “conjunctive type” proposed by Coppo and Dezani, and adapted to explicitly-typed languages

by Reynolds.

1. Introduction

ALGOL 60 is a language so far ahead of its rime that it was not only an

improvemenr on its predecessors but also on nearly all its successors.

C.A.R. Hoare

The applicative (or functional) programming paradigm [4,8,25] evolved from

(pure) LISP and emphasized

(i) the use of recursive data types (such as lists and trees) and recursively-defined

and higher-order functions;

(ii) the succinctness and expressiveness possible without explicit types; and

(iii) the ease of reasoning about expressions without side-effects and about lambda

calculus-based procedures.

The imperative (or procedural) programming paradigm [12,19,20,40,66] evolved

from FORTRAN, and emphasized

(i) the use of selectively-updateable data structures (such as arrays and records)

and iteration;

* This work was supported in part by an operating grant from the Natural Sciences and Engineering

Research Council of Canada, and by a grant from the Information Technology Research Centre of Ontario.

0167-6423/89/$03.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)

74 R. D. Tennent

(ii) the efficiency and security obtainable with static types and static or stack-

oriented storage management; and

(iii) the ease of reasoning about simple imperative algorithms when there is no

aliasing.

Many language designers have attempted to find a compromise between these

extreme positions. Even some very early design efforts [l, 5,631 did, in retrospect,

attempt to integrate applicative and imperative programming, and [6, 13,21-

23,26,32,39,64] are more recent discussions and proposals.

Is it possible for a language to support both programming styles adequately, and

also combine the advantages of the “pure” frameworks? Ideally, such a programming

language would

l provide recursion, higher-order procedures, and recursively-defined types, and

also assignment, iteration and selectively-updateable data structures;

l have the flexibility and syntactic succinctness of typeless languages, and also

provide the security and efficiency of statically-typed languages; and

l allow simple reasoning about properties of both imperative and applicative

aspects of programs and also have simple and efficient implementations.

In the author’s opinion, no existing or proposed programming language achieves

this ambitious ideal. The procedure mechanisms in most imperative languages are

much more complicated and restrictive than those in well-designed purely-applica-

tive languages. The ease of reasoning possible with a purely-applicative language

is typically lost when imperative features are added. Similarly, the ease of reasoning

possible using Hoare-like axioms with a simple imperative language is typically lost

when procedures are added. Nevertheless, there have been several important

developments in recent years.

The call-by-need form of parameter passing (also known as “lazy evaluation”)

[14, 15,651 makes it possible to obtain the attractive substitution-oriented semantics

of call-by-name with (almost) the efficiency of call-by-value, and there has been

considerable work [2] on “strictness analysis” with the same motivation. The

language ML [29] demonstrates that it is possible to use type inference and poly-

morphism to achieve the efficiency and security of statically-typed languages with

(almost) the expressiveness and succinctness of typeless languages.

Unfortunately, none of these ideas has yet been used very successfully in languages

that adequately support imperative programming. For example, in [61], the most

recent attempt to extend the polymorphic type discipline of [1 l] to a language with

imperative features, it is noted that this problem has proved to be “an obstacle (if

not the obstacle) to the harmonic integration of imperative and functional language

features,” and there are further difficulties with incorporating implicit conversions

such as the “de-referencing” coercion from variables to expressions.

In the author’s opinion, the most important contribution relevant to providing

support for both applicative and imperative programming in a single language is

the observation by Reynolds [46] that ALGOL 60 has a distinctive set of properties

Elementary data structures in ALGOL-like languages 15

not shared by most of the languages usually regarded as being its successors,

including ALGOL 68 [63] and PASCAL [66]. The principles that Reynolds suggests

are characteristic of “ALGOL-like languages” are described there as follows.

(1) The order of evaluation for parts of expressions, and of implicit conver-

sions between data or phrase types, is indeterminate, but the meaning of

the language, at an appropriate level of abstraction, is independent of

this indeterminacy.

In short, expressions must be “mathematical, ” in that evaluation does not result in

side-effects or jumps, even if the language has imperative features such as assign-

ments and escapes. The following statement, from Naur [33], can be construed as

justification for the claim that ALGOL 60 was intended to have this property: “a

numerical (Boolean) expression is a rule for computing a numerical (logical) value,”

with nothing said about side-effects or jumps; see also [24].

(2) Algol is obtained from the simple imperative language [of while programs]

by imposing a procedure mechanism based on a fully-typed, call-by-name

lambda calculus.

Although many languages are notationally close to the lambda calculus, only

ALGOL~O (with its “copy rule”) and its very close relations are faithful to the

equational laws of the lambda calculus. In most languages, the provision of higher-

order procedures has drastic implementation consequences; but not in ALGOL-like

languages.

(3) The language obeys a stack discipline.

A semantics for variable declarations which captures this discipline in an abstract

way is described in [34,35,46,58]. The reason that ALGOL 60 could provide higher-

order procedures without requiring complex and artificial restrictions to maintain

stack-implementability for local variables is that its type structure makes an important

distinction.

(4) There are two fundamentally different kinds of type: data types, each of

which denotes a set of values appropriate for certain variables and

expressions, and phrase types, each of which denotes a set of meanings

appropriate for certain identifiers and phrases.

In ALGOL 60, as first pointed out by Strachey [55], elements of data types (such as

truth values and numbers) are assignable (to variables), but not denotable (by

identifiers), whereas elements of phrase types (such as variables and procedures)

are denotable but not assignable; the latter property allows stack-implementability.

Finally, the presence of both conditional statements and conditional expressions in

ALGOL 60 suggests the following principle, which is a generalization of the principles

of abstraction and qualification of Tennent [56].

16 R.D. Tennent

(5) Facilities such as procedure definition, recursion, and conditional and

case constructions are uniformly applicable to all phrase types.

Furthermore, Reynolds has shown that it is possible to reason straightforwardly

about both applicative and imperative aspects of programs in ALGOL-like languages

using “specification logic” [45,47], a formal system that combines

l Hoare-like axioms for reasoning about commands,

l first-order theories of the data types for reasoning about expressions,

l fixed-point induction for reasoning about recursion, and

l rules derived from the laws of the lambda calculus for reasoning about pro-

cedures.

In particular, the imperative mechanisms of an ALGOL-like language do not interfere

at all with applicative properties, which is certainly not the case with languages

such as ML, in which imperative features have been added to a lambda calculus-based

applicative notation in a completely different way. It is true that procedures do

affect Hoare-like reasoning about imperative features, but Reynolds shows that this

is manageable by introducing a suitable concept of “non-interference” into the

specification language. See [58] for discussion of some problematical aspects of the

interpretation of specification logic.

Reynolds has also described an elegant approach to syntactic control of interfer-

ence for ALGOL-like languages [43]. If this can be perfected, it should simplify

Hoare-like reasoning about most programs and will also allow a compiler to

recognize easily that call-by-need is a correct implementation of the semantics of

call-by-name, even in the presence of imperative features.

In summary, it appears that, far from being the completely obsolete language

that most programmers and language designers have long thought it to be,

ALGOL 60 uniquely combines desirable attributes of both purely-applicative and

conventional imperative languages, and provides us with a framework for designing

a language that will approach the ambitious ideal stated above.

In this paper we take some steps towards the goal of designing modern ALGOL-like

languages in the sense of Reynolds by describing the (abstract) syntax (including

type and scope constraints) and (denotational) semantics of the elementary data-

structuring facilities that seem to be appropriate to such languages. The main reason

that ALGOL 60 was superseded by PASCAL and derivatives after the appearance of

[181 is its inadequate data-structuring facilities. Some suggestions about phrase-type

structuring are given by Reynolds [46], but data-type structures are also needed.

We will also see that the interpretation of the phrase-type sums described in [46]

is rather problematical. Finally, we can now take advantage of two developments

that have been made since [46]: the “quantification” notation described by Tennent

[57], and the adaptation to explicitly-typed languages by Reynolds [50] of the notion

of “conjunctive type” originally proposed by Coppo and Dezani [lo].

Elementary data structures in ALGOL-like languages 17

This paper is organized as follows. Sections 2-5 summarize the necessary back-

ground on types, syntax, semantics, coercions, and conjunctive types; none of this

material is new. Sections 6 and 7 discuss phrase-type and data-type structures,

respectively. Section 8 outlines the areas where further research is needed. For

reasons of presentation, the language is described incrementally: a basic language

is presented first, and then augmented in succeeding sections.

2. Types

Our initial type structure is determined by the following productions:

data types :

T : := boo1 Booleans,

nat natural numbers;

phrase types:

8 : := exp[3-1 expressions,

comm commands,

I”“l”i

acceptors,

var 7 variables,

le+ 8’ procedures.

Acceptors are the “updating” or “write-only” components of variables, sometimes

termed “I-values.” The result type 8’ of a procedural type 0 + 0’ may be any of the

phrase types. If the result type is comm, the procedures are conventional “sub-

routines” or “proper” procedures. If the result type of a procedural type is exp[T],

the procedures are “functions” whose calls are expressions for values of type T.

There are also variable-returning and acceptor-returning procedures (sometimes

called “selectors”) and procedure-returning procedures. Similarly, the argument

type of a procedural type may be any of the phrase types. For example, a parameter

of type acclrl is a kind of pure result parameter. Multi-parameter procedures will

be added as syntactic sugar in the following section.

To simplify the discussions of semantics in this paper, we consider only a fixed

set S of storage states. The generalization appropriate to treat features for which

this is not sufficient (variable declarations and block expressions) is discussed in

[58-601. Also, we avoid features (such as escapes) that require the use of continu-

ations, so that we can give a “direct” semantics. Finally, we assume that commands

are deterministic.

Each data type T denotes a set [[TJ of values possible for some kind of expression

or variable:

[bool] = {true, false} truth values,

[nat] ={O, 1,2,. . .} natural numbers.

Each phrase type 0 denotes a directed-complete partially-ordered set [I 01 of meanings

78 R.D. Tennent

possible for phrases of that type. We term these ordered structures “domains,” but

do not insist on the existence of a least element or algebraicity. For domains D and

D’, let

l D, be D “lifted” by the addition of a new least element 1,

l D x D’ be the Cartesian product of D and D’, ordered component-wise,

l D+ D’ be the set of continuous functions from D to D’ ordered point-wise,

l D-D’ be the domain of continuous’ partial functions from D to D’ ordered

pointwise; i.e., f~~_~, g iff, for all x E D, if f(x) is defined, then g(x) is

defined and f(x)cDs g(x).

In the generalization discussed in [58-601, D -D’ is not, in general, isomorphic

to D + 01. The domains denoted by the phrase types above are defined inductively

as follows:

Uexp[~lll=~+Udl,

[commlj = S - S,

[acc[711 = [exp[7]1+ [commjj,

barbIn = [Iacc[d x bP[dk

where sets such as S and [[Tn should be regarded as discretely-ordered domains (i.e.,

x my iff x = y). Thus, a phrase of type exp[T] yields a meaning that, when provided

with a storage state, produces an element of [[Tn as its value (or aborts or fails to

terminate, both modelled by the least element I). A command meaning is a partial

function on states. The use of total functions to a “lifted” domain with expressions

but partial functions to a set with commands is essential in the more general semantic

framework discussed in 158-601. A variable consists of an acceptor component

(I-value) and an expression component (r-value); that is, variables are like the

“load-update pairs” of Strachey [54] and Park [37] and the “implicit references”

of GEDANKEN (Reynolds [42]). From now on, acc[T] will be regarded as being an

abbreviation for the procedural type exp[T] + comm. Notice that, for every phrase

type 0, [Ien has a least element; this will be denoted by Is.

3. Phrases

We will specify the (abstract) syntax of phrases in our example language by using

“compositional” (and possibly-schematic) inference rules for formulas of the form

2: 8 (i.e., 2 is a well-formed phrase of type 0).

’ We will only use this construction with domains D for which all partial functions are continuous,

but a general definition may be found in [38].

Elementary data structures in ALGOL-like languages 19

Here is a selection of rules for expressions:

zero :

0 : exp[nat] ’

successor:

N : exp[nat]

succ N : exp[nat] ’

ordering:

NO : exp[nat] N, : exp[nat]

NO < N, : exp[bool] ’

conjunction:

B, : exp[bool] B, : exp[boo11 .

B, and B, : exp[bool] ’

equality:

E, : exp[71 E, : exp[T]

EO = E, : exp[bool] ’

Notice that the equality rule is schematic over all data types r; however, both

operands must be expressions for the same data type.

Here are some rules for commands:

null:

skip : comm ’

assignment:

A:acc[T] E :exp[T] .

A:= E:comm ’

sequencing:

CO : comm C, : comm

CO; C, : comm ’

iteration:

B : exp[bool] C : comm

while B do C:comm

80 R. D. Tennent

Finally, we give rules that are schematic over phrase types:

bracketing:

z:e -.
(z):e’

conditional:

B : exp[bool] Z1 : 0 Z, : 0

if B then Z, else Z, : 0
;

application :

P:e+e’ Q:e

PQ:8’ ;

abstraction:

KL : e]

P: 8’

h:e.P:e+eJ

The rule for abstraction is in natural-deduction format [41,62]; that is, the formal

system allows us to assert “deducibility statements” of the form r t Z : 0, where n

is a phrase-type assignment, a finite set of assumptions of the form L : 8, for distinct

L. The rule for application should therefore be interpreted as stating that, for any

type assignment r, if r + P : 0 + 0’ and rr E Q : 0, then rr + PQ : t9’, and similarly for

all of the preceding rules.

We can regard a type assignment n as being a function, so that, if its domain is

dam(v), then, for all L E dam(r), T(L) is the assumed type of L. The rule for

abstraction then states that, for any V, if (r 1 b++e)EP:e’,thenrt-hb:e.P:e+e’,

where (r 1 L H 0) denotes the type assignment rr’ such that dom(r’) = dom(r) u {L},

T’(L) = 8, and T’(L’) = ~(6’) for all L’E dam(v) such that L’# L. The deducibility of

L : 8 from any n such that n(r) = 0 is implicit in the natural-deduction framework.

We specify semantics by means of “semantic equations” which give a composi-

tional interpretation of each construct solely in terms of the interpretations of its

immediate components. For any type assignment r, let [VI be n,,d,,C,,[r(~)j; i.e.,

the set of all “environment” functions u with the same domain as v and satisfying

the constraint that, for all L E dom(r), U(L) E [T(L)]. Then we define valuations [[.lrO

mapping any phrase Z such that rr I- Z : 0 into an element of [[rrl + [[On. The rr and

8 subscripts on phrase-valuation brackets will usually be omitted except when there

is a possibility of confusion. Here are some typical semantic equations for expressions

and commands, using u and s to range over [[TJ and S, respectively:

. ~~-[~ld=puo3 = PI”““puo, alayM

‘((9 “a ‘q)[‘ldxapuo3 ‘(% ‘ ‘v ‘q)[~l==~puo3) = (Za ‘Zv) ‘(‘a ‘ ‘v) ‘q)[~lyJuoJ

‘[&I] 3 v Ip? .loj ((v)Zd ‘(v)‘d ‘q),@puo3 = (v)(Qf ‘ ‘d ‘qy-~puo3

‘T=(s)9 j! ‘T

‘aspJJ,S= (s)q j! ‘(S)%

1

= (s)(‘a ‘Ia ‘9)[L3m03

‘al.il = (s)9 j! ‘(s)‘a

‘T = (s)9 j! ‘pauyapun

‘aWas= (s)9 J! ‘(s)Z3 = (s)(Z3 ‘ 13 ‘9)~yx403

‘aw = (s)9 j! ‘(s)‘3 I

:SMOllOj SK? 0 UO LIO!]NlpU!

1(q pauyap am [e 1 c [e 1 x [Ien x [[rooqldxag : Qpuo~ suoymn~ heyxne ayl aJayM

wyum ‘(n)““u’2n‘nuan)epU03 = (v5y2 =~a 12 uaq8 8 J!n

:s~olloj se palaldlalu! s! [euoypuo~ ayl

‘(0 JO sJay!luap! aag %u!.mldm

p!o.4E 01 d u! slayguap! punoq jo saCkmy pmsn ayl ~J!M) d u! 7 jo sa3ua.m330

aaq 11~ .IOJ (ad4 ayldolddv JO) 0 Ougnlgsqns jo l[nsal aq$ salouap [7 /old a.myM

‘(nuOnC171n)ndn=~u[7/bidn

‘n luamuo.+ua alepdoldde ICue .~oj

:saswyd 11~ .IOJ (moj padlC$ u!) splay [ES] sn1tmpm epqure[ayl ‘03 MBI uopnlgsqns

pmsn ayL .uoyeagdde ayl u! palmaxa JO pawnpz?Aa IOU s! 11 ‘puewu~o~ JO alqtyea

‘uo!ssaldxa ue s! ~a~awwed pml3c ue j! leyl u! ‘s~~~uewas ,,aureu-kq-lpz,, ‘t! s! s!y~

‘(0 +- 7 1 u) JO Ceylon sno%oleule s! (v ~7 1 n) JO uoge)aJdlaw! aq$ pue [[e 13 v a.tayM

‘(Vt(?In)[[dn=Vn[[d’e:7Yn

‘(wb[Idk wdn

y7)n = q7n

:SMOllOj

se a.m uoywwsqe pm uo!leDgddv pmtpa~o~d pm sJay!)uap! .~oj suogenba aqL

.as!huaylo pauyapun s! pm ‘pauyap s! (s)J

j! ((s)J)S s! (s)(8 IS) “ay hapro spewu1~.13~~p u! suogmnj pzg.wd JO uog!sodmos

salouap ap!s pu~y-~y~!~ ayy uo ,,f,, pm s uo uoymnj Alyuap! ay3 s! “pj alayM

ku13nft2u03nz nut3 to31

vumwn=~n~=:vn
‘Spt = n [dgsn

‘o= snuon

I8

82 R. D. Tennent

Many constructions can be treated as “syntactic sugar” [25], that is to say, as

abbreviations of combinations of more-basic constructs. For example, if, as suggested

by Schanfinkel [51], a type of the form O1 x * . . x 0, + 0 is treated as an alternative

notation for 8, + . * . + 8, + 0 (where the arrow associates to the right), then we can

provide multi-parameter procedures as follows:

multiple abstraction:

[L,: Oi, for i= 1,2,. . . , n]

p:e

A(L ,:e ,,..., L,:e,).P:e,x*..xe,+e

multiple application:

p:e,x- “X0,+0 Qi:Oiy for i=l,2 ,...., n

P(Q1,...,On):O
,

by adopting the following “de-sugaring” equivalences:

h(L1:e, ,..., b,:e,).P-hL,:el hL,:o,.P,

P(QI,..., Qn) = P(Q,). . *(On).

Convenient notation for making local definitions was suggested by Landin [25]:

definition:

LL : e]

P:e Q:e’

let L be P in Q : 8’

with the de-sugaring

let L be Pin Q-(AL:O.Q)I?

Note that the type of the bound identifier need not be specified explicitly in the

definition because it may be inferred from the type of P It can easily be verified

that this de-sugaring implies the following valuation:

[let L be P in Qju=[Qj(ul~-[Pl]u)

and so, by the substitution law,

let L be P in Q = Q[P/L].

For defining procedures, it seems preferable to introduce another notation suggested

by Landin because it puts the “low-level” code that defines the procedure after the

Elementary data structures in ALGOL.-like languages 83

“high-level” code that uses it:

procedure dejinition:

[Lo:&, for i=1,2 ,...., n] [L:O,X...XO,+O]

P:8 Q: 8’
let L : 0, x f . *xe,+e in Q where L(L,,...,L,)=~:~’

with the de-sugaring

let L : 13~ X . . *x0,+8 in Q where L(L,,...,L,)=~

= (A~ : 8, x . +.~e,+e.Q)(h(~~:e, ,..., L,:e,).P).

There are straightforward generalizations of these definition forms to allow multiple

(“simultaneous”) definitions.

Another class of syntactic sugarings [571 is based on the notation for quantification

in predicate logic:

quantijication :

LL: eq

Q:(e’+ey+e P:efl

#QL.P: e

with the de-sugaring

QL. P = Q(h : 0. P).

Again, the type of the bound variable can be inferred from the type of Q. For

example, if C is a command and, for any data type 7,

new[71: (var[7]+ comm) + comm, valof[T]: (var[3-I + comm) + exp[T]

are suitable procedural constants, then

#new[T]L. C

can be a conventional “block” containing a declaration of a local T-valued variable,

and

#valof[7]*. C

can be a “block expression” whose value is the final value of the local variable. If

P: e and rec[01: (8 + 6) + 0 is a constant denoting the fixed-point operator for

domain [OJ, then

#rec[f3]1. P

can be a “recursive labelling,” much like the way LABEL was used in the original

84 R.D. Tennent

version of LISP. We may then introduce a recursive form of definition:

recursive dejnition :

[L : f3] [L : ItI]

P:8 Q:t”

letrec L : 0 be P in Q : 0’

which may be de-sugared as follows:

letrec L : 8 be P in Q = (hr. : 0. Q)(#rec[O]L. P).

A recursive variant of the procedure-definition form is also possible. It is convenient

to introduce constants as follows:

undejined:

undef[O]: 0

with

undef[O]=#rec[O]c..L,

so that, for every U, [undef [O]Iu = Is.

The quantification notation can also be used with user-defined “quantifiers”; for

example, by defining a procedure

for: exp[nat] X exp[nat] + (exp[nat] + comm) + comm

recursively as follows:

for(m, n)(user)

= if m s n then (user(m);for(succ m, n)(user)) else skip

(or, for better efficiency, with a while loop), a programmer can then obtain a

“for-loop” with local iteration index L and body C as follows:

#for(&, &b. C,

where E, and E2 are expressions for the iteration limits. Similar procedures can be

defined to traverse trees, iterate over the elements of sets, etc. Several extensions to

and generalizations of the quantification notation are described in [57].

4. Coercions

We have not yet explained how an acceptor or an expression can be obtained

from a variable. Explicit selection operators could be provided, but it is conventional

to use implicit conversions, or coercions. Our treatment is based on [35,36,44,46,49].

We adopt the principle that the applicability of a coercion from one type to another

should not be dependent on syntactic context. Then, we can specify coercibility by

Elementary data structures in ALGOL-iike languages 85

means of a binary relation k on phrase-type expressions. 0 k- 0’ may be regarded

as an abbreviation for the statement that, for any type assignment rr and phrase 2,

rr t 2 : 0 implies rr I- 2 : 0’; i.e., in any context where phrases of type 0’ are expected,

any phrase of type 0 can be used as well. (To prevent confusion, the turnstile symbol

E will, from now on, be used only for coercibility relations.) It is natural to require

reflexivity (et 0) and transitivity (13~ t 13~ and &t- f& imply 0, t OX); i.e., k is a

pre-order on phrase-type expressions.’ The acceptor-selection and de-referencing

coercions are then specified by requiring the following coercibility relationships:

var[T]tacc[T], var[T]texp[T]

for every 7.

Semantically, we need to define a strict (i.e., I-preserving) continuous conversion

function [[O k 0’1: [On+ [0’1 whenever 0 t 8’. The conversions for acceptor-selection

and de-referencing, [[vat-[T] k acc[T]] and [var[T] k exp[T]jj, respectively, are the

projections from [var[T]] = [acc[710 x [eXp[T]j to [aCC[T]] and [[eXp[711, respectively.

To prevent ambiguity, we require that, for every 8, [IO + 01 be the identity on [On,

and, if 8, k O2 and O2 E 03, then 10, t e,l must be equal to the composite conversion

[IO, t &n;[[&t- &II. In the language of category theory [171, this means that II.1 must

be a functor from the pre-ordered set of phrase-type expressions (regarded as a

category in the usual way) to the category of domains with least elements and strict

continuous functions.

Similarly, we can define a pre-order k on the set of data-type expressions, with

an interpretation function [I*] from this pre-ordered set to the usual category of sets

and functions. We can now introduce new data types int and real with [intj as the

set of integers and [[real] as the set of real numbers, and then specify that

nat F int t real, with the obvious injections as the corresponding conversions.

We want any such it- T' to induce a coercion

on phrase types. For example, an integer-valued expression should be usable

wherever an expression producing reals is, because any integer value it produces

can be converted to a real number. In general:

[eXp[T]keXp[T’]je = e;[T+T’lL,

where [T+ T’jl is the I-preserving extension of [Tt 7’1: [[Tn + [T’j to [[TnL + [T’nL.

Furthermore, we want

aCC[T’] k aCC[T]

that is to say,

’ Requiring anti-symmetry as well (0~0’ and /SO imply B = 0) would make F a partial order, but

this would be less convenient: it would be necessary to choose a canonical representative of each

anti-symmetry equivalence class, and often this would be an arbitrary choice.

86 R. D. Tennent

For example, an acceptor for reals should be usable wherever an acceptor for

integers is, because any integer-valued expression to which it might be applied can

first be converted to a real-valued expression.

In general, the coercibility of procedure types is determined by the coercibility

of their argument and result types, as follows: if O,t Oh and 8, E Oi, then Oh + 8, t O,, +

Oi . Notice that the + operator is anti-monotone in its first operand. The conversion

is defined by

where f is a function from [IO;] to [OJI.

It is convenient to add a new type 1 such that Ok 1 for all 8. Intuitively, 1 is the

type of type-incorrect phrases and can be interpreted as denoting a singleton domain

{I}; then [[Okl] is the unique function from [[On to [l], and cond,(e, mO, m,) = 1.

[lj is a terminal object [17] in the category of domains. A complete program of

type 1 should be considered as erroneous, and need not be executed since its

semantics is trivial. But, in order that errors can be localized, we would expect a

compiler to generate a message for any phrase of type 1 when none of its subphrases

have type 1; however, this must be only a warning message, because, in general, a

complete program need not have type 1 when a proper component does. For example,

let x be P in skip

has type comm, even if P: 1. This simplifies the formal treatment of type-checking,

and it is claimed in [50] that allowing well-formed programs to have ill-formed

components is (part of) a solution to the syntactic problems discussed at the end

of [43].

It is also convenient to adopt the coercion 1 F 0 + 1 for all 8. To see why, suppose

that the types of P and Q in a phrase of the form PQ cannot be “matched” as

required by the syntax rule for procedure application. Then, by coercing P to type

1 and then to O+ 1 using the new coercion, such a match of types is possible for

any type O such that Q : 0, and the resulting type of the application is 1, as desired.

[l E O + 11 would be the function mapping the only element of 1 to the only element

of 10 + in.
In summary, we shall take the carriers for the pre-ordered sets of data and

phrase-type expressions to be the smallest sets that contain all of the primitive type

symbols discussed and, for phrase types, all of the finite composites freely generated

by the -+ construction; furthermore, we shall take the E relations to be the smallest

pre-orderings on these sets that include the specific relationships discussed and the

rules of the preceding paragraphs for procedural types.

Our language has “generic” constructions, such as application, and for these it

must be verified that the coercions do not lead to semantic ambiguities. For example,

the rule for application is

P:O+O' Q:O

PQ:O'

Elementary data structures in ALGOL-like languages 87

and, if P : 0, + 0’ and Q : 02, 0 can be any type satisfying 13,t- 0 t- 0,; but our

interpretations imply that

where p = [I PI] 17~H,+o~~(~) and q = [IQ]+(u). The last line is independent of 8, so that

the syntactic ambiguity does not create a semantic ambiguity. Similar results can

be proved [3,44,49] about the interpretations of := , = , +, and so on (ignoring

overflow and roundoff errors), and also for syntactic sugarings that involve type

inference, such as let-definition and quantification.

The conditional construction, however, is more problematical. The syntax rule is

B : exp[bool] 2, : 13 2, : 0

if B then Z, else 2,: fJ

and this means that, if Z, : 0, and Z,: 02, 0 should be an upper bound of 0, and

&, where 0’ is regarded as greater than 0 when 0 F 8’. To ensure that a conditional

phrase has a most-general type (up to anti-symmetry), every such 13, and 13~ should

have a least upper bound. The problem is that at present there are pairs of types

that do not have least upper bounds; for example, var[int] and var[real] have

exp[real] and acc[int] as upper bounds, but no least upper bound. But then the

construct if B then Z, else Z, is not well-formed when Z, : var[int] and Z,: var[real],

and clearly this is unacceptable.

A solution to this problem [44,46] is to augment the type structure to allow for

variables whose two components accept and produce values of different types. If 0

denoted the type of integer-accepting and real-producing variables, then 0 would

be a least upper bound of var[int] and var[real]. The conditional construct above

would then be well-formed and usable as the left-hand side of an integer assignment

and as the right-hand side of a real assignment. This will turn out to be just one

application of a more general extension [50] to be discussed in the following section.

5. Conjunctive types

We now add to the type structure of our language a product-like operation on

types which was originally studied [lo] in the context of type assignment for untyped

languages and has recently [50] been adapted to typed languages:

e::=. . *le, A e2.

The key idea is that the conjunctive type 0r A e2 must support the following “selec-

tion” coercions:

0,h&F& for i-1,2.

88 R.D. Tennenr

For example, we can now dejine var[71 to be acc[71 A exp[71 (rather than a primitive

type); the acceptor-selection and de-referencing coercions turn out to be selection

coercions on conjunctive types. Furthermore, elements of type acc[int] A exp[real]

are the “mixed” variables needed to allow if B then 2, else 2, when Z1 : var[int]

and Z,:var[real]. We will describe additional applications of conjunctive types to

generic procedures and to the definition of products (records) after discussing their

semantics.

In general, A cannot be interpreted as a conventional product, because, if ~9 is

any upper bound of O1 and 02, the following diagram must commute:

where all of the arrows are conversions. If 0, and O2 have a least upper bound 0,

the appropriate general interpretation is as follows:

ordered component-wise, and the selection conversions [IO, A e,t ei] are the obvious

restrictions of the projection functions from [IO,j x [e,n. The interpretation of t$ A e2

is termed [171 the puNback of 10, k 01 and [I&I- 01, and it can be proved that, for

any 0’ that is a lower bound of O1 and &, there is a unique conversion [IO’+ O1 A e,]

for which the following diagram of conversions commutes:

Note that the requirement that all conversions be strict ensures that 10, A e,] has a

least element. We may also define

condg,.~2(e, (m,, mJ, (mi, m3) = (cond,,(e, ml, mi), co4,(e, m2, d)).

We may now complete the definition of the particular pre-ordered set of phrase-

type expressions that results from adding conjunctive type expressions to our

language. In addition to the coercions discussed earlier, we want 0, A ez to be the

greatest lowest bound of O1 and &:

if eke,, eke, then eke,A e2.

It follows that, modulo anti-symmetry, the operation A has identity 1 and is

idempotent, commutative and associative. For example, the fragment of 0 relevant

Elementary data structures in ALGOL-like languages 89

for integer and/or real acceptors, expressions, and variables is diagrammed in

Fig. 1. Finally, the treatment of procedures is simplified by adopting the following

coercion:

which is a generalization of the coercion from 1 to O+ 1. The interpretations of

these coercions should be clear.

The introduction of conjunctive types creates a problem for operators that are

generic over data types, such as the equality test. Suppose that the operands have

conjunctive type exp[71 A exp[7’1; then the following diagram illustrates the

ambiguity possible:

The unlabelled arrows at the bottom of the diagram are the selections from the

conjunctive types. The problem is that equality of the T-valued components may

not correspond to equality of the T’-valued components. Fortunately, we do not

need phrases having such conjunctive types, and so the problem is only a technical

one. Solutions that can be adopted include

l making A a partial operation, so the undesired conjunctive types do not exist;

l introducing a “dummy” upper bound of all the data types, interpreted as the

union of all the data types, so that exp[T] A exp[7’1 would then be interpreted

as the domain of functions from states to the intersection, and not the product,

of T and 7’;

l adopting a nonuniform interpretation of type conjunction.

A
pD$ /ire\

acc[re\ a7 A ey /[int]

acc[real] A exp[real] acc[int] Aexp[int]
= var[real] = var[int]

Fig. 1

90 R.D. Tennent

The subsequent development is not affected significantly by the choice of

solution.
We can now consider how programmers might define values of conjunctive type.

The problem is to ensure that the commutativity constraints are not violated. In

[50], it is proposed that the abstraction notation be generalized to allow definition

of generic procedures:

generic abstraction:

[L: ei]

for i=l,2,...,n

P: 0;

/IL:0 ,,..., e,.P:(e,+e;)A.*.A(e,+e:,)

When n > 1, this provides a way to define generic procedures; for example,

hi : exp[nat], exp[int], exp[real] . i + i

denotes a generic “doubling” function of type

(exp[nat] + exp[nat])

A (exp[int] + exp[int])

A (exp[real] + exp[real]).

The interpretation of generic abstraction is

[AL : O1). . .) &-au =u-l,. . . ,_LJ,

whereJ;(a)=[PJ(uIL++a) for all aE[O,], lsisn

and it can be shown [50] that the components of the n-tuple of functions satisfy

the commutativity property

for any f3 that is an upper bound of all the Bi + 0:. This means that generic abstraction

is not merely “overloading” as found in, say, K/I; the components of the generic

meaning satisfy a commutatitivity constraint that ensures that there can be no

semantic ambiguity, even in the presence of coercions.

It is also possible to extend the procedure-definition notation to allow definition

of such generic procedures; for simplicity, the following rule allows procedures

with one parameter only, but the generalization to multiple parameters is

obvious;

generic procedure definition :

[L’:e,] [L:(e1~8:)A.‘.A(~,‘e~)]

for i = 1,2,. . . , n

P: e; QiS’

let ~:(6,-+0;)~* . - A (0, + 0;) in Q where ~(6’) = P: 8’

Elementary data structures in ALGOL-like languages 91

The de-sugaring is

let ~:(13,+6i)h..-~(f9, + 0:) in Q where L(L)) = P

-(hL:(e,~e:)A...A(e,-e~).Q)(hL’:el)...) 8,.P).

Reynolds [501 also proposes a form of merging for procedures. This can be slightly

generalized [3] as follows:

procedure merging:

[LI: ei]

P:O, Qle;

for i = 1,2,. . . , n

provided that, if 0,~ 0 + 0’, then 1 E 13’ or 8 is not conjoinable with any of the 0,.

The restriction on 0” ensures that there are no commutativity constraints on the

value of P so that the conjunction 8,~. . . is interpreted as a full product. For

example, this construction allows a programmer to define a nonstandard “variable”

by merging a (suitably-typed) acceptor procedure with an expression, and to merge

a Boolean negation procedure of type exp[hool] + exp[bool] with a numerical nega-

tion of type (exp[int] + exp[int]) A (exp[real] + exp[real]). The latter is possible

because the type exp[bool] A exp[int] A exp[real] is disallowed (or trivial).

6. Phrase-type structures

In this section we begin (at last) to discuss facilities for creating and using

composite objects such as records and arrays. Because we have two kinds of types,

phrase types and data types, we will consider two kinds of structures. Phrase-type

structures will be denotable by identifiers (but not expressible or assignable to

variables).

6.1. Products

To construct products (of phrase types), we first introduce tugged types, as follows:

e::=. . .JLH/j

where L here stands for an arbitrary identifier. We could define [L H 01 to be just

[f3J, but, for clarity, we let [L H 131 be the isomorphic domain of functions {L} -+ [01.

We then introduce the following coercions:

92 R.D. Tennent

denoting the following conversions:

[[LHe~LHe’nf=f;[Iete’ll,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

[ll-LHllXL =x, 

and define 

co~Le(U3JX~) = cond,(b,fO(~Ml(~)). 

Following [50], we now provide notation for defining “tagged” meanings: 

tag introduction 

P:eo Q:e, 

P,LHQ:~~AL-~, 

provided &k L H 13 only if 1 t 0. The constraint ensures that the L-tagged meaning 

of Q replaces any similarly-tagged value derivable from I? The interpretation is 

UP,-QIlu=W%,f), wheref(L)=UQllU. 

Note that the occurrence of L as a tag in LH Q is not a conventional identifier 

occurrence; for example, it is not subject to substitutions. 

Tag introduction can be used to create arbitrary n-tuples of tagged meanings. We 

can allow 

L,HP ,,..., L,HP, 

as an abbreviation for 

undef[l],bl-P ,,..., L,++P,,. 

A particular “field” of such a “record” or “structure” can then be selected by the 

selection coercion for conjunctive types, and the tag can be removed by using: 

tag elimination: 

with the following interpretation: 

UQ. LIIU = UQIl(U)(L). 
Note that the combination of conjunctive and tagged types gives essentially the 

same power as conventional “named-field” products, including the coercions of 

[46], which have the “inheritance” properties discussed in [9]. 



Elementary data structures in ALGOL-like languages 93 

As an example of how phrase-type products can be used, let class[8] be an 

abbreviation for (0 + comm) + comm; for example, the variable-declaration quantifier 

new[T] is of phrase type class[var[7]]. Then the following program fragment illus- 

trates how to define and create an instance of an abstract “class” of “counter” 

objects, whose capabilities are limited to incrementation and evaluation: 

let counter : class[ inc Hcomm A val- exp[nat]] 

in 

(# counter c. 
. . . c. inc. . . c. val * * *) 

where counter( user) 

= #new[nat] n. n := 0; 

user(incHn := ntl, vu/-n). 

The procedural parameter user may be thought of as a typical “customer” for an 

instance of the counter class. The representation of a counter (i.e., variable n) is a 

“private” variable, not directly accessible to users. In more complex examples, 

private procedures might be necessary. Note that counter, as defined in this example, 

is a value, not a type; it can be used as a quantifier to create counter objects, but 

cannot be used, for example, as the type of a parameter. 

6.2. Sums 

Typed programming languages generally have “union” or “variant” mechanisms 

to allow strict type constraints to be relaxed in a disciplined way. We therefore 

consider disjunctive phrase types as follows 

o::=. . +vffA 

and the following coercions, which are essentially dual to those for conjunctive types: 

0, F f3, v I32 for i = 1,2, 

if 13,~0, 13,tB then f3,v 8,tO. 

We defer consideration of the semantics of these mechanisms. 

Now, to form “sums” (which are like disjoint unions), we will want to form 

disjunctions of types tagged with distinct tags. However, we cannot use, for example, 

L,HO,VLZH&, because then L~H 13, and L*H O2 would have a nontrivial upper 

bound and the pullback interpretation of L, H 0, A Lo+-+ f& would no longer yield a 

full product. Hence, we introduce a second form of tagged type, as follows: 

e::=- . .I&@ 8, 

with coercion 

if 0 t 0’ then L @ et L @ 0’. 

We can then form “sum” types L, @ 0, v . . . v L, @ en, and define values of such types 



94 R.D. Tennenr 

by using the following syntax rule: 

sum introduction: 

andthecoercionfrom~@@into*~~v~@0~.... 

To avoid introducing undesired upper bounds, we make disjunction a partial 

operation, applicable only to @-tagged types and disjunctions of them (except for 

trivial disjunctions such as 8 v 13). Hence, we introduce a binary relation V on 

phrase-type expressions, termed disjoinability, and deem 0r v & to be well-formed 

only when 0, V &. We define V to be the smallest reflexive and symmetric binary 

relation on phrase-type names that has the following properties: 

if eVei forall lsisn then BV(B,v...v&) 

if ~=~‘implies 0VCthen L@~VL’@~‘. 

Although sum types are discussed in [46], their interpretation is rather problemati- 

cal. We can dispose of trivial uses of disjunction as follows: 

uev en=uen, 

[L@ 0, v L@ e,g =fL@(e, v e,)], 

because of the coercions 0 v 0 t 8 and L @ 0, v L @ 0,F L @ (8, v 0,). This leaves US 

sums of the form or@ 8, v - - * v L, @ 8, to interpret, where the bi are distinct. The 

category of directed-complete partial orders and continuous functions has co- 

products of domains Q, i E I, as follows: 

C Di=U{(i,v)IvEDil, isI iE, 

ordered by (i, u,)c( j, 0,) iff i = j and ZI, E vj. But such domains do not have least 

elements. Lifting a co-product to introduce a least element produces the so-called 

“separated sum” of domains (with least elements): 

FL, @ e1 v . ..vl.ne.ll=(~_t:*Ueil), 

and then 

Unfortunately, there is no apparent way to define a function condO when 0 is a 

sum type. This not only violates the principle of uniformity, but also, and more 

importantly, precludes the use of conditional phrases to define values of sum types. 

Our solution to the latter problem is to introduce a new phrase type of “pure” (i.e., 

state-independent) value phrases, as follows 

0::=. . .Ivar[7], 



Elementary data structures in ALGOL-like languages 95 

with [var[ T]l= [~j,, and then [exp[T]II = S+ [[var[T]Il. Literal constants such as 0 

and true can now be treated as having phrase types val[nat] and val[bool], respec- 

tively, and, to allow these to be used in expressions, we introduce a coercion 

val[T] kexp[-r] with interpretation [val[ T] texp[ T]jjvs = v, for all states s. We can 

also allow expression operators such as + to be used with value phrases by requiring 

the following kind of commutativity: 

UvaWl x UvaWl [[+II,,,, UvaW 

and similarly for all of the other operators on expressions, such as = , not, and, <, 

succ, etc. 

Of course, we cannot define a function cond, when 0 is a value type; however, 

we can extend the applicability of the if construction as follows: 

value conditional: 

V : valrbooll Z,, : e Z, : e 

if V then Z, else Z, : 0 ’ 

The condition V has type val[bool] rather than exp[bool]. The interpretation, for 

every phrase type 0 (including value and sum types), is 

u-au. if [[Vnu = true, 

[[if V then Z, else Z,nu = [Z,nu, if [ V]u = false, 

J_ 8, if [V]u=l. 

We now consider how to interpret the coercions. Apart from trivial coercions 

such as 13 v 8 t 0 and L @ 8, v L @ 13~ t L @ ( e1 v IQ, coercions on disjunctive types have 

the general form 

if (6 ,,..., L,}G{L: ,..., LA} and Bi E 0: whenever Q = L) then 

L,@ 8, v . ..vL,@e,tL:@el,v...vL:,@e:,, 

where the ~~ are distinct and the L: are distinct; such coercions can be interpreted 

as follows: 

[L, @ 8, v . ..vL,~~,~L~~e:v~~~~L:,~e~~z 

= (i uej + fw, if z = (i, v) and ~~ = L:, 

4 if z=I. 



96 R.D. Tennent 

To discriminate among the variants possible for a value of sum type, we introduce 

notation for 

sum elimination: 

Z:L;@e,v...vL,@e, 

casetag[B]Z:(LIH(~l~e)A...hL,H(e,~e))~e 

where here, and throughout the rest of this section, the ~~ are distinct. The interpreta- 

tion is as follows: 

Then, if we adopt the following form of 

distributed quanti$cation: 

[L : ei] 
for i = 1,2, . . . , n 

Q:(b,++(e,+e:)~v ~~A~,H(o,+o;))+~ pi:ej 

#QL.L,~P,I...I~,~P,:e 

with de-sugaring 

#QL.L*HEq.. +,-p, 

-Q(L,~(hL:e,.p,) ,..., b,~(h~:e,.pn)), 

we have the following as a derived syntax rule: 

LL: ei] 

for i=l,2,...,n 

z:L1f3e,v.-.vL,@e, 5: e 

#(casetag[e]Z)6.b,++P,I.-.j~n++Pn:f3 

The tag on the value of Z is used to select one of the Pi; free occurrences of L in 

that Pi denote the value of Z with the tag removed. 

It is not clear how useful sums of (phrase) types will be, particularly when 

conditional phrases of sum types must be constrained to purely-applicative contexts. 

A realistic class of applications would appear to be recursively-defined types with 

“lazy” components, as discussed in [7,8, 161. 

It is also possible to introduce a “bottom” type 0, dual to 1: 

e::=. . .I0 

with coercion 

for any 0, and interpretations 

IIon = {I), 



Elementary data structures in ALGOL-like languages 97 

The bottom type can be made disjoinable with every type, because 0 v f3 E 0. The 

bottom type is not particularly useful, but it does allow the family of constants 

under[O] for every 0 to be replaced by a single constant undef of type 0, because 

its value converts to the least element of any phrase type. 

6.3. Arrays 

Arrays differ from products in two ways: components of arrays can be selected 

by using a computed “index” (rather than a static “tag”), and, to make this practical, 

all of the components of an array must have the same type. 

Programming languages typically provide arrays in two specialized and unrelated 

forms: as conventional arrays of variables and in “case” constructions, which involve 

indexing into what are essentially arrays of commands or expressions. Furthermore, 

the difference between arrays and procedures is essentially a question of representa- 

tion. To generalize and unify all of these possibilities, we use procedures as arrays. 

One can, for example, define a class-returning procedure 

NewReaZVarArray : exp[nat] + class[ (exp[nat] + var[real]) A size ++ exp[nat]] 

as follows: 

NewReaZVarArray(size)(user) 

= let allocate: exp[nat] X (exp[nat] -9 var[real]) + comm 

in allocate(0, undef) 

whererec allocate(i, a) 

= if i = size then user( a, size ++ i) else 

(# new[real]x. 

let newa: exp[nat] + var[real] 

in alZocate(succ i, newa) 

Then, 

where newa( j) = if i = j then x else a(j)). 

# NewRealVarArray( n) A.. . .A( i). . .A. size. . . 

declares A to be an “array” of n real variables, which also can be asked its “size.” 

The possible indices are the natural numbers less than n. Each call of allocate 

(except the last) declares one real variable; the last call of allocate (when i reaches 

size) applies the user procedure to the array of variables, represented by a procedure. 

In practice, an equivalent but more efficient implementation would be provided as 

the value of a constant or pre-defined identifier. 

To allow a convenient way to construct arrays with “randomly-accessible” com- 

ponents, we introduce a class of static set expressions as follows: 

C7::=+Lz+,u’ 



98 R.D. Tennent 

where v ranges over numerals (or, more generally, statistically-evaluable numerical 

expressions). If [ v].,~ is the natural number denoted by V, these forms of set 

expression are interpreted as follows: 

0 4 = {II &lt), 

(I~, dn = Ian u udn. 

Then “arrays” may be created by 

array construction: 

P:exp[nat]+ 0 Q:O 

P I[ 01 Q : exp[nat] + 0 

with interpretation 

using the following syntax: 

uplblaue = con40, UOnu, UPnd, 

where b(s) = (e(s) E [an), provided that 0 is a type for which a function cond, is 

definable; otherwise (i.e., for value types, sum types, and procedural, tagged, and 

conjunctive types constructed from these), it is necessary to use 

value-indexed array construction: 

P:val[nat]+ 8 Q: 0 

P 1 [a] Q : val[nat] + f3 

with interpretation 

( 

1, if v = I, 

up1[4Qn~~= um4 if 4bn, 
umv, otherwise. 

We can allow 

bllP,I.. hlR 

as an abbreviation for 

undefl[a,]P,I- . .I[a,]P,,_ 

For example, a multi-way conditional-selection construct may be obtained by 

regarding case E of P as an alternative syntactic form of the procedure application 

P(E). If P has the form 

the effect is as expected: the value of E is used to select the appropriate P,; if the 

value of E does not correspond to any of the numerals, the result is undefined (i.e., _I_). 



Elementary data structures in ALGOL-like languages 99 

6.4. Axioms 

In this subsection, we state axioms which are validated by the semantics given 

in the preceding subsections for the features supporting phrase-type structuring. 

The axioms appropriate to tag introduction and elimination are as follows: 

(P,LHQ).LSQ, 

(P, LHQ).l’E P.L’ 

for L’ # L. We can then derive that for all Pi and distinct Lo, 

(L,++PI,. . ., L,HP*).L,=P;. 

Wealsohavethatfor8=~r~O,~..*~~,++&,andanyP:8, 

(L,HP.L*,. . .,L,HP.L,)-P, 

and for B : exp[ boo11 and P, , P2 : L H 0, 

(if B then P, else PJ . L = if B then P, L else P2. L, 

and similarly if B : val[bool]. 

The axioms for sums of phrase types are as follows: 

#(casetag[O]L,@P)L: . .IL;HP~(. - *=let L be P in Pi, 

for e=L,@e,v.- .vL,@O, and any Z:O, 

and, for 

#(casetag[e]Z)L.LIH(‘I@L)I...I~,H(~,@~)~Z; 

V: val[bool], 

casetag[fI](if V then Z, else Z,) 

= if V then (casetag[ 01 Z,) else (casetag[ t9] Z,). 

Note that the equivalence 

L @ (if V then P, else P2) = if V then L @ P, else L @ P2 

fails, but only when [ V]u = 1. 
Finally, for array construction, 

~lb,IP,l~ . +dR 

=hL:O.if L=V, then P,, 

we have the axiom 

else if L = v,-, then P,_, 

else if L = v, then P, 

else P(L) 



100 R. D. Tennent 

where L is not free in the Pi, and 0, the type of L, is exp[nat] if possible, and otherwise 

val[nat]. 

7. Data-type structures 

Although much can be done with only phrase-type structures [50], the author 

believes that data-type structures will also be necessary in practice. Elements of 

data types are expressible and assignable to appropriately-typed variables, and it 

is straightforward to create new named variables for such values, using new[T] 

quantifiers. In this section, we consider products, sums, and arrays of data types. 

One of the main aims of our design is to ensure as much conceptual and notational 

compatibility between corresponding data-type and phrase-type structures as pos- 

sible. Unfortunately, this compatibility does not allow us to simplify the formal 

descriptions of the facilitins. 

7.1. Data-type products 

There seems to be no reason to provide conjunctions of data types other than to 

allow products, so that we extend the language of data-type expressions as follows: 

. ._ 7..--’ . .ILHT~~[T~AT~, (when ~~07~2)~ 

where n (data-type conjoinability) is the smallest reflexive and symmetric binary 

relation on data-type expressions that satisfies 

if ~=~‘implies ~Dr’then L++T~L’HT’, 

if ran, forall l~i~n then ~~(T,A...AT,,). 

The appropriate coercions are 

if TFT’ then LH~FL++T’, 

LHTA L++T’kLH(7A T’), 

?-El, 

lFL++l, 

T,A~~+T~ for i=l,2, 

if TFT,, 7~7~ then TF~, A r2. 

The nontrivial parts of the interpretation of the new data-type names are as follows: 

111 = {*} (any singleton set), 

[LIH71 A. ..AL,,H7,]= fl [[Tin, 

1srsn 

where the L; are distinct. As in [9,46], nontrivial coercions have the form 



Elementary data structures in ALGOL-like languages 101 

if {L:, . . . , LI,}G {Lo, . . . , L,} and ri t- T: whenever L: = Li then 

l,HT, A. . .Al,HT~~L:H7:A...AL:,HT:,, 

where the L; are distinct and the Li are distinct; the interpretation is 

[IL,-7, A’. .AL,HT,tL:HT~A”‘AL:,HT~n(V ,,..., V,,)=(U; ,..., &) 

where ZIP = [T, k ~$jq when L$ = Lo. 

Note that, because these coercions need not be injective, it is not possible to use a 

generic equality operator on product values; the interpretation of the equality would 

be ambiguous. 

It is now possible to declare product-valued variables by using quantifiers of the 

form new[L,++T, A* . . A L, H T,,]. Values which are assignable to such variables can 

be created by using the following notation to append components to the value of 

a product-valued phrase: 

product-value introduction: 

V:V~~[L,HT~A’.‘AL,HP,] V,:val[r;], for 1GjSrn 

(V,Li++V I,..., L:, H v,,,):Vd[LIHT, A . . . A 1,-T,, A l;-7; A ’ ’ * A L:,++Tk] 

provided the L: are distinct and L; # li for 1 sj< m, 1 s is n, and similarly for 

expressions; these rules should also be considered applicable when V:val[ 11, or 

V: exp[ 11, respectively. The interpretation is as follows: 

[(V,&V ,,.‘., L:,HV,)JU 

1 

L if[V]u=J_ or[V,JJu=I forany laj<m, 
C 

( . ..) Ui )...) vi, . . .), if [ Vl]u = (. . . , II,, . . .) and 

[ V,nU = Uj # 1 for 1 Gj S m, 

and similarly for expressions. Notice that evaluation of a construction of this form 

forces the evaluation of all of its subphrases, whereas the tag-introduction notation 

combines meanings, such as (unevaluated) expressions. We allow 

as an abbreviation for 

(nil, 6, ++ V, , . . . ,L, - V,), 

where nil : val[ l] is a constant denoting the (only) value of data type 1. 

To allow selection of a component of a product-valued phrase we provide the 

following coercion: 

Vd[L,++T, A. . ‘AL,HT,]~L,HVal[T,]A..~AL,~Val[T,], 

and similarly for expressions; then, conjunction-selection and tag elimination can 



102 R.D. Tennent 

be used on the results. In fact, we can generalize this to variables, in order to allow 

“selective updating” of product-valued variables: 

var[L,*T, A. . .~~,~7,]t~,~var[7,]~...~~,~var[~~n]. 

The interpretations are as follows: 

[val[6,-71 A. . .ALnH7,]kLIHval[7,]A ... AL,,_val[7,,]j2) 

=(.. .,&HV{,.. .) 

where vi = 
4 if v=J-, 

vi, if v = (v, , . . . , v,), 

for i = 1,2,. . . , n, and similarly for expressions and 

[var[b.-H, A * . . AL,HT,,]i-b,Hvar[Tl]~ . . . n~,++var[~,II(a,e) 

= . . . . ( b++(ai, 4,. . .), 

where e,(s) = 
L if e(s) = I, 

vi7 if e(s) = (vl, . . . , U,), 

and a,(e’) = a(e”), 

where e”(s) = 
L if e(s) = I or e’(s) = I, 

( ..., viPl, e’(s), ugtl,. . .), ife(s)=(v,,...,v,) 

and e’(s) # I, 

for i = 1,2, . . . , n. Then, a field selection of the form V. L can be used as an acceptor 

when V is a product-valued variable, so that V. L = E is equivalent to V:= (V, L - E). 

The expression component as well as the acceptor component of the variable is 

needed to define the component acceptors. 

7.2. Data-type syms 

We allow for sums of data types as follows 

T::=...IL@T~T,vT~, when T,'Vr2, 

where V (data-type disjoinability) is the smallest reflexive and symmetric binary 

relation on data-type expressions that satisfies 

if L=L’implies TVT’then L@~VJ’@T’, 

if TVT, foralllsisnthen TV(T,V...VT,,). 

The appropriate coercions are 

ifrtT’then L@TFL@T', 

L@TVL@T'k-_L@(TVT'), 

T~~T~vT~ for i=l,2, 

if T,/-T, TZt~ then 7, v TUFT. 



Elementary data structures in ALGOL-like languages 103 

There are no difficulties with least elements, and so the interpretation of data-type 

sums can be the obvious set-theoretic disjoint union. As in [9,46], nontrivial 

coercions of data-type sums have the form 

if {L ,,..., L,}&{L:,. . . ,L;} and r,k-_\ whenever 6i = L; then 

for ~~ distinct and 1: distinct; the interpretation is 

[L, @ T, v . . . vL,@T,~L:@T~V...VL:,@T~~(i,v) 

It is now possible to declare sum-valued variables by using quantifiers of the form 

new[bl@ T, v * . . v L,, @ ~~1. Values assignable to such variables can be created by 

extending the (.) notation as follows: 

sum-value introduction: 

v : val[ T] 

(l@ V):val[L@T] 

with semantics 

“‘@ “” = { (:: v), 

if v=_L 

otherwile 

where v = [ V]u, 

and similarly for L@ E when E is an expression. We can allow for discrimination 

among the possible variants for the value of a sum-valued value phrase by providing 

a coercion 

val[b, @ T, v . . ‘VL,@T,]tl,@Val[T,]V”‘VL,@Val[T,] 

whose interpretation is virtually an identity; however, a similar coercion for sum- 

valued expressions is not possible. Instead, we extend the applicability of the casetag 

construction as follows: 

sum-valued expression elimination: 

E : exp[L, @ TV v . . . v L, @ T,,] 

casetag[8]E:(l,H(val[T,]~B)~...~L,H(val[T,]~8))~8 

For 8’=eXp[LL@T,V’ . . v L, @ T,,], the interpretation is as follows: 

[casetag[O]EJu = select,,,([E]u) 

where 



104 R.D. Tennent 

select,,, : l[@] + [bl - (val[ T1] + 13) A . . . A L, - (var[ Tn] + O)Jj + [I 01 

is a family of functions defined by induction on 0, much like cond,; for example, 

se~cctO~,,,,(c)(f,, . . . ,fn)(~t = 
undefined, if e(s) = I, 

f;(v>(sL if e(s) =(i, v), 

and 

select,SCO,O~Sj(e)(f, . . . ,f,>(a E Ue%) = ~e~ecto~de)(f~, . . . XJ 

wheref~(uE[O,~)=J;(v)(a) for lsisn, 

and similarly for other types. Notice the similarity between the treatments of if and 

casetag: for “selectors” that are state-independent (e.g., of type val[bool] or a sum 

of phrase types), the “branches” can be of arbitrary phrase types; however, if the 

“selectors” are state-dependent (e.g., exp[bool] or a sum-valued expression), the 

“branches” must also be state-dependent (i.e., reducible by induction to an 

expression type or comm). In fact, the behaviour of if is essentially derivable from 

that of casetag by making the definitions 

boo1 = true @ 1 v false @ 1 

true = (true @ nil), 

false = (j&e @ nil), 

if B then P, else P2 = # (casetag[ BIB) nil. true ++ P, 1 fake ++ P2. 

A form of selective updating for sum-valued variables is also possible: 

acc[L,@71v** .v~,@7,]t~,~acc[7~]/\~,~acc[7,]; 

notice the change from sum to product. The interpretation is 

[acc[ L, @ 7, v . ..~~,@7,]~~,~acc[7,]~...~~,~acc[7,]Ila=(f,,...,f~) 

where J( Li)( e) = a( e’) 

where e’(s) =(i, e(s)) 

for 1 s is n. Then, if V is a sum-valued variable and ~~ is one of the tags, V. L, : = E 

is equivalent to V := (bi @ E). The expression part of the variable is not involved. 

A “bottom” data-type name 0 is conceivable, but would be useless: [O] would be 

the empty set. 

7.3. Data-type arrays 

We can also have data-type arrays; however, we cannot use procedures here and 

so we introduce new data-type expressions as follows: 

r::=. . .I[a]q 

where u is, as before, a statically-evaluable set-valued expression. Then, 

ubid=umbn 



Elementary data structures in ALGOL-like languages 105 

The coercions for array data types are as follows: 

if [a~=[a’D and TCT’ then [a]~t[a’]r’, 

with interpretation 

[[a]+[(T’]r’~a = a;[+7’j. 

To create values which are assignable to array-valued variables, we extend the 

(.) notation as follows: 

array-value introduction: 

provided [[a;] n [Iajl = 0 when i #j. The interpretation is 

UW~C~~IV~I~~ ~Ibnlwn~ 

1, if[[vnu=I 0r[vin24=I forany lsisn; 
= 

a, otherwise, 

where a(‘) = 1 uvinu, ifjE[[vJ 

[I vguj, if j E uain for 1 C is n, 

and similarly if V and the Vi are expressions. We can allow 

(bllv~l*~ *IbnlU 

as an abbreviation for 

(undefl[a,lV, 1. * . /[a,1 VA. 

We allow for selection on arrays of values and selective updating of array-valued 

variables by the coercions 

val[[a]7]kval[nat]+val[7], 

exp[[u]T]t-exp[nat]+exp[T], 

var[[fl]~] kexp[nat] + var[ T], 

with semantics 

if v=l or v’euaj, 

otherwise, 

and similarly for array-valued expressions, and 

[[Var[[(T]T]teXp[nat]~Var[T]%(U, e)(n)=(U,, e,) 

where e,(s) = 
i 

4 if e(s)=1 or n(s)kz[oj, 

e(s)(n(s)), otherwise, 

and a,(e’) = a(e”), 



106 R.D. Tennent 

L if e(s) = I or 

where e”(s) = n(s) = I or e’(s) = I, 

(e(s)ln(s)He’(s)), otherwise. 

Then, if A is an array-valued varia le and v is a numeral, A(v) : = E is equivalent 

to A:=(AI[v]E). 

7.4. Axioms 

We now present some axioms valid for the data-type structuring facilities we have 

described. For V: val[ 71 or V: exp:T], 

(LHV).LS v, 

#(casetag[val[5-]](bi@ V))b: . .IL,-L[. . .= V, 

([v]V)(v)= v. 

For bi distinct and V: val[ L1 H TV A . . . A L,, * T,,] or V: exp[ L, - T, A * * . A L, ++ T,,], 

(b,HV.L I,..., L,HV.L,)‘K 

For L, distinct and V: val[L, @ T, v . * . v L, @ T,,] or V: exp[L, @ T, v . . . v L, @ T,,], 

# (casetag[val[L, @ T, v . . . v L, @ TV]] V)L. 

bIf+(h@L) 

For vi distinct and V:val[[v ,,.. ., v,]T] or V:exp[[Y ,,..., v,]T], 

(MW~,)I~~ -lbnIv%)~= v. 

For v:var[...~L-~~+* .] and E :val[T] or E :exp[T], 

V.L:=E-V:=(V,L-E). 

ForA:acc[...VL@TV.. .] and E :val[~] or E : exp[T], 

A.L:= E=A:=(L@E). 

For V:var[[. . , v, . . .]T] and E : val[T] or E : exp[T], 

V(v):=E= V:=(VI[v]E). 

8. Discussion 

Products, sums, and arrays have been discussed in many linguistic frameworks; 

for example, Carelli [9] uses the coercions on products, sums, and procedures 



Elementary data structure.~ in ALGOL-like languages 107 

originally proposed in [44,46] to model inheritance properties of object-oriented 

languages in an ML-like framework, and our language will have similar inheritance 

properties. However, Cardelli does not consider imperative aspects, or conventional 

coercions, such as de-referencing, whereas both applicative and imperative aspects 

have been treated here. Furthermore, as we argued in the introductory section, the 

essential characteristics of both “pure” styles of language are preserved in the ALGOL 

eo-like framework. This advantage comes at the cost of some complexity in requiring 

two levels of types, and in the treatment of conditionals. By comparison, languages 

in other frameworks may be superficially simpler; but, it should be much easier to 

reason about programs in an ALGOL-like language because both the laws of the 

lambda calculus and Hoare-like axioms are valid. 

Of course, many issues must still be addressed before it can reasonably be claimed 

that we have a language that adequately supports both imperative and applicative 

programming. These include: recursive definitions of types, type abstraction, poly- 

morphism, jumps, and references. For example, it should be possible for a program- 

mer to define type-parameterized data types such as 

ListOf[ 71 = null @ 1 v cons @ (car H 7 A cdr H ListOf [ T]), 

phrase types such as 

LazyListOf[ 0]= null@ val[ l] v pair@ (jirstH f3 A rest - LazyListOf[ 0]), 

abstract types such as 

SruckOf[ T] with clear ++ (StuckOf[ T] + comm) 

A empty ++ (StuckOf[ T] + exp[bool]) 

A push - (exp[ T] x StuckOf[ T] + comm), 

A pop - (acc[ T] x StuckOf[ s-1 + comm), 

and procedures such as 

muplist[ T,, 3-J: (exp[ 3-,] + exp[ T2]) x exp[ ListOf[ T,]] + exp[ ListOf[ TJ]. 

There has, of course, been considerable research on these issues [27, 30, 31, 46, 48, 

49, 52, 601. It remains to be seen how well these ideas can be integrated into the 

framework developed so far. 

It would also be desirable to simplify and generalize the treatment of sum types, 

value phrases and conditionals. The value of a phrase of type exp[T] depends, 

potentially, on all of the storage state, whereas the value of a phrase of type val[T] 

can depend on none of the state. The obvious generalization is to refine the type 

system to allow the degree of state-dependence of a phrase to be expressed, with 

purely-applicative value phrases and totally-imperative expression phrases being 

the extreme points of the spectrum for expression-like phrases. If this could be 

extended to all phrase types, it might be possible to obtain simple and uniform 

semantics for conditional constructions such as if and casetag by constraining the 



108 R.D. Tennenr 

“selector” part to be no more state-dependent than the “branches”. This proposal 

seems to require a generalization of the syntactic interference control described in 

[431. 
Finally, the question of type inference for ALGOL-like languages should be studied. 

Although inference of virtually all type information, as in ML, does not seem feasible, 

it should be possible to find ways of reducing the amount of explicit type information 

necessary in some contexts. Some preliminary work along these lines for the polymor- 

phic lambda calculus has been reported in [28]. 

Acknowledgement 

I am grateful to John Reynolds for giving me access to notes on his unpublished 

work on conjunctive types, and for comments on an earlier presentation, and to 

Ellen Atack for many discussions on conjunctive types. 

References 

[l] P.W. Abrahams et al., The LISP 2 programming language and system, in: Proceedings Fall Joint 
Computer Conference (1966) 661-676. 

[2] S. Abramsky and CL. Hankin, eds., Abstract Inrerpretation ofDeclarative Languages (Ellis Horwood, 

Chichester, England, 1987). 

[3] E. Atack, Conjunctive types in Algal-like languages, M.Sc. Thesis, Queen’s University, Department 

of Computing and Information Science, Kingston, Ont. (1990). 

[4] J. Backus, Can programming be liberated from the von Neumann style? A functional style and its 

algebra of programs, Comm. ACM 21 (1978) 613-641. 

[5] D.W. Barron et al., The main features of CPL, Computer .I 6 (1963) 134-143. 

[6] F.L. Bauer et al., The Munich Project CIP, 1: The Wide Spectrum Language CIP-L, Lecture Notes 
in Computer Science 183 (Springer, Berlin, 1985). 

[7] R. Bird and P. Wadler, Introduction to Functional Programming (Prentice-Hall, London, 1988). 

[8] W.H. Burge, Recursive Programming Techniques (Addison-Wesley, Reading, MA, 1975). 

[9] L. Cardelli, A semantics of multiple inheritance, Inform. Compur. 76 (1988) 138-164. 

[lo] M. Coppo and M. Dezani, A new type assignment for A-terms, Archiu. Math. Logik 19 (1978) 

139-156. 

[ 1 I] L. Damas and R. Milner, ‘Principle type-schemes for functional programs, in: Conference Record 
9th ACM Symposium on Principles of Programming Languages (ACM, New York, 1982) 207-212. 

[12] E.W. Dijkstra, Notes on structured programming, in: O.-J. Dahl, E.W. Dijkstra and C.A.R. Hoare, 
eds., Structured Programming (Academic Press, London, 1972) l-82. 

[13] M. Felleisen, The calculi of lambda-v-CS-conversion: A syntactic theory of control and state in 

imperative higher-order programming languages, Ph.D. Dissertation, Computer Science Depart- 

ment, Indiana University, Bloomington, IN (1987). 

[14] D.P. Friedman and D.S. Wise, CONS should not evaluate its arguments, in: S. Michaelson and R. 

Milner, eds., Automata, Languages and Programming (Edinburgh University Press, Edinburgh, 

1976) 257-284. 
[15] P. Henderson and J.H. Morris, A lazy evaluator, in: Conference Record 3rd ACM Symposium on 

Principles of Programming Languages (ACM, New York, 1976) 95-103. 
[16] P. Henderson, Functional Programming, Application and Implementation (Prentice-Hall, London, 

1980). 

[17] H. Herrlich and G.E. Strecker, Category Theory (Heldermann, Berlin, 2nd ed., 1979). 



[ISI 

[I91 

PO1 

L-211 
[=I 
[231 

u41 
u51 
[261 

[271 

L’81 

[291 

[301 

r311 

[321 

[331 
[341 

[351 

1361 

[371 

[381 

[391 

[401 
1411 
[421 

[431 

r441 

Elementary data structures in ALGOL-like languages 109 

C.A.R. Hoare, Notes on data structuring, in: O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, eds., 

Structured Programming (Academic Press, London, 1972). 
C.A.R. Hoare, High-level languages, the way behind, in: D. Simpson, ed., High Level Languages, 

The Way Ahead (British Computer Society, NCC Publications, Manchester, 1973). 

C.A.R. Hoare, Hints on programming-language design, Tech. Rept. CS-74-403, Stanford University, 

Department of Computer Science, Stanford, CA (1974). 
C.A.R. Hoare, Recursive data structures, Internat. J. Comput. Inform. Sci. 4 (1975) 105-132. 

P. Hudak, Para-functional programming, Computer 19 (8) (1986) 60-71. 

M.B. Josephs, Functional programming with side effects, D. Phil. Thesis, Tech. Monograph PRG-55, 
Programming Research Group, Oxford University Computing Laboratory (1986). 

D.E. Knuth, The remaining troublespots in ALGOL 60, Comm. ACM 10 (10) (1967) 661-617. 

P.J. Landin, The next 700 programming languages, Comm. ACM 9 (3) (1966) 157-166. 

M. Lucassen, Types and effects: Towards the integration of functional and imperative programming, 

Ph.D. Thesis, Tech. Rept. MIT/LCS/TR-408, MIT Laboratory for Computer Science, Cambridge, 

MA (1987). 

N.J. McCracken, An investigation of a programming language with a polymorphic type structure, 

Ph.D. Dissertation, Syracuse University, Syracuse, NY (1979). 
N.J. McCracken, The typechecking of programs with implicit type structure, in: G. Kahn, D.B. 

MacQueen and G. Plotkin, eds., Semantics of Data Types, Lecture Notes in Computer Science 173, 

(Springer, Berlin. 1984) 301-315. 

R. Milner, A proposal for standard ML, in: Proceedings S_vmposium on LISP and Functional 

Programming (ACM, New York, (1984) 184-197. 

J.C. Mitchell and R. Harper, The essence of ML, in: Conference Record 15th ACM Symp. on 

Principles of Programming Languages (ACM, New York, 1988) 28-46. 

J.C. Mitchell and G.D. Plotkin, Abstract types have existential types, ACM Trans. Programming 

Languages Syst. 10 (3) (1988) 470-502. 

J.H. Morris, Real programming in functional languages, in: D.A. Turner, ed., Functional Program- 

ming and Its Applications (Cambridge University Press, Cambridge, 1982). 

P. Naur, ed., Revised report on the algorithmic language ALGOL 60, Comm. ACM 6 (1) (1963) l-20. 

F.J. Oles, A category-theoretic approach to the semantics of programming languages, Ph.D. Disserta- 

tion, Syracuse University, Syracuse, NY (1982). 

F.J. Oles, Type algebras, functor categories and block structure, in: M. Nivat and J.C. Reynolds, 

eds., Algebraic Methods in Semantics (Cambridge University Press, Cambridge, 1985) 543-573. 

F.J. Oles, Lambda calculi with implicit type conversions, Computer Science Research Rept. RC 

13245, IBM Research Division, T.J. Watson Research Center, Yorktorn Heights, NY (1987). 
D. Park, Some semantics for data structures, in: D. Michie, ed., Machine Intelligence 3 (Edinburgh 

University Press, Edinburgh, I968), 351-371. 

G.D. Plotkin, Types and partial functions, Lecture Notes, Computer Science Department, University 

of Edinburgh, Edinburgh (1985). 

C.G. Ponder, P.C. McGeer and A.P.C. Ng, Are applicative languages inefficient?, SIGPLAN 

Notices 23 (6) (1988) 135-139. 

G.J. Popek et al., Notes on the design of Euclid, SIGPLAN Notices 12 (3) (1977) 11-19. 

D. Prawitz, Natural Deduction: A Proof-Theoretical Study (Almquist and Wiksell, Stockholm, 1965). 

J.C. Reynolds, GEDANKEN: A simple typeless language based on the principle of completeness 
and the reference concept, Comm. ACM 13 (1970) 308-319. 

J.C. Reynolds, Syntactic control of interference, in: Conference Record 5th ACM Symposium on 

Principles of Programming Languages (ACM, New York, 1978) 39-46. 

J.C. Reynolds, Using category theory to design implicit conversions and generic operators, in: N.D. 
Jones, ed. Semantics-Directed Compiler Generation, Lecture Notes in Computer Science 94 (Springer, 

Berlin, 1980) 211-258. 

[45] J.C. Reynolds, The Crafr ofprogramming (Prentice-Hall, London, 1981). 

[46] J.C. Reynolds, The essence of Algol, in: J.W. de Bakker and J.C. van Vliet, eds., Algorithmic 

Languages (North-Holland, Amsterdam, 1981) 345-372. 
[47] J.C. Reynolds, Idealized Algol and its specification logic, in: D. Neel, ed., Tools and Notions for 

Program Construction (Cambridge University Press, Cambridge, 1982) 121-161. 



110 R. D. Tennent 

[48] J.C. Reynolds, Types, abstraction and parametric polymorphism, in: R.E.A. Mason, ed., I+rmation 

Processing 83 (North-Holland, Amsterdam, 1983) 513-523. 

[49] J.C. Reynolds, Three approaches to type structure, in: Mathematical Foundations of Sqftwarr 

Development, Lecture Notes in Computer Science 185 (Springer, Berlin, 1985) 97-138. 

[50] J.C. Reynolds, Preliminary design ofthe programming language Forsythe, Tech. Rept, CMU-CS-8% 

159, Computer Science, Carnegie-Mellon University, Pittsburgh, PA (1988). 

[51] M. Schonfinkel, Uber die Bausteine der mathematischen Logik, Math. Ann. 92 (1924) 305-316. 
[52] M.B. Smyth and G.D. Plotkin, The category-theoretic solution of recursive domain equations, SIAM 

_I. Cornput. 11 (1982) 761-783. 
[53] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory 

(MIT Press, Cambridge, MA, 1977). 

[54] C. Strachey, Fundamental concepts in programming languages, Lecture Notes, International Sum- 

mer School in Computer Programming, Copenhagen (1967). 

[55] C. Strachey, The varieties of programming language, in: Proceedings International Computing 

Symposium (1972) 222-233, also: Tech. Monograph PRG-IO, Programming Research Group, Univer- 

sity of Oxford (1973). 

[56] R.D. Tennent, Principles of Programming Languages (Prentice-Hall, London, 1981). 

[57] R.D. Tennent, Quantification in Algol-like languages, Inform. Process. Lett. 25 (1987) 133-137. 
[58] R.D. Tennent, Semantical analysis of specification logic, Inform. and Comput. (to appear). 

[59] R.D. Tennent, Denotational semantics, in: S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, eds., 

Semantics, Handbook of Logic in Computer Science II (Oxford University Press, Oxford, 1990). 

[60] R.D. Tennent and K. Tobin, Continuations in possible-world semantics, Them-et. Comput. Sci. (to 

appear). 

[61] M. Tofte, Operational semantics and polymorphic type inference, Ph.D. Thesis, Tech. Rept. 

CST-52.88, Department of Computer Science, University of Edinburgh, Edinburgh (1988). 

[62] D. van Dalen, Logic and structure (Springer, Berlin, 2nd ed., 1983) 

[63] A. van Wijngaarden et al., Revised report on the algorithmic language Algol 68, Acta It$orm. 5 

(1975) l-236. 

[64] W.W. Wadge and E.A. Ashcroft, Lucid, the Dataflow Programming Language, APIC Studies in Data 

Processing 22 (Academic Press, London, 1985). 

[65] C.P. Wadsworth, Semantics and pragmatics of the lambda calculus, D. Phil. Dissertation, University 

of Oxford (1971). 

[66] N. Wirth, On the design of programming languages, in: J.L. Rosenfeld, ed., Proceedings IFIP 

Congress 74, Stockholm (North-Holland, Amsterdam, 1974) 386-393. 


