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Abstract 

Let k be a finite extension of QP which contains the roots of unity 11. Here 11~1 = y = p”. (I # 
2. We consider an n-dimensional local field given explicitly as a power series in n - I variables 

by X, =~{{~~}}...{{t,--I}}. Th e norm residue symbol has been generalized by Vostokov for 
mixed characteristic local fields X = { {II}} {{t,,_ I }} of d. lmension n. It is a non-degenerate 
pairing given by 

K,(X) X* 
-x----- 

(K,,(X)Y' (X*)4 I’ 

where K,,(X) is the nth Milnor K-group of X = X,, and X’ is the multiplicative group of X. It is 
shown here that the Vostokov pairing on the n-dimensional local field X,, = k{{tr }} {{t. I }} 
commutes with the Vostokov pairing on the n - I dimensional local field X,_ 1 = k{ { r, }} 
{{t,,_z}}. We achieve this by constructing a map A4 which projects the roots of unity from the 
pairing on X = X,, onto the roots of unity from the pairing on X,,_ ,. 

Introduction 

The first results in higher dimensional local class field theory were obtained by 

Parshin in [4, 51. Independently Kato [l-3] obtained similar results. For X, an )I- 

dimensional local field of characteristic zero, Kato proves the existence of a homomor- 

phism 

/ : K,,(X) 4 G(X"'/X) 
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from K,(X), the nth Milnor K-group of X, into the Galois group of the maximal 

abelian extension Xa” over X. When 12 = 1, K,(X) = X* and we recover local class 

field theory. 

The norm residue symbol has been generalized to n-dimensional local fields by 

Vostokov [7, 81. There the existence of a skew-symmetric pairing on the n + l-fold 

product of an n-dimensional local field X is shown. This pairing descends to give a 

non-degenerate pairing on 

K!(X) x* 
(K,(X))4 x (x”’ 

where here X” is the multiplicative group of X and q is the order of the roots of unity 

contained in X. 

This note will concern the norm residue symbol. Let X be a higher local field in the 

sense of Parshin [6], i.e., let k be a finite extension of Q,, and k{(t)} = c, qf’ where 

the ai’s are uniformly bounded and the limit of ai as i + --ix is zero. We consider 

the n-dimensional local field given by the power series X = k{{tl}}. {{fn_l}}. The 

valuation of X = X,, is given in the following way. Observe any x E X can be explicitly 

written as a power series in ti with coefficients a E k. Let IJ~ be the standard valuation 

on k. We then define \‘A- on X as F,(x) = inf{\jk(a)ln is a coefficient in the power 

series expansion of X}. Then X is complete with respect to Vk. In the case k = Q,, 

we have \lk = lip and the residue field of X = X,, is X,, = Z/pZ{{tr}}. {{t,7-l}}. 

We aim to show the following: 

Theorem. Let X = X,, he un n-&nensional higher locul field containing the roots qj’ 

unitJ1 p of order q = p” (assume p # 2). Let K,(X,,) he the nth Milnor K-group 01 

X,. 
The diagram Helms 

W’J x,’ (,) 
- X--b 

UW,))’ cx,:1:,” 

Here i? is the tame symbol defined as i;(ccr , ~2,. , cx,,_ 1, n) = (XI, Xl,. . , cT,,_1) 

where n is the prime idea1 rt = (t+l) and the x; are units. Here i is the injection 

ofX,_r = k{{t~}}...{{tn-2)) into X, = k~~t~~~.~.~~t~~~~~ which sends k + k and 

t; + ti for 1 5 i 5 n - 2. A4 is a map on the roots of unity p which will be defined 
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later. In essence we will show for a E K,(X,)/(K,,(&))q and b E X,,*_,/(X,,*_, )+’ we 

have M(a, ib) = (&I, b) where here ( , ) is the Vostokov norm pairing. 

Remark. The main ingredient in the proof is the construction of map A4 on the qth- 

roots of unity. Before stating M explicitly we review some facts concerning the n- 

dimensional norm residue symbol. 

1. Preliminaries 

Let k be a finite extension of QP and X = k{ { tl }} { {t,,_l }} be an n-dimensional 

local field as defined above. Again, we assume k contains the roots of unity ~1 of 

order q = p”, p # 2. Let C be a generator of ,D. Vostokov [7] has constructed the 

skew-symmetric map 

with the property that c(; + X, = 1 e T(xl, ~2,. . , x,~+I ) = 1 for i # j. Here tl- is the 

trace operator of the inertia subfield of k, s is determined in X by an expansion of [ 

in X and &rt,x2,..., x,+1) is given by an expansion of the r’s in X. Here res is the 

residue of d/s, i.e., the coefficient of l/t, t2 . tll-l. 

Vostokov goes on to show r then defines a non-degenerate pairing 

satisfying the norm property, i.e., T(at, 32,. . .,@,,+I) = 1 ti {XI,. .,x,} in K,(X,) is 

a norm in &(X,,(qfi)). This property gives rise to its name as the n-dimensional 

norm residue symbol. 

Now we give an explicit description of C$ taken from Vostokov [7]. Recall Vostokov 

defines &XI, 22,. . . , G+I 1 as /(%,+I Pn+l - P(x,,)D,,...(-l)n/(~,)D, where 

such that 

[tee) = log up-A 
P ’ 
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and 

Here t,, = 8, a uniformizer of k. 

Here ~5 is the Frobenius operator of the inertia field T of X. LI acts by raising the 

t, to the pth power and acts on coefficients via the usual Frobenius. 

2. A lemma 

We now prove a lemma which is the key step in proving the theorem. 

Lemma. Let X = X, = k{{t~}}. {{tn-I}} b e un n-dimensional local field os ubotle. 

Here k is II jinite extension oj’ Q!, which contains ~1 roots of unity ~.f order q = 

p”, p # 2. Let ,u be generated by the element [, i.e., p = (5). 

The diugram belobrt 

is commututitle. 

Here “mod t,,-1” means reducing c(, E X by the generator t,,-1. p is the projection 

map which kills 1,. $? is a map defined on 4 hence on y”’ res(@s). 

We start our proof with the definition of A?. 

Definition. k is defined on 4 as follows: 

(a) For 1 5 i 5 IZ - 1 ii?o; equals the negative of the (n - 1) x (n - 1) minor 

determinant corresponding to ~~-1 (x,). By taking this minor we eliminate all terms 

involving x, and all derivatives with respect to t,l_l. hilDi is then the ith determinant 

involved in the expansion of 4 for X,,_ 1. 

(b) MD, = 0. 

(c) MD,,+, equals the (n - 1) x (n - 1) minor corresponding to ~?,_,(a,). Again we 

have eliminated all terms involving x, and all derivatives with respect to t,_t iMDnil 

is then the nth determinant involved in the expansion of 4 for X,-t. 

This definition of ,@ gives 

M$ = M(/(~x,~+I )&+I - /(zn)D,, . ..(-l)“[(a.)D~) 

= r!(~~+,)aD,,+, - P(x,,_,)@(D,-I)...(-l)“f(x~)M(D,). 
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Proof of lemma. From the definition of a we see that C(cx:)M(D;(ci,~2,. . , R,+I )) 

equals G(X;)Q(Ei, S2,. . , ii,_~, %,+l)mod(t,_l ). From this it follows that M&r,, 22,. . 

?!+I) = 4(il,C2,..., E,_i,%,+i)mod(t,_i) where ~(~1,~2,...,~,,_,.r,~+I> is the series 

defined by the Vostokov pairing on k{{ti}}. . {{t+2}}. 

Now we consider the expansion s. Here s = Zq - 1 where Z is an expansion 

of the qth root of unity contained in X,,. The expansion of Z is of the form I + 

hl9-t h~.Y2 +... where hi E Z/qZ{{t~}}...{{t,,-I}}. Reducing s mod(t,_l) reduces 

the coefficients hi mod(t,_l). This gives an expansion of Z (and hence S) inside 

X, mod(t,_ I). Hence s mod(t,,_i ) gets mapped down to the .d expansion of (4 - I in 

&I = ~{{4))...{{L2)). 0 

3. Proof of theorem 

This is straightforward from the lemma. Commutativity follows from the fact that r 

induces the pairing on 

UX,) X: 

combined with the fact that this pairing is nondegenerate. 

Example. Let X3 = Q,{ {tl }} { { tl}} where p # 2. If we consider the prime ideal P = 

(tz) thenX3 modP== Q,{{ti}} =X2. The series &xI,x?.x~,%~) onX~xX~xX;xX; 

is given by 

Applying &? to the D, gives minors corresponding to 33. Applying a to &XI, x2, x3, Q ) 

we obtain 

~&(Q>~2,r,,x4) = @4)a(D4) - L(x3)M(D3) + /(ct2)M(D2) - r(q)M(D,) 

_ 0 + /(%4) &(a1 )63(m) 1 [ + /(Xl 1 ~l(~2)1~3(~2) 

v1(24)v3(x4) 1 VI(X4)V3(94) 

If we reduce the above modP we obtain the expansion for $(5,, X?,%b) associated with 

the Vostokov pairing on X3 modP = Q,{{t,}}. 
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