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Let D be a central division algebra over a field F . We study in
this note the rigidity of the motivic decompositions of the Severi–
Brauer varieties of D , with respect to the ring of coefficients and to
the base field. We first show that if the ring of coefficient is a field,
these decompositions only depend on its characteristic. In a second
part we show that if D remains division over a field extension E/F ,
the motivic decompositions of several Severi–Brauer varieties of D
remain the same when extending the scalars to E .
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Introduction

The purpose of this note is to investigate the rigidity of the motivic decompositions of projec-
tive homogeneous varieties for projective linear groups. In the first part we provide some results
on the behaviour of those decompositions with respect to the ring of coefficients. We show that
the motivic decomposition of a projective homogeneous variety X with coefficients in Fp lifts to
the motivic decomposition of X with coefficient in any finite field of characteristic p. Together with
the previous works of Petrov, Semenov, Zainoulline [11] and Vishik, Yagita [13], this implies that to
study the motivic decomposition of a projective homogeneous variety X , it is sufficient to work with
Fp-coefficients.

Another open problem is to understand the link between the motive of the Severi–Brauer varieties
and the Schur index of the underlying central simple algebras. Let D be a (central) division algebra
over a field F and E/F a field extension. It is known that if D E = D ⊗F E does not remain a divi-
sion algebra, the motivic decompositions of the non-trivial Severi–Brauer varieties of D ramify when
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extending the scalars to E . The converse of this assertion, which asserts that the indecomposable
motives of the Severi–Brauer varieties of D E are defined over F , is however an open problem.

Conjecture 1. Let D be a division algebra over F and E/F be a field extension such that D E remains a division
algebra. The motivic decompositions with coefficients in a finite field of the Severi–Brauer varieties of D lift
over E.

Conjecture 1 predicts a deep relation between the motivic decompositions of Severi–Brauer vari-
eties and the Schur index of the underlying central simple algebra, and is already known to be true for
classical Severi–Brauer varieties by [8, Corollary 2.22]. In the second part, we give a positive answer
to Conjecture 1, if the reduced dimension of the underlying ideals is either squarefree or the product
of 4 and a squarefree odd number. The proofs of these results rely on a study of the indecomposable
direct summands lying in the motivic decompositions of those varieties, which provides a strategy to
solve Conjecture 1, namely Proposition 4.8. Our main tool to prove these rigidity results as well as
our approach of Conjecture 1 is the theory of upper motives.

1. Preliminaries

We fix a base field F , and by a variety (over F ) we mean a smooth, projective scheme over F .
We denote by Alg /F the category of commutative F -algebras and by Var/F the category of varieties
over F .

Chow groups. Let Λ be a commutative ring and X a variety over F . Our basic reference for the
notion of Chow groups is [3]. We denote by CH(X) (resp. Ch(X)) the integral Chow group of X (resp.
the Chow group of X with coefficients in Λ). If E/F is a field extension, consider the flat morphism
XE = X × Spec(E) → X . We say that an element of Ch(XE) is F -rational if it lies in the image of the
induced pullback Ch(X) → Ch(XE), and the image of a cycle α ∈ Ch(X) is denoted by αE .

Grothendieck Chow motives. Following [3], we recall briefly the construction of the category
CM(F ;Λ) of Grothendieck Chow motives with coefficients in Λ.

Notation 1.1. Let X and Y be varieties, and consider the decomposition X = ⊔n
i=1 Xi of X into irre-

ducible components. The group of correspondences of degree k between X and Y with coefficients
in Λ is defined by Corrk(X, Y ;Λ) = ⊕n

i=1 Chdim(Xi)+k(Xi × Y ).

Define the category C(F ;Λ) as follows. The objects of C(F ;Λ) are the pairs X(i), where X is a vari-
ety over F and i an integer. A morphism α : X(i) � Y ( j) is an element of the group Corri− j(X, Y ;Λ),
the composition being defined by [3, Proposition 63.2]. The category C(F ;Λ) is preadditive and its
additive completion, denoted by CR(F ;Λ), is the category of correspondences with coefficients in Λ.

The category CM(F ;Λ) of Grothendieck Chow motives with coefficients in Λ is the pseudoabelian
envelope of the category CR(F ;Λ). Its objects are pairs (X,π), where X is an object of CR(F ;Λ) and
π ∈ End(X) is a projector. Morphisms are given by

Hom
(
(X,π), (Y ,ρ)

) = ρ ◦ HomCR(F ;Λ)(X, Y ) ◦ π.

The objects of the category CM(F ;Λ) are called motives with coefficients in Λ, or simply motives
if the ring of coefficients is clear in the context. The motive of a variety X is the object M(X) =
(X,ΓidX )(0) of CM(F ;Λ), where ΓidX denotes the class of the graph of the identity in Ch(X × X). For
any integer i, we denote by Λ(i) the motive M(Spec(F ))(i). The set {Λ(i), i ∈ Z} is the set of the Tate
motives.

A morphism of commutative rings ϕ : Λ → Λ′ induces a change of coefficients functor, which is
the additive functor coeffΛ′/Λ : CM(F ;Λ) → CM(F ;Λ′) being the identity on objects and acting on
morphisms by id ⊗ ϕ .

Geometrically split motives. For any motive N , the i-th Chow group Chi(N) of N is the Λ-module
HomCM(F ;Λ)(Λ(i), N). The motive N is geometrically split, if there is a field extension E/F such that the
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motive NE is isomorphic to a finite direct sum of Tate motives. The field E is then called a splitting
field of X , and in this setting if N = M(X) is the motive of X , we use the notation X = XE , the image
of a cycle α by the pull back Ch(X) → Ch(X) is denoted by α, and the set of the F -rational cycles
in Ch(X) is denoted by Ch(X). The reduced endomorphism ring of a Tate twisted direct summand
N = (X,π)(i) of the motive of X is defined by End(N) = π ◦ Chdim(X)(X × X) ◦ π .

Definition 1.2. Assume that E/F is a splitting field of a motive N . The dimension of N is defined
by dim(N) = max{i − j,Chi(NE ) and Ch j(NE ) are not trivial}. The rank of N is the dimension of the
Λ-module Ch(NE ).

Note that the dimension and the rank of a geometrically split motive N do not depend on the
choice of the splitting field of N .

Algebraic groups of inner type. Let Fsep/F be a separable closure of F and G be a semisimple
algebraic group over F . Consider a maximal torus T of G , and Φ(G) the root system associated to the
split maximal torus T Fsep of G Fsep .

The ∗-action of the absolute Galois group Γ = Gal(Fsep/F ) is defined as follows. First, Γ acts on
Φ(G) (see [9, §20]) and for any system of simple roots Π ⊂ Φ(G), σ · Π is a system of simple roots.
Since the Weyl group W(G) acts simply transitively on the set of the simple root systems of Φ(G),
wσ (σ · Π) = Π for a uniquely determined wσ . The group Γ thus acts on Π by σ ∗ α = wσ (σ · α).
The ∗-action is the induced action of Γ on the Dynkin diagram �(G) of G , which does not depend
on the choice of Π .

Definition 1.3. A semisimple algebraic group G is of inner type if the ∗-action of Γ on �(G) is trivial.
We say otherwise that the algebraic group G is of outer type.

Projective linear groups. Let A be a central simple algebra over F and let deg(A) = √
dim(A) be

its degree. In the sequel p will be a prime and a central simple algebra is p-primary if its degree is
a power of p. The Schur index of A is the degree of a division algebra Brauer equivalent to A. The
dimension of any right ideal I of A is divisible by the degree of A and the quotient is the reduced
dimension of I . The group of automorphisms of a central simple F -algebra A is a semisimple affine
algebraic group of inner type, called the projective linear group of A, and denoted by PGL1(A).

For any 1 � k � deg(A), a typical example of projective homogeneous variety for PGL 1(A) is given
by the Severi–Brauer variety SBk(A) of right ideals in A of reduced dimension k (we refer to [9, §1] for
the basic properties of the Severi–Brauer varieties). Since the variety SBk(A) becomes isomorphic to
the Grassmann variety G(k,deg(A)) over a separable closure Fsep/F , the variety SBk(A) is of dimen-
sion k(deg(A) − k). The variety SB1(A) is called the classical Severi–Brauer variety of A.

2. Motives of projective homogeneous varieties

Assume that X is a projective homogeneous variety for a semisimple algebraic group. As shown
by [10, Theorem 2.1] the motive of the variety X is geometrically split. The extensive study of the
existence and unicity of motivic decompositions X is given in [1].

The Krull–Schmidt theorem. Let C be a pseudoabelian category and C the set of the isomorphism
classes of objects of C . The category C satisfies the Krull–Schmidt theorem if the monoid (C,⊕) is
free. By [1, Corollary 35] (see also [8, Corollary 2.6]) the Krull–Schmidt theorem holds for the motives
of projective homogeneous varieties for semisimple algebraic groups if the ring of coefficients is finite.

Upper motives. In this section we assume that Λ is a finite field and X is a projective homoge-
neous variety X for a semisimple algebraic group of inner type. The first projection p : X × X → X
induces the push forward p∗ : Chdim(X)(X × X) → Chdim(X)(X) = Λ · [X]. The multiplicity is the mor-
phism mult : End(M(X)) → Λ such that mult(α) is the element of Λ defined by p∗(α) = mult(α) · [X].
Since the multiplicity is a morphism of rings and Λ is a finite field, the multiplicity of a projector of
End(M(X)) is either equal to 0 or to 1.

The theory of upper motives has its origins in the study of the motives of quadrics achieved by
Vishik in [12], and was generalized in [8] to arbitrary projective homogeneous varieties. A direct
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summand (X,π) of the motive of a projective homogeneous variety is called upper if mult(π) = 1.
Assuming the Krull–Schmidt theorem holds for X , the upper motive of X , denoted by U (X), is the only
direct summand of X which is both upper and indecomposable. Of course, the upper motive of X is
only defined up to isomorphism. Similarly, a direct summand (X,π) of X is lower if mult(tπ) = 1, and
we may define the lower motive of X as the only indecomposable and lower direct summand of X (the
transpose tπ being the push-forward of π with respect of the exchange isomorphism X × X → X × X ).

Given an algebraic group G of inner type, we denote by XΛ
G the set of all the indecomposable

motives of all the projective G-homogeneous varieties in CM(F ;Λ). By [8, Theorem 3.5], any el-
ement of XΛ

G is isomorphic to a Tate twist of the upper motive of a projective G-homogeneous
variety. The theory of upper motives thus reduces the study of motivic decompositions of projec-
tive G-homogeneous varieties to the study of the upper motives of G . The present note shows how
this approach can be fruitful.

3. Upper motives and the ring of coefficients

Recall that a ring A is connected if the only idempotent elements in A are 0 and 1. In the sequel,
we only consider projective homogeneous varieties for semisimple algebraic groups of inner type. For
any morphism of rings Λ → Λ′ , the change of coefficients functor coeffΛ′/Λ is additive and maps non-
trivial projectors to non-trivial projectors. In particular if X is a projective homogeneous variety, the
indecomposable motives of the motivic decomposition of X in CM(F ;Λ′) are a priori ‘smaller pieces’
than the images of the indecomposable motives of X in CM(F ;Λ) under coeffΛ′/Λ . Showing that
the change of coefficient functor coeffΛ′/Λ lifts motivic decompositions, i.e. that the indecomposable
motives of X in CM(F ;Λ′) are precisely the images of the indecomposable motives of X in CM(F ;Λ)

under the functor coeffΛ′/Λ , allows to reduce the study of motivic decomposition to simpler rings of
coefficients.

Several results are achieved in this direction and motivate the main result of this section, Propo-
sition 3.5. Petrov, Semenov and Zainoulline show in [11, §2] that the functor coeffΛ′/Λ lifts motivic
decompositions if the associated morphism Λ → Λ′ is surjective with nilpotent kernel. By Vishik and
Yagita [13, Corollary 2.6], if Λ is a finite and connected ring, the change of coefficients functor to
the residue field of Λ also lifts motivic decompositions. These results show that in many situations
the study of the motivic decompositions of X is reduced to the case where the ring of coefficients
is a finite field. Proposition 3.5 asserts that for any field K of characteristic p, the change of coeffi-
cients functor coeffK/Fp lifts motivic decompositions. All these results imply that study of the motivic
decompositions of projective homogeneous varieties is reduced to the study with coefficients in Fp .

Lemma 3.1. Assume that N is a direct summand of a projective homogeneous variety X. The motive N is
indecomposable if and only if its reduced endomorphism ring is connected.

Proof. For any non-trivial projector α in End(N), we may choose a non-trivial projector β ∈ End(N)

such that β = α by [3, Corollary 92.5]. In particular the endomorphism ring of N is connected if and
only if the reduced endomorphism ring of N is connected. �

For the sake of completeness, we recast the proofs of [2]. The following particular case of
[2, Corollary 1.3] will be used to show that the image of an indecomposable direct summand of a
projective homogeneous variety under the change of coefficients coeffK/Fp with respect to a field K
of characteristic p is indecomposable.

Lemma 3.2. Assume that A is a finite and connected Fp-algebra, endowed with a ring homomorphism ϕ :
A → Fp . For any field K of characteristic p, the tensor product A ⊗Fp K is connected.

As pointed out by T.Y. Lam, Lemma 3.2 holds (with a quite similar proof) if the finiteness of the
ring A is replaced by the fact that A is Artinian. We however stick to the case where A is finite since
we are mainly interested in our applications to motives.
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Proposition 3.3. Let X be a projective homogeneous variety and let K be a field of characteristic p. The image
of the upper motive of X in CM(F ;Fp) under the change of coefficients functor coeffK/Fp is the upper motive
of X in CM(F ; K ).

Proof. Setting U (X) for the upper motive of X in CM(F ;Fp), it is sufficient to show that
coeffK/Fp (U (X)) is indecomposable. The multiplicity mult : End(U (X)) −→ Fp induces a morphism

of rings mult : End(U (X)) −→ Fp . Since End(U (X)) is finite and connected, we may apply Lemma 3.2
and End(coeffK/Fp (U (X))) is connected. The motive coeffK/Fp (U (X)) is therefore indecomposable by
Lemma 3.1. �
Corollary 3.4. Assume that X is a projective homogeneous variety. The motive of X is indecomposable in
CM(F ;Fp) if and only if the motive of X is indecomposable in CM(F ; K ), for any field K of characteristic p.

Proof. Recall that the motive of X is an indecomposable object of CM(F ;Fp) if and only if the upper
motive of X in CM(F ;Fp) is the whole motive of X . Assuming that the motive of X is indecom-
posable in CM(F ;Fp), Proposition 3.3 asserts that for any field K of characteristic p, the motive
coeffK/Fp (M(X)) (which is the motive of the variety X in CM(F ; K )) is indecomposable. The converse
is clear since the functor coeffK/Fp is additive. �
Proposition 3.5. For any finite field K of characteristic p, the functor coeffK/Fp lifts the motivic decomposi-
tions of projective homogeneous varieties.

Proof. By the Krull–Schmidt theorem it is sufficient to show that for any indecomposable motive N
of a projective G-homogeneous variety in CM(F ;Fp), coeffK/Fp (N) is indecomposable in CM(F ; K ).
By [8, Theorem 3.5] the motive N is isomorphic to a Tate twist of the upper motive U (Y ) of another
projective G-homogeneous variety. It remains to apply Proposition 3.3. �

Note that the same question can be addressed for projective homogeneous varieties of outer types
(i.e. when the underlying algebraic group is not of inner type). This problem is answered in [2].

4. Upper motives of projective linear groups and the Schur index

This section is dedicated to the proof of Conjecture 1 for the varieties SBk(D), where k is either
a squarefree number or of the form 4k′ , for a squarefree odd number k′ . Our strategy relies on a
complete description of the indecomposable summands arising in the motivic decomposition of those
Severi–Brauer varieties. This qualitative study leads to a new proof of the indecomposability [8, The-
orem 4.2] of the motive of SB2(D) in CM(F ,F2), if D is a 2-primary division algebra. Let D be a
division algebra of degree pn over a field F . In the sequel we denote by Uk,D the upper motive of
the variety SBpk (D) in CM(F ;Fp). Note that the motives Uk,D and Uk′,D are isomorphic if and only if
k = k′ .

Definition 4.1. Let D be a p-primary division algebra over F and k be an integer. We say that a
Severi–Brauer variety X of D is of type k if any indecomposable direct summand of the motive of X
in CM(F ;Fp) is either isomorphic to the upper motive of X or to a Tate twist of Ul,D , for some l � k.

The following two lemmas are direct consequences of the theory of upper motives.

Lemma 4.2. Let D be a division algebra over F of degree pn. For any 0 � k � n, the Severi–Brauer variety
SBpk (D) is of type k − 1.

Proof. By [8, Theorem 3.8], any indecomposable direct summand of SBpk (D) in CM(F ;Fp) is isomor-
phic to a Tate twist of Ul,D , for some l � k. Furthermore the dimension of the motive Uk,D is maximal
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by [8, Theorem 4.1], and in particular the motive of SBpk (D) does not contain an indecomposable di-

rect summand isomorphic to Uk,D(i), with i �= 0. Since the Chow group Ch0(SBpk (D)) is of rank one,
there is at most one indecomposable summand of the motive of SBpk (D) which is isomorphic to Uk,D ,
namely the upper motive of SBpk (D). �
Lemma 4.3. Let D be a division algebra of degree pn (with n � 1) and C be a division algebra Brauer equivalent
to D F (SB2n−1 (D)) . For any 0 � k � n − 1, the motive (Uk,D)F (SB2n−1 (D)) contains a direct summand isomorphic

to the motive Uk,C ⊕ Uk,C (pn+k−1(p − 1)).

Proof. Denote by N(i1,...,ip) the motive of the variety SBi1 (C)×· · ·×SBip (C), and by F (X) the function
field F (SB2n−1 (D)). By [6, Theorem 10.13] the motive of (SBpk (D))F (X) has a decomposition into a
direct sum of twists of the motives N(i1,...,ip) , where (i1, . . . , ip) runs over all the non-negative integers

such that i1 + · · · + ip = pk . The upper summand of this decomposition is N(pk,0,...,0) = M(SBpk (C)),

and the lower summand is N(0,...,0,pk)(pn+k−1(p−1)), which is the motive M(SBpk (C))(pn+k−1(p−1)).
Recall that the dimension of the motive (Uk,D)F (X) is the dimension of the variety SBpk (D) by

[8, Theorem 4.1]. The motive (Uk,D)F (X) is both an upper and a lower direct summand of the motive
of (SBpk (D))F (X) , and in particular by the Krull–Schmidt theorem the upper motive and the lower
motive of (SBpk (D))F (X) are both direct summands of (Uk,D)F (X) . Since the upper motive of SBpk (C)

is also lower (again, by [8, Theorem 4.1]) the upper motive of (SBpk (D))F (X) is precisely Uk,C , and its

lower motive is Uk,C (pn+k−1(p − 1)). �
Notation 4.4. Considering three integers 0 � k � n and i, we denote by μi

k,n the number of par-

titions λ = (λ1, . . . , λpn−pk ) such that pk � λ1 � · · · � λpn−pk � 0 and |λ| = ∑pn−pk

j=1 λ j is equal to

pn + pk(pn − pk) − i.

Proposition 4.5. Assume that D is a division algebra over F of degree pn. The order of the group Chi(SB1(D)×
SBpk (D)) is μi+1

k,n · p.

Proof. Let T be the tautological vector bundle on SB1(D). The product SB1(D) × SBpk (D), considered
as a SB1(D)-scheme via the first projection, is isomorphic to the Grassmann bundle Γpn−pk (T ) by
[5, Proposition 4.3]. The basis theorem [4, Proposition 14.6.5] then asserts that for any i � 0, there is
a canonical isomorphism

Chi
(
SB1(D) × SBpk (D)

) �
⊕

λ

Chi−pk(pn−pk)+|λ|
(
SB1(D)

)

where λ runs through partitions λ = (λ1, . . . , λpn−pk ) with pk � λ1 � · · · � λpn−pk � 0.

By [7, Proposition 2.1.1] the group Ch j(SB1(D)) is trivial if j > 0, hence extending the scalars to a
splitting field of E , the only rational cycles that remain on the right side of the above isomorphism
are the 0-codimensional ones. The order of Chi(SB1(D) × SBpk (D)) is thus μi+1

k,n · p. �
Corollary 4.6. Assume that D is a p-primary division F -algebra. If E/F is a field extension such that D E is a
division algebra, any E-rational cycle in Ch(SB1(D) × SBpk (D)) is F -rational.

Consider a Severi–Brauer variety X of a p-primary division algebra D , and a field extension E/F
such that D E remains a division algebra. We now show that Corollary 4.6 implies that the Tate twisted
motives of the classical Severi–Brauer variety of D E lying in the motivic decomposition of XE are
defined over F .
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Proposition 4.7. Let D be a p-primary division algebra and E/F a field extension such that D E remains
division. For any 0 < k � n, the motive (Uk,D)E does not contain a direct summand isomorphic to a Tate twist
of the motive of SB1(D E ).

Proof. Assume that M(SB1(D E ))(i) is a direct summand of (Uk,D)E , that is to say that there are
two morphisms f : M(SB1(D E ))(i) � (Uk,D)E and g : (Uk,D)E � M(SB1(D E ))(i) such that g ◦ f is the
identity. Corollary 4.6 asserts that f and g are F -rational, and thus there are two correspondences
f1 : M(SB1(D))(i) � M(SBpk (D)) and g1 : M(SBpk (D)) � M(SB1(D))(i) such that g1 = g and f1 = f .

Let π be the projector of End(M(SBpk (D))) which defines its upper motive Uk,D . The two corre-

spondences π ◦ f1 : M(SB1(D))(i) � Uk,D and g1 ◦π : Uk,D � M(SB1(D))(i) satisfy g1 ◦π ◦π ◦ f1 = id,
and in particular by [14, Lemma 1.2] an appropriate power (g1 ◦ π ◦ π ◦ f1)

ν is the identity of
M(SB1(D))(i). Setting g̃ = (g1 ◦ π ◦ π ◦ f1)

ν−1 ◦ g ◦ π and f̃ = π ◦ f , the correspondences g̃ and
f̃ would define a direct summand of Uk,D isomorphic to M(SB1(D))(i), contradicting the indecom-
posability of Uk,D . �
Proposition 4.8. Let X be a Severi–Brauer variety of a p-primary division algebra D. If XE is of type 0 for any
field extension E/F such that D E is a division algebra, Conjecture 1 holds for X.

Proof. We may assume by Proposition 3.5 that the ring of coefficients is Fp . If D E is division, the
motive of SB1(D)E is indecomposable in CM(F ;Fp) by [8, Corollary 2.22]. Since the variety XE is of
type 0, it remains to show that the upper motive of X does not contain a direct summand isomorphic
to a Tate twist of M(SB1(D E )) when extending the scalars to E . This is precisely Proposition 4.7. �

To the best of our knowledge, there is no example of a Severi–Brauer variety SBpk (D) of a
p-primary division algebra which is not of type 0. Proposition 4.8 therefore gives a new insight to
Conjecture 1, showing that it might be reduced to the following problem.

Question 1. Is any Severi–Brauer variety SBpk (D) for a p-primary division algebra of type 0?

Question 1 has a positive answer if k = 1 by Lemma 4.2, allowing us to prove several particular
cases of Conjecture 1. In the next section, we give a positive answer to Question 1 if k = p = 2, and
thus prove Conjecture 1 in some other cases.

Theorem 4.9. Conjecture 1 holds for any Severi–Brauer variety SBk(D) if either the integer k is squarefree or
if k = 4k′ , where k′ is an odd and squarefree integer.

Proof. We first deal with the case where k is squarefree. By the theory of upper motives and Propo-
sition 3.5, we may assume that D is p-primary, that the ring of coefficients is Fp and that k equal 1
or p. The result is known for SB1(D) by [8, Corollary 2.22] and for any field extension E/F such that
D E remains a division algebra, the variety SBp(D E ) is of type 0 by Lemma 4.2. Proposition 4.8 thus
shows that Conjecture 1 holds for SBp(D). The proof in the case where k is the product of 4 and a
squarefree odd integer is given at the end of the next section. �

Motivic rigidity if p = 2. We know provide the needed material to prove Conjecture 1 for the
varieties SBk(D), where k is the product of 4 and a squarefree odd integer. The main tool is the
following proposition, which asserts that for any 2-primary division algebra, the variety SB4(D) is of
type 0.

Proposition 4.10. Consider a division algebra D over F of degree 2n and an integer 0 < k � n. The Severi–
Brauer variety SB2k (D) is of type k − 2.
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Proof. Recall that the variety SB2k (D) is of type k − 1 by Lemma 4.2. To show that SB2k (D) is of type
k − 2, we show that there is no indecomposable factor isomorphic to a twist of Uk−1,D in the motivic
decomposition of M(SB2k (D)) in CM(F ;F2).

The proof goes by induction on n, the result being clear if n = 1. Assume that the result is proved
for every division algebra of degree 2n−1 and suppose that there is a division algebra D of degree 2n

and a Severi–Brauer variety SB2k (D) whose motivic decomposition contains a direct summand iso-
morphic to a Tate twist of Uk−1,D .

We denote by X the variety SB2n−1 (D), and by C the (uniquely defined up to isomorphism and
of degree 2n−1) division algebra Brauer-equivalent to D F (X) . The complete motivic decomposition of
M(SBpk (D))F (X) is a refinement of the following decomposition, which is given by [6, Theorem 10.13]
and was already used in the proof of Lemma 4.3 (here, the prime p is 2)

M
(
SB2k (D)

)
F (X)

=
⊕

i+ j=2k

(
M

(
SBi(C)

) × M
(
SB j(C)

))(
i
(
2n−1 − j

))
. (∗)

By assumption, a twist of the motive (Uk−1,D)F (X) is a direct summand of M(SB2k (D))F (X) , and in
particular by Lemma 4.3 the motive M(SB2k (D))F (X) contains a direct summand isomorphic to a twist
of Uk−1,C ⊕ Uk−1,C (2n+k−2).

By [8, Theorem 3.5], any indecomposable direct summand of N(i, j) = M(SBi(C) × SB j(C)) is iso-
morphic to a twist of Ul,C , with l � v2(gcd(i, j)). The Krull–Schmidt theorem thus implies that in the
decomposition (∗), a twist of the motive Uk−1,C must be a direct summand of either N(2k,0) , N(0,2k)

or N(2k−1,2k−1) . By induction hypothesis the variety SB2k (C) is of type k − 2, hence there is no twist
of Uk−1,C in the decomposition of N(2k,0) = N(0,2k) = M(SB2k (C)). In particular a twist of the mo-

tive Uk−1,C ⊕ Uk−1,C (2n+k−2) must be a direct summand of N(2k−1,2k−1) = M(SB2k−1 (C) × SB2k−1 (C)).
However computing the dimension of those motives, we see that dim(SB2k−1 (C) × SB2k−1 (C)) =
2n+k−1 − 22k−1 is strictly lesser than dim(Uk−1,C ⊕ Uk−1,C (2n+k−2)) = 2n+k−2 + dim(SB2k−1 (C)) =
2n+k−1 − 22k−2. The variety SB2k (D) is therefore of type k − 2. �
Corollary 4.11. (See [8, Theorem 4.2].) Assume that D is a 2-primary division algebra and K is a field of
characteristic 2. The motive of SB2(D) is an indecomposable object of CM(F ; K ).

Proof. By Proposition 3.3, it suffices to show that the motive of M(SB2(D)) is indecomposable in
CM(F ;F2). This directly follows from Proposition 4.10. �
End of the proof of Theorem 4.9. Now assume that k is the product of 4 and an odd squarefree
number. If the ring of coefficients is a field of odd characteristic p, the proof is the same as if k
was squarefree. For p = 2, we may assume that k = 4 and D is a 2-primary division algebra by
[8, Theorem 4.1]. By Proposition 4.10 for any extension E/F such that D E is division, the variety
SB4(D E ) is of type 0, thus conjecture 1 holds for SB4(D) by Proposition 4.8. �
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