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demand and decomposing potential. Despite its potential as pollutant, whey has been considered as a dairy
by-product due to its nutritional, functional and bioactive properties. The use of enzyme technology may be an
interesting strategy to convert whey into added-value products. The hydrolysis of whey proteins can generate
bioactive peptides, which are described to perform physiological effects in vivo, such as antioxidant, antimicro-
bial, antihypertensive and antidiabetic activities. Bioactive peptides derived from whey proteins have been
also associated with immunomodulatory, anticancer, opioid and hypocholesterolemic activities. This review pre-
sents a discussion on the main biological activities of peptides derived from whey proteins.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Whey corresponds to the liquid fraction remaining after milk
clotting and casein removal during cheese manufacturing. Whey is an
abundant by-product of the dairy industry, resulting from either cheese
or casein production. This by-product represents about 85-90% of milk
volume and retains approximately 55% of milk nutrients (Siso, 1996;
Smithers, 2008).

Whey contains the lactose and non-casein proteins of milk, and its
elevated content of organic matter is associated with a high biochemical
oxygen demand and potential for decomposition. Whey was considered
the most important pollutant of the dairy industry, not only due to its
high organic loading, but also due to its elevated volume (Walzen,
Dillard, & German, 2001). However, the perception of whey as a pollut-
ant has changed with the discovery of its functional and bioactive prop-
erties, being considered as an additional product of cheese manufacture
(De Boer, 2014; Smithers, 2008).

Despite its elevated nutritional value, the use of whey in natura is
limited due to its perishable characteristics and elevated dilution of its
components. In this way, several technologies have been used to benefit
this material. Thus, concentration of whey may be realized by heating
and drying (evaporation, spray-drying, freeze-drying) or by reversed
0smosis, whereas demineralization can be performed by ion exchange
resins or electrodialysis. Membrane separation technologies have been
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equally used for obtaining protein ingredients from whey (Brans,
Schréen, van der Sman, & Boom, 2004).

Alternatively, production of hydrolysates can be an interesting
approach to add value to whey. Diverse protein hydrolysates obtained
by enzymatic catalysis display biological activities, which are often asso-
ciated with bioactive peptides. The bioactive peptides are inactive while
encrypted in the sequence of original protein but can be released by
(a) hydrolysis by digestive enzymes, (b) proteolytic microorganisms,
and/or (c) the action of plant or microbial proteases (Korhonen &
Pihlanto, 2006). Bioactive peptides are the focus of several investiga-
tions mostly related to antioxidant, antihypertensive and antimicrobial
activities. Indeed, commercial proteases have been successfully tested
for the production of bioactive hydrolysates from milk, including
whey proteins. Intensive investigation of antioxidant and antihyperten-
sive peptides derived from hydrolysis of bovine caseins has been per-
formed in the last decades (Corréa et al., 2011; Daroit et al., 2012;
Hernandez-Ledesma, Garcia-Nebot, Fernandez-Tomé, Amigo, & Recio,
2014; Phelan, Aherne, FitzGerald, & O'Brien, 2009). More recently,
important amount of research including other species, such as ovine,
caprine and camel, has confirmed the importance of milk proteins,
mainly caseins, as source of bioactive peptides (Korhonen, 2009).
Although less information is available about bioactive peptides derived
from whey proteins, some important biological activities have been
associated with protein hydrolysates derived from whey. Angioten-
sin I-converting enzyme (ACE)-inhibitory activity was observed in
whey protein hydrolysates obtained from Cynara cardunculus protease
(Tavares, Contreras, Amorim, Pintado, Recio and Malcata, 2011; Tavares,
Monteiro, Possenti, Pintado, Carvalho and Malcata, 2011). Treatment of
caprine whey proteins with gastrointestinal juice resulted in hydrolysates
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showing antimicrobial activity (Almaas et al., 2011). The inhibition of
dipeptidyl peptidase IV (DPP-IV) by a whey protein hydrolysate
generated with food-grade pancreatic enzyme was also described
(Nongonierma & FitzGerald, 2013a).

Considering the great potential of whey as a source of bioactive pep-
tides, an effective knowledge on the production and characteristics of
these peptides would be very relevant. In addition, taking into account
that whey is an ingredient in several food formulations, a whey-
derived product rich in bioactive peptides would be an interesting
added-value product. The investigation on bioactive peptides generated
by enzymatic hydrolysis of whey has a great potential to generate novel
products and biotechnological processes. Therefore, this article presents
a current evaluation on the major biological activities associated with
hydrolysates of whey proteins and some specific bioactive peptides
derived from whey proteins.

2. Whey derived products

Hydrolysis of whey proteins has been employed to modify solubility,
viscosity, emulsifying and foaming properties, as well as to improve
nutritional properties. Special attention has been devoted to the utiliza-
tion of whey-derived products in sports medicine. It has been suggested
that protein hydrolysates providing mainly di- and tripeptides are superi-
or to intact (whole) proteins and free amino acids in terms of skeletal
muscle protein anabolism (Manninen, 2009). Thus, consumption of
whey-derived products may allow amino acids to be more rapidly
absorbed than whole proteins, maximizing nutrient delivery to muscle
tissues.

Proteolytic enzymes derived from several sources have been
employed in the hydrolysis of whey proteins (Siso, 1996; Zhang, Wu,
Ling, & Ly, 2013). As the microorganisms can be cultivated through con-
trolled and well established methods, microbial proteases have been
pointed as interesting biocatalysts to the production of protein hydroly-
sates in commercial scale. Indeed, commercial proteases of microbial
origin have been successfully tested for production of hydrolysates
from whey proteins (Butré, Wierenga, & Gruppen, 2012).

Hydrolysates of whey protein are considered as ideal ingredients in
the formulation of human milk substitutes due to their high nutritional
value, low bitterness and low antigenicity. Allergic reactions are often
associated with specific sequences of B-LG, the major whey protein.
Thus, bacterial proteases have been used for production of hydrolysates
with reduced allergenicity. The commercial alkaline protease form
Bacillus licheniformis Protex 6L was used to hydrolyze whey proteins
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in a continuous membrane reaction system, resulting in hydrolysates
with an estimated 99% reduction of antigenicity (Guadix, Camacho, &
Guadix, 2006). Different combinations of proteolytic enzymes, namely
trypsin, neutrase, papain and protease S, were tested on the production
of low-allergenic whey-derived products. The combination of trypsin
with either neutrase or papain was the most effective in the removal
of B-LG, producing low molecular mass peptides with reduced antigenic
properties (Shin et al., 2007). Hydrolysis of goat acid whey with pepsin
was performed in an ultrafiltration membrane reactor. A diversity of
peptides were identified in hydrolysates, mostly derived from a-LA,
due to the resistance of 3-LG towards pepsin. A broad range of peptides,
from dipeptides to large peptides containing disulfide bridges, were
detected among hydrolysis products (Bordenave, Sannier, Ricart, &
Piot, 2000). Thus, improvement of functional and bioactive properties
of acid whey can be achieved using this methodology.

Diverse proteases and procedures have been employed to generate
whey-derived products with different degrees of hydrolysis (DH) and
bioactivities. Whey proteins can be hydrolyzed by either digestive
enzymes, plant or microbial proteases, and then generate peptides
that may display a number of physiological roles (Fig. 1). Enzymatic
hydrolysis of whey protein concentrate (WPC) was performed with
pancreatin, Protamex or Alcalase 0.6L, to produce hydrolysates with
20% DH. Alcalase showed the lowest specificity for 3-LG. Considering
the protein content from WPC the pancreatin hydrolytic system was
the most efficient, since only 4.7% of non-hydrolyzed protein remained
in the final hydrolysate, against 8.0 and 9.8% for Alcalase and Protamex,
respectively (Pacheco, Amaya-Farfan, & Sgarbieri, 2002). The pancreatin
and Protamex hydrolysates showed higher ability to stimulate hepatic
glutathione synthesis when administered in mice diets (Pacheco &
Sgarbieri, 2005). Naik, Mann, Bajaj, Sangwan, and Sharma (2013) inves-
tigated the effect of enzyme/substrate (E/S) ratio, pH and T on DH, anti-
oxidant and ACE-inhibitory activities of WPC hydrolyzed by commercial
trypsin. The E/S ratio and pH had a major influence on DH. The resultant
hydrolysates were subjected to ultrafiltration, and the permeate and
retentate obtained were collected separately and evaluated for bioactiv-
ities. Majority of low molecular mass peptides contributed for higher
ACE-inhibitory and antioxidant activity from the permeate fraction
(Naik et al., 2013). Commercial pancreatin and papain were used to
hydrolyze WPC under different E/S ratios. The hydrolysates were sub-
jected to ultrafiltration or not, resulting in 16 different peptide formula-
tions. ACE-inhibitory activity was evaluated and the greatest values
were obtained with pancreatin at an E/S ratio 0.5/100, either in the pres-
ence or in the absence of ultrafiltration (Silvestre et al., 2012).
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Fig. 1. Physiological effects of bioactive peptides derived from whey proteins. Whey proteins can be hydrolyzed by gastric and/or pancreatic proteases, or by commercial enzymes of plant
or microbial origin to release encrypted bioactive peptides causing several physiological effects.
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3. Antioxidant activity

In the last years, special attention has been dedicated for searching
whey-derived peptides with radical scavenging and lipid peroxidation
inhibitory activities. Oxidation of food constituents is a key event in
food spoilage. It is well known that lipid peroxidation of food products
can cause deterioration in food quality, shorten the shelf life and
decrease the acceptability of processed foods. Lipid peroxidation can
generate free radicals that can lead to fatty acid decomposition, which
may reduce the nutritional value and safety of food by producing unde-
sirable flavors and toxic substances (Niki, Yoshida, Saito, & Noguchi,
2005). Furthermore, free radical-mediated reactions have a significant
role in many biological phenomena such as cellular damage and aging
by stimulating oxidation of lipids and formation of secondary lipid per-
oxidation products. Free radicals can also modify DNA, proteins, and
small cellular molecules and are believed to play a significant role in the
occurrence of diseases, such as cardiovascular diseases, diabetes mellitus,
neurological disorders, and even Alzheimer's disease (Stadtman, 2006).
Therefore, it is important to retard the lipid oxidation and the formation
of free radical in food containing lipids and/or fatty acids (Peng,
Kong, Xia, & Liu, 2010).

The use of synthetic antioxidants such as butylated hydroxytoluene
(BHT), butylated hydroxyanisole (BHA), propyl gallate (PG) and
tert-butylhydroquinone (TBHQ) has been restricted because of their
potential toxic effects on humans. On the other hand, bioactive peptides
are considered natural antioxidants and have attracted a great deal of
interest because of their safety and wide distribution properties
(Zhang et al., 2009).

Peptides from protein hydrolysates are reported to act as antioxi-
dants through mechanisms of inactivation of reactive oxygen species
(ROS), free radical-scavenging, inhibition of lipid peroxidation, chela-
tion of metal ions, or a combination of these mechanisms. The major
mode of action derives from the inherent amino acid composition and
sequence of a peptide (Phelan et al., 2009). Therefore, considering a pro-
tein hydrolysate as a complex mixture of peptides and amino acids, dis-
tinct antioxidant mechanisms are possibly acting concomitantly, and
this highlights the importance of evaluating the antioxidant potential
of proteins and their hydrolysates by different methods. Usually, the
assays measure the ability of a compound (the potential antioxidant)
to transfer hydrogen atoms or electrons to an oxidant. Among the anti-
oxidant capacity assays are the Trolox equivalent antioxidant capacity
(TEAC) assay utilizing the 2,2’-azino-bis-(3-ethylbenzothiazoline)-6-
sulfonic acid (ABTS) radical, and the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay, which detects both electron transfer and hydrogen
atom transfer, and the ferric ion reducing antioxidant power (FRAP)
assay, which evaluates electron transfer. These simple and inexpensive
methods are widely utilized, although commonly performed under con-
ditions that do not resemble physiological situations. Other assays, such
as the oxygen radical absorbance capacity (ORAC), are considered more
suitable for detecting the antioxidant potential of protein hydrolysates,
since they employ biologically relevant radicals (Conway, Gauthier, &
Pouliot, 2013; Huang, Ou, & Prior, 2005). Also, the utilization of food
and/or cell model systems of antioxidant capacity is a required approach
to better characterize antioxidant potentials (Jin et al., 2013; Kong,
Peng, Xiong, & Zhao, 2012).

Antioxidant peptides usually consist of 5-11 amino acids, including
hydrophobic amino acids, proline, histidine, tyrosine and/or tryptophan
(Zhou et al., 2012). The antioxidant activity of peptides generated
through in vitro hydrolysis of proteins is related with a greater number
of ionizable groups and also the exposition of hydrophobic groups
(Sarmadi & Ismail, 2010). Most of the identified antioxidant peptides
are derived from as-casein and have been shown to possess free radical
scavenging activities and to inhibit enzymatic and non-enzymatic lipid
peroxidation, most likely by being a preferred target over fatty acid
free radicals (Rival, Boeriu, & Wichers, 2001). Although antioxidant pep-
tides derived from milk proteins have been mostly associated with

bovine casein, hydrolysis of whey proteins may also result in the pro-
duction of antioxidant peptides (Phelan et al., 2009; Pihlanto, 2006).
Some authors relate that the antioxidant activity of hydrolysates of
whey proteins corresponds to fractions of low molecular mass (Pefia-
Ramos & Xiong, 2001), while others associated this activity with high
molecular mass fractions (Pefia-Ramos, Xiong, & Arteaga, 2004).
Conway et al. (2013) suggest that peptides originating from major
whey proteins (a-LA and 3-LG) were likely responsible for the antioxi-
dant activity of enzyme-hydrolyzed whey concentrate and skim milk,
because the casein content of skim milk did not improve its scavenging
activity to any significant degree.

Whey protein isolate was hydrolyzed by different proteases, namely
trypsin, pepsin, Alcalase, Promatex, Flavourzyme, or protease N. The
hydrolysate generated by Alcalase 2.4L showed the highest antioxidant
activities and seven different peptides showing strong antioxidant
activities were isolated. The antioxidant peptide WYSL displayed the
highest DPPH radical scavenging activity and superoxide radical
scavenging activity, with ICsq values of 273.63 uM and 558.42 pM,
respectively (Zhang et al., 2013). Corréa et al. (2014) used a Bacillus
P7 protease to hydrolyze sheep cheese whey, and obtained an antioxi-
dant activity of 51.3% by the 2,2’-azino-bis-(3-ethylbenzothiazoline)-
6-sulfonic acid (ABTS) method.

Many bioactive peptides are known to possess multifunctional
properties. For example, some antioxidant peptides also show ACE-
inhibitory activity (Hernandez-Ledesma, Davalos, Bartolome, & Amigo,
2005). The sequence YQEPVLGP was described as antimicrobial, ACE-
inhibitory and ABTS radical scavenging (Rizzello et al., 2005; Silva,
Pihlanto, & Malcata, 2006). The peptides TTMPLW and VMFPPQSVL
are reported as ACE-inhibitory (Hernandez-Ledesma et al., 2005; Otte,
Lenhard, Flambard, & Serensen, 2011), and also as immunomodulatory
and antimicrobial, respectively (Gobbetti, Minervini, & Rizzello, 2004;
Rizzello et al., 2005).

As shown in Table 1, 3-LG fragments LQKW f(58-61), LDTDYKK
f(95-101), and FNPTQ f(151-155) contain the amino acids Tyr (Y)
and Trp (W), which have been described by different authors as mainly
responsible for antioxidant activity of peptides, indicating their impor-
tant contribution on antioxidant properties of permeates from WPC
hydrolyzed with thermolysin. Peptide LQKW has been also reported
to exert ACE-inhibitory activity and antihypertensive effects on sponta-
neously hypertensive rats (Hernandez-Ledesma, Miguel, Amigo,
Aleixandre, & Recio, 2007).

Although the antioxidant properties of whey derived peptides have
been extensively investigated, further research about the structure-
activity relationship of peptides and synergistic and antagonistic
affects among amino acids and other antioxidant compounds should
be carried out. Further work is also required to understand the
antioxidant potential of hydrolysates generated from whey protein

Table 1
Antioxidant peptides derived from whey proteins.
Origin Enzyme Amino acid Protein Reference
treatment sequence fragment
Bovine Thermolysin INYW f(101-104) Sadatet al. (2011)
a-lA LDQW f(115-118)
Bovine Corolase PP MHIRL f(145-149) Hernandez-Ledesma
B-LG et al. (2005)
YVEEL f(42-46)
WYSLAMAASDI f(19-29)
Thermolysin FNPTQ f(151-155) Contreras et al.
(2011)
LQKW f(58-61)
LDTDYKK f(95-101)
Trypsin VAGTWY f(15-20) Power, Ferndndez
et al. (2014)
Alcalase WYSL f(19-22) Zhang et al. (2013)
Ovine Protease P7 LAFNPTQLEGQCHV f(149-162) Corréa et al. (2014)
p-LG
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isolate (WPI) in real food systems and their effect on food organolep-
tic properties.

It will also be important to identify the form in which the antioxidant
peptides can be incorporated into food matrices. Compared to pure iso-
lated peptides, crude or semi-purified peptide extracts will be more
economically feasible to be used in food products. Furthermore, crude
extracts may contain several different peptides that can act synergisti-
cally to exert antioxidative action. On the other hand, other components
like pigments and trace lipids in crude extracts may cause color and
flavor problems. Possible strategies for increasing the cellular perme-
ability of food-derived antioxidant peptides should also be investigated
(Anusha, Samaranayaka, & Li-Chan, 2011). Whey hydrolysis could also
be promising from a food technology perspective, since transition
metal ions promote lipid oxidation and their chelation helps to retard
the peroxidation and subsequently prevent food rancidity. This is
particularly relevant when considering the potential health risks associ-
ated with synthetic antioxidants (Rossini, Norefia, Cladera-Olivera, &
Brandelli, 2009). In this perspective, the antioxidant activities of pep-
tides present in whey-derived products could meet the increasing
demand for more natural antioxidants aiming human health and food
quality.

4. Antihypertensive activity

Hypertension is one of the main risk factors for cardiovascular dis-
eases (Mancia et al., 2009). Indeed, one of the most relevant and studied
bioactivity of peptides is the capacity of reducing blood pressure
(Hartmann & Meisel, 2007).

Many antihypertensive peptides are characterized by their ability to
inhibit ACE (peptidyl-dipeptide hydrolase; EC 3.4.15.1). ACE is a multi-
functional ectoenzyme that is located in different tissues and plays a key
physiological role in the renin-angiotensin, kallikrein-kinin, and
immune systems. The enzyme is responsible for the increase in blood
pressure by converting angiotensin-I to the potent vasoconstrictor,
angiotensin-II, and by degrading bradykinin, a vasodilatory peptide,
and enkephalins (Petrillo & Ondetti, 1982). In particular, ACE is an
enzyme that has a key role in the renin-angiotensin system, which in
turn regulates the arterial blood pressure and the equilibrium of water
and salt in the body. An increase in blood pressure is observed when
the enzyme catalyzes the hydrolysis of angiotensin I to angiotensin II,
a strong vasoconstrictor agent, and the degradation of bradykinin,
which has vasodilative action, to a greater extent than needed (Coates,
2003).

Food scientists and technologists have focused their studies on
bioactivities associated with casein and whey protein-derived peptides.
ACE-inhibitory peptides have received special attention due to their
potential beneficial effects in the treatment of hypertension. Several
reports on ACE-inhibitory and/or antihypertensive peptides are associ-
ated with peptides derived from bovine milk (Korhonen & Pihlanto,
2006; Phelan et al., 2009). However, in recent years, sheep and goat
whey proteins have become an important source of ACE-inhibitory
peptides (Recio, de la Fuente, Juarez, & Ramos, 2009). ACE inhibitory
peptides usually contain 2-20 amino acid residues, although active pep-
tides with up to 27 amino acids have been described (Saito, Nakamura,
Kitazawa, Kawai, & Itoh, 2000).

In their primary structure, milk proteins contain amino acid
sequences that, when released by hydrolysis or fermentation processes,
exert a significant antihypertensive activity (Erdman, Cheung, &
Schroder, 2008). Most of published research on ACE inhibitory pep-
tides is focused on their production and identification (Otte, Shalaby,
Zakora, Pripp, & El-Shabrawy, 2007; Ruiz-Giménez et al., 2012).
Peptides generated from both a-LA and B-LG are reported to possess
ACE-inhibitory properties (Contreras, Hernandez-Ledesma, Amigo,
Martin-Alvarez, & Recio, 2011; Tavares, Contreras et al., 2011; Tavares,
Monteiro et al., 2011). Particularly, it has been shown that non-
hydrolyzed p-LG has very low ACE-inhibitory activity (Mullally,

Meisel, & FitzGerald, 1997a), but hydrolysis (using pepsin, trypsin,
chymotrypsin and/or other proteases) resulted in high levels of ACE
inhibition (73-90%). Meisel, Goepfert, and Giinther (1997) reported
the presence of ACE-inhibitory peptides of low molecular mass in
several ripened cheeses.

A potent antihypertensive effect has been reported for a whey pro-
tein concentrate hydrolyzed with alcalase (Costa, Almeida, Netto, &
Gontijo, 2005). Those authors suggested a pathway involving ACE inhi-
bition as mainly responsible for this effect. Several ACE-inhibitory and
antihypertensive peptides have been isolated and characterized from
a-LA and B-LG hydrolyzed with digestive enzymes (Chobert et al.,
2005; Pihlanto-Leppadld, Koskinen, Piilola, Tupasela, & Korhonen, 2000;
Sipola et al., 2002).

Many casein-derived ACE-inhibitory peptides are described, and it
has been also demonstrated that the major whey proteins contain
encrypted peptides that inhibit ACE. The primary sequences of some
ACE-inhibitory peptides derived from o-LA and B-LG are summarized
in Table 2. Pihlanto-Leppala et al. (1999) demonstrated that the syn-
thetic peptides corresponding to the sequences 3-LG f(102-105) and
a-LA f(50-53) are bioactive peptides presenting ACE-inhibitory activity
(Table 2).

ACE inhibitory peptides are inactive within the sequence of the
parent protein, but they can be released by enzymatic hydrolysis.
Selecting the proper enzyme to hydrolyze the protein is a key factor in
obtaining peptides that exhibit greater levels of ACE inhibitory behavior.
Trypsin appears as a promising enzyme to release bioactive peptides,
since it also improves protein digestibility and decreases protein
allergenicity (Mullally et al.,, 1997a; Pihlanto-Leppadld et al.,, 2000).

Chobert et al. (2005) investigated ovine 3-LG hydrolyzed with tryp-
sin, and yoghurts made from ovine milk using different starters. Those
authors identified several peptides responsible for ACE-inhibitory
activity in this hydrolysate (Table 2). Didelot et al. (2006) used cheese
microbiota to produce several hydrolysates of acid caprine whey with
ACE-inhibitory activity and identified the a-LA fragment f(104-108)
in the most active fraction. A more recent study also used microorgan-
isms isolated from raw milk cheeses to produce several hydrolysates
of acid caprine whey with ACE-inhibitory activity, although no specific
peptides were identified (Hamme, Sannier, Piot, Didelot, & Bordenave-
Juchereau, 2009).

A R-LG hydrolysate was prepared using thermolysin, and two potent
ACE-inhibitory peptides were identified, LLF and LQKW (Hernandez-
Ledesma, Recio, Ramos, & Amigo, 2002). Subsequently, the antihyper-
tensive effect of these two peptides in spontaneously hypertensive
rats (SHR) has been reported (Hernandez-Ledesma et al., 2007).

Synthetic ACE inhibitors such as captopril, enalapril, lisinopril and
alacepril are remarkably effective at regulating blood pressure and are
used as clinical antihypertensive drugs (Ondetti, Rubin, & Cushman,
1997). However, these synthetic drugs have demonstrated diverse
side effects, such as allergic reactions, skin rashes, cough, and taste dis-
turbances (Bougatef et al., 2008). Therefore, the search for nontoxic,
safer, economical, and innovative ACE inhibitors is required for the con-
trol and treatment of high blood pressure. Therefore, various food
protein-derived bioactive peptides have been isolated and evaluated
for their antihypertensive activity aiming to avoid undesirable side
effects of synthetic antihypertensive drugs and to avoid increasing
cost of drug therapy.

5. Antimicrobial activity

Bioactive peptides presenting antimicrobial effects possess potential
applications in both food quality and safety and human health. In the
last years, considering the consumer demands for less processed and
more natural and/or functional foods, increasing efforts are focused
towards the characterization of whey protein hydrolysates and pep-
tides, postulating their use as food-grade preservatives and functional
food ingredients. Given the inexpensiveness and the voluminous
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Table 2
ACE-inhibitory peptides derived from whey proteins.
Origin Enzyme treatment Amino acid sequence Protein fragment Reference
Bovine 3-LG Pepsin and trypsin GLDIQK f(9-14) Pihlanto-Leppdld, Rokka and Korhonen (1998)
VAGTWY f(15-20)
INAEK f(71-75) Power, Fernandez et al. (2014)
IPAVFK f(78-83) Power, Ferndndez et al. (2014)
Proteinase K IPA f(78-80) Abubakar, Saito, Kitazawa, Kawai, and Itoh (1998)
Synthetic YLLF f(102-105) Mullally, Meisel, and FitzGerald (1996)
HIRL f(146-149)
Trypsin ALPMHIR f(142-148) Mullally, Meisel, and FitzGerald (1997b)
Pepsin, then trypsin and chymotrypsin CMENSA f(106-111) Pihlanto-Leppdld et al. (2000)
ALPMH f(142-146)
VLDTDYK f(94-100)
VAGTW f(15-19)
Trypsin VFK f(81-83)
LAMA f(22-25)
LDAQSAPLR f(32-40)
Protease preparation from Cynara cardunculus DAQSAPLRVY f(33-42) Tavares, Contreras et al. (2011), Tavares, Monteiro
et al. (2011)
Crude proteinases from Lactobacillus helveticus RLSFNP f(148-153) Pan and Guo (2010)
LB10
Bovine a-LA Synthetic YGLF f(50-53) Mullally et al. (1996)
Pepsin and trypsin LAHKAL f(105-110) Pihlanto-Leppild et al. (1998)
Cheese microbiota WLAHK f(104-108) Didelot et al. (2006)
Trypsin WLAHK f(104-108) Pihlanto-Leppdld et al. (2000)
VGINYWLAHK £(99-108)
Pepsin, then trypsin and chymotrypsin YGL f(50-52)
Protease preparation from Cynara cardunculus RELKDL f(10-15) Tavares, Contreras et al. (2011), Tavares, Monteiro
et al. (2011)
DKVGINY £(97-103)
KGYGGVSL f(16-23)
DKVGINYW f(97-104)
KGYGGVSLPEW f(16-26)
Ovine B-LG Thermolysin ALPMHIR f(142-148) Hernandez-Ledesma et al. (2002, 2007)
LQKW f(58-61)
Tryptic hydrolysis LLF f(103-105) Chobert et al. (2005)
ALPMHIR f(142-148)
[IVTQTMK f(1-8)

production of whey as a by-product of cheese and casein production,
whey proteins could be considered as an abundant resource to obtain
antimicrobial peptides. Among whey proteins, lactoferrin, lysozyme,
and their proteolytic fragments, are the most studied regarding
antimicrobial activity; conversely, the antimicrobial potential of
peptides encrypted within the 3-LG and «-LA sequences seems to
be less exploited (Chatterton, Smithers, Roupas, & Brodkorb, 2006;
Herndndez-Ledesma et al., 2014). This section deals with the antimi-
crobial properties of hydrolysates and peptides obtained from WPC,
WPI, and purified B-LG and a-LA, which are the most prevalent whey
proteins. Hydrolysis is usually carried out with commercial proteases
such as trypsin, chymotrypsin and pepsin. The antimicrobial potential
of whey protein hydrolysates and peptides is mainly assessed through
the in vitro effects on microbial growth. Following peptide identifica-
tion, sequences are synthesized and tested commonly against bacterial
strains to confirm the antimicrobial activity (Table 3).

Hydrolysates of whey proteins from camel colostrum, obtained
through the action of pepsin and pancreatin as a simulation of gastroin-
testinal digestion, were also evaluated for antibacterial activities (Jrad
et al., 2014). Both non-hydrolyzed and hydrolyzed whey proteins
were inhibitory to the growth of Escherichia coli XL1 blue and Listeria
innocua LRGIAO1. Particularly, non-hydrolyzed proteins (at 40 g/L)
inhibited E. coli and L. innocua growth by 22% and 16%, and the hydroly-
sates (at 10 g/L) displayed a growth inhibition of 9% and 11%, respec-
tively, indicating that the natural antimicrobial activity of camel
colostral whey proteins (such as lactoferrin) were not affected and/or
that antibacterial peptides were released from whey proteins (Jrad
et al., 2014). Camel milk whey protein displayed a greater effect on
reducing the specific growth rate of E. coli Dhla (16.4%) than bovine
whey protein (4.5%) when tested at 0.5 g/L, reflecting the higher con-
tents of antimicrobial factors in the former. Treatment of these protein

concentrates with proteinase K resulted in 2.9- and 4-fold increases in
antibacterial activities of whole hydrolysates obtained from camel and
bovine whey proteins, respectively. Hydrolysis with trypsin, chymo-
trypsin and thermolysin also showed a trend of increased antimicrobial
potential when compared to non-hydrolyzed whey proteins (Salami
et al,, 2010). Ultrafiltration fractionation of these hydrolysates indicated
that permeates of 3-kDa membrane were the most active against E. coli.
Thus, considering the distinct antibacterial profiles of different whey
protein hydrolysates and their ultrafiltration fractions, it is suggested
that the protein substrate and the protease employed for hydrolysis
affect the generation of antimicrobial peptides (Salami et al., 2010).
The antimicrobial activity against L. monocytogenes of the <10-kDa
fraction of bovine WPI hydrolysates was obtained after 45-90 min of
pepsin hydrolysis, although E. coli was not affected and no bacterial in-
hibition was demonstrated for both strains by trypsin and chymotrypsin
hydrolysates. Fractionation of the <10-kDa peptic digest through
reversed-phase chromatography yielded five fractions that were differ-
entially inhibitory towards L. innocua and E. coli (Théolier, Hammami,
Labelle, Fliss, & Jean, 2013). Hydrolysis of bovine o-LA with
trypsin and chymotrypsin yielded antibacterial peptides (Table 3);
whereas peptides derived from pepsin hydrolysis have not demonstrat-
ed such potential (Pellegrini, Thomas, Bramaz, Hunziker, & von
Fellenberg, 1999). From trypsin hydrolysis, EQLTK (LDT1) and
GYGGVSLPEWVCTTF ALCSEK (LDT2) were identified, and the latter
fragment is composed of two polypeptide chains linked by a disulfide
bridge. Chymotrypsin hydrolysis of a-LA resulted in a different antimi-
crobial fragment, CKDDQNPH ISCDKF (LDC), also linked by a disulfide
bridge. These three a-LA fragments were synthesized and reported to
be mostly active against the Gram-positive bacteria tested, especially
Bacillus subtilis. Interestingly, although EQLTK inhibited Staphylococcus
epidermidis and Staphylococcus lentus, no inhibition was observed against
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Table 3
Antimicrobial peptides derived from [3-lactoglobulin and a-lactalbumin.
Origin  Enzyme treatment Peptide sequence?® Fragment from MW Net charge Antimicrobial activity Reference
original protein (kDa)®> (pH 7)°
Bovine Commercial preparation IDALNENK f(84-91) 0.91 —1 Mainly Gram-positive bacteria Demers-Mathieu
B-LG from bovine pancreas (S. aureus and L. monocytogenes) et al. (2013a)
(trypsin + chymotrypsin) TPEVDDEALEK f(125-135) 1.24 —4
Porcine pepsin KVAGT f(14-18) 0.47 1 Mainly Gram-positive bacteria Théolier et al.
(Listeria ivanovii) (2013)
VRT f(123-125) 0.37 1
IRL f(147-149) 0.40 1
PEGDL [or KVGIN from f(50-54) [or 0.53 —2[or1]  Mainly Gram-negative bacteria
a-lactalbumin] f(117-121)] (E. coli)
LPMH f(143-146) 0.50 0.1 Weak activity against
Gram-positive (Listeria ivanovii)
and Gram-negative (E. coli) bacteria
EKF £(134-136) 042 0
Bovine trypsin VAGTWY f(15-20) 0.70 0 Only Gram-positive bacteria Pellegrini et al.
(2001)
AASDISLLDAQSAPLR f(25-40) 1.63 —1
IPAVFK f(78-83) 0.67 1
VLVLDTDYK f(92-100) 1.06 -1
Caprine Human gastric juice + IIVTQTMK f(1-8) 0.93 1 Weak activity against Almaas et al.
B-LG  duodenal juice Gram-negative bacteria (E. coli) (2011)
GLDIQKVAGT f(9-18) 1.00 0
SLAMAASDISLL f(21-32) 1.19 -1
DAQSAPL f(33-39) 0.70 -1
VEELKPTPEGNLE f(43-55) 1.45 -3
[TAEKTKIPAVF f(71-82) 133 1
VLVLDTDYK f(92-100) 1.06 —1
TPEVDKEALE f(125-134) 1.13 -3
ALKALPMHI f(139-147) 0.99 1.1
LAFNPTQLEGQ f(149-159) 1.21 -1
Bovine  Porcine trypsin EQLTK f(1-5) 0.62 0 Mainly Gram-positive bacteria Pellegrini et al.
a-LA (1999)
GYGGVSLPEWVCTTF/ALCSEK  f(17-31)S-S(109-114) 2.25 —1.1
Bovine chymotrypsin CKDDQNPH/ISCDKF f(61-68)S-S(75-80) 1.65 -1

2 Amino acid sequence presented as a one-letter code.

b As calculated using the ‘Peptide Property Calculator’, available at: http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp.

Staphylococcus aureus. In a subsequent work, Pellegrini, Dettling,
Thomas, and Hunziker (2001) indicated that bovine p-LG hydrolysis by
trypsin released four antibacterial peptides (Table 3). Synthesis and eval-
uation of their activity range indicated that they were only active against
Gram-positive bacteria, mainly B. subtilis. None of these peptides were
shown to inhibit the fungus Candida albicans (Pellegrini, Dettling et al.,
2001, Pellegrini, Thomas et al., 1999). In fact, determination of the anti-
fungal activity of peptides released from the major whey proteins
seems to be less exploited.

Bovine B-LG and o-LA were treated with trypsin, chymotrypsin,
pepsin or pancreatin, and the resulting hydrolysates were shown
to possess antimicrobial activity, as evaluated by the stimulation of
autolytic systems of 19 bacterial and 5 fungal strains (Biziulevicius,
Kislukhina, Kazlauskaite, & Zukaite, 2006). Pihlanto-Leppadld et al.
(1999) reported the bacteriostatic activity of a-LA hydrolysates ob-
tained with pepsin or trypsin, and that of 3-LG hydrolysates obtained
with alcalase, pepsin or trypsin, against a genetically modified
luminous E. coli JM103 grown at optimal conditions for 6 h. Ultrafil-
tration of pepsin plus trypsin hydrolysates of a-LA and -LG suggested
that peptides within the <1 kDa fraction were the most effective in
inhibiting this bacterium. Additionally, this investigation demonstrated
that hydrolysates obtained with different enzymes affected bacterial
growth in opposing ways, with some hydrolysates increasing bacterial
activity and growth when compared to controls.

The sequential hydrolysis of goat milk WPC with human gastric
juice (HGJ) and human duodenal juice (HDJ) was studied by Almaas,
Berner, Holm, Langsrud, and Vegarud (2008), Almaas, Holm, Langsrud,
Flengsrud, and Vegarud (2006) and Almaas et al. (2011) aiming to
mimic human digestion. After this treatment, the major part of a-LA

and B-LG remained intact. Obtained hydrolysates displayed a 50% inhi-
bition on E. coli HMG INFO1 growth, and no significant differences were
showed in comparison to native WPC and WPC hydrolyzed sequentially
with pepsin and trypsin plus chymotrypsin, even though these com-
mercial enzymes resulted in a more extensive hydrolysis of whey pro-
teins (particularly a-LA) and different peptide profiles (Almaas et al.,
2006). E. coli K12 was significantly inhibited by WPC hydrolyates after
10 h of growth, particularly those obtained by HG] + HDJ (27% inhibi-
tion), and the major peptides appeared to have a molecular mass of
>8 kDa (Almaas et al., 2011). WPC hydrolysis with HG]J resulted in sig-
nificant inhibition of Bacillus cereus RT INFO1 growth when compared
to native WPC and hydrolysates obtained by HG] + HDJ treatment
(Almaas et al., 2006). In a subsequent study, however, WPC hydrolyzed
by HGJ + HDJ displayed 44% inhibition of the same strain, when com-
pared to only 2% inhibition by HGJ hydrolysates, after 10 h of active
growth (Almaas et al., 2011). HGJ + HDJ hydrolysates of WPC showed
to be strongly inhibitory against Listeria monocytogenes (Almaas et al.,
2008). However, slight inhibition was reported against S. aureus ATCC
25923, and no inhibition was observed towards Lactobacillus rhamnosus
GG and Streptococcus mutans LT11 (Almaas et al.,, 2006).

Regarding antiviral activity, Oevermann, Engels, Thomas, and
Pellegrini (2003) reported that o-LA and 3-LG (and also other proteins),
chemically modified by 3-hydroxyphthalic anhydride (3-HP), resulted in
compounds with activity against human herpes simplex virus type 1
(HSV-1). Hydrolysis of native a-LA and 3-LG by pepsin, chymotrypsin
or trypsin, followed by fractionation through reversed-phase chromatog-
raphy, revealed diverse peptide pools that demonstrated antiviral activity.
Unfortunately, most of the peptide pools were associated to some degree
with cytotoxicity towards Vero cells (Oevermann et al., 2003).
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The mode of action of antimicrobial peptides derived from o-LA and
B-LG are still a matter of research. It seems that the initial step in bacte-
rial killing involves the attachment/adsorption of the peptide to bac-
terial membranes, which might imply the participation of electrostatic
forces. Following such interaction, the amphipathic character might
also play an important role aiming the insertion of the hydrophobic
peptide region into the nonpolar membrane core. In this context,
diverse mechanisms could lead to the formation of transient membrane
pores affecting permeability and/or energy generation processes, or
result in the breakdown of the plasma membrane. Although intracellu-
lar structures and processes could be targeted by the peptides (such as
DNA and protein synthesis, enzyme activity, among others), the plasma
membrane needs to be affected to allow the incursion of such peptides
into the cytoplasm, as reviewed by Benkerroum (2010) and Akalin
(2014).

As presented in Table 3, most of the antimicrobial peptides identified
so far from the major whey proteins possess a negative net charge at
neutrality. These peptides usually display less activity against Gram-
negative bacteria, which could be the result of repulsion between the
peptide and the negatively charged lipopolysaccharides on the outer
membrane of these bacteria (Pellegrini et al., 1999). Demers-Mathieu
et al. (2013a) indicated that antimicrobial activity is related to nega-
tively charged peptides with >8 amino acid residues; however, a pos-
itively charged peptide (SAPLRVY; B-LG f(36-42)) showed diminished
antimicrobial activity towards both Gram-negative and Gram-positive
bacteria. Similarly, the peptide IPAVFK (3-LG f(78-83)), which pos-
sesses cationic and hydrophobic characters, was only effective against
Gram-positive bacteria (Pellegrini et al., 2001). However, Pellegrini
et al. (2001) modified the sequence of a B-LG tryptic fragment,
VLVLDTDYK (f(92-100); net charge: — 1), that was only inhibitory
to Gram-positive bacteria, to yield the peptide VLVLDTRYKK (net
charge: +2), that displayed a decreased activity against B. subtilis
but was able to inhibit E. coli and Bordetella bonchiseptica, suggesting
that a cationic character could be important for peptides to exert
activity against Gram-negative bacteria. Almaas et al. (2011) identified
43 -LG peptides derived from the hydrolysis of goat milk WPC by
HGJ + HD]J. Of those, 10 were synthesized, showing distinct features
of size and net charge (as presented in Table 3), and none displayed an-
timicrobial activity against B. cereus and L. monocytogenes, although all
were shown to inhibit E. coli K12 growth by 0.7-12% (Almaas et al.,
2011).

Théolier et al. (2013) observed the antimicrobial activity of the
<10-kDa fraction of bovine WPI hydrolysates obtained after 45-90 min
of pepsin hydrolysis against L. innocua, although E. coli was not affected
and no bacterial inhibition was demonstrated for both strains by trypsin
and chymotrypsin hydrolysates. Fractionation of the <10-kDa peptic
digest through reversed-phase chromatography yielded five frac-
tions that were differentially inhibitory towards L. innocua and
E. coli. Peptide identification from these fractions yielded six sequences
with <1 kDa presenting different characters of charge at neutral pH, and
cationic peptides appeared to be mostly active against Gram-positive
bacteria (as compiled in Table 3). Ultrafiltered (10-kDa cutoff) bovine
WPI hydrolysates obtained with trypsin displayed antimicrobial activity
against E. coli, S. aureus and Listeria spp. (Demers-Mathieu et al., 2013a).
This hydrolysate was further processed by nanofiltration through a
polyamide anionic membrane (2.5-kDa cutoff), and the retentate frac-
tion was demonstrated to possess a higher antimicrobial potential
than the filtrate fraction. Characterization and identification of peptides
in these fractions indicated that antibacterial activity might be related
to negatively charged peptides with >8 amino acid residues. Two of
the negatively charged peptides identified from the hydrolysates were
synthesized, namely IDALNENK and TPEVDDEALEK from R-LG, and
their antibacterial effect against Gram-positive and Gram-negative bac-
teria was much higher than that showed by a 3-LG cationic peptide
(SAPLRVY). Additionally, it was demonstrated that the negatively
charged peptides were mostly active towards Gram-positive bacteria,

and that a higher negative charge resulted in a more pronounced inhi-
bition of Gram-positive bacteria (Demers-Mathieu et al., 2013a).

As reported by Pellegrini et al. (2001), increased hydrophobicity
of an «-LA fragment (GYGGVSLPEWVCTTF ALCSEK; f(17-31)S-
S(109-114)), obtained by replacing Leu by Ile (resulting in the sequence
GYGGVSIPEWVCTTF ALCSEK), decreased its antimicrobial activity,
indicating that hydrophobicity alone is not a critical determinant for
the antibacterial effect of this fragment. In fact, attempts to explain the
antimicrobial activity by analyses of single peptide features are, in the
majority of cases, unfruitful. Considering the diversity of antimicrobial
peptides from a-LA and R-LG, it is difficult to ascertain which factor is
the most important for observed activities. Probably, the antimicrobial
potential of the identified peptides is the result of multiple features,
such as the amino acid sequence, size and composition, secondary
structure (particularly helicity), net charge, isoelectric point, charge
distribution, and amphipathicity, which could contribute differentially
to the inhibitory effects observed towards bacteria (Akalin, 2014;
Benkerroum, 2010; Demers-Mathieu et al., 2013a). From a technologi-
cal perspective, both the protein substrate and enzyme specificity, by
acting on different peptide bonds in the protein substrate and resulting
in distinct peptides, play a significant role on the antibacterial profile of
hydrolysates.

El-Zahar et al. (2004) demonstrated that peptic hydrolysates of
ovine a-LA and 3-LG inhibited E. coli HB101, E. coli Cip812, B. subtilis
Cip5265 and S. aureus 9973. However, no antimicrobial activity was ob-
served towards Salmonella enterica Cip5858, L. innocua R1007 and
S. mutans Cip103220T. Results from reversed-phase chromatography
of B-LG hydrolysates indicated that the presence of hydrophilic and hy-
drophobic peptides was required for observation of antimicrobial
effects.

Whey protein hydrolysates and peptides possessing antimicrobial
activities are postulated to act as natural food biopreservatives. Despite
the demonstration that antimicrobial peptides could be produced from
whey proteins by generally regarded as safe (GRAS) enzymes, much
effort is needed to approach this topic in a more practical manner. How-
ever, the few available results are promising. For instance, incorporation
of an anionic peptide-enriched extract, obtained from nanofiltration of a
tryptic WPI hydrolysate (Demers-Mathieu et al., 2013a), was demon-
strated to inhibit the growth of L. monocytogenes in reconstituted Ched-
dar cheese, an approach that might contribute to food safety within the
hurdle technology concept (Demers-Mathieu et al., 2013b). Neverthe-
less, little is still known about the suitability and efficacy of their incor-
poration into food products (or even in model food systems), including
a potential allergenic effect of the peptides, particularly those released
from B-LG (Benkerroum, 2010). Therefore, these seem to be major
research challenges aiming to establish the feasibility of the application
of antimicrobial peptides derived from whey proteins in food tech-
nology and also in human health.

6. Antidiabetic activity

Type 2 diabetes is a metabolic disorder characterized by impaired in-
sulin secretion by 3 cells and insulin resistance in tissues, a condition
that is associated with the development of several complications,
including hypertension and cardiovascular disease. Considering the
prevalence of type 2 diabetes (estimated to affect 370 million people)
and its increasing trend, different strategies are developed to properly
treat hyperglycemia (Kahn, Cooper, & Del Prato, 2014).

It is reported that oral administration of whey proteins and their
hydrolysates positively affects blood glucose control and insulinotropic
responses in humans (Jakubowicz & Froy, 2013). Similar effects are de-
scribed in animal models of diabetes and BRIN-BD11 pancreatic {3 cells
(Gaudel et al., 2011). Nongonierma et al. (2013) observed that whey
protein hydrolysates enriched in free amino acids and hydrophilic pep-
tides could have been responsible for the increased insulinotropic
response of BRIN-BD11 cells. Although not completely understood, the
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effects of whey proteins and their hydrolysates on glycemia appear to
be mediated, in vivo, by the release or the presence of bioactive peptides
and amino acids from whey proteins that could stimulate the secretion
of gut hormones, and also act as dipeptidyl peptidase IV (DPP IV) inhib-
itors (Jakubowicz & Froy, 2013).

6.1. Inhibition of dipeptidyl peptidase IV (DPP IV)

Glucagon-like peptide 1 (GLP-1) and the glucose-dependent
insulinotropic polypeptide (GIP) are hormones released from the gas-
trointestinal tract upon food ingestion, increasing insulin secretion by
{3 cells. This characterizes the incretin response, which contributes for
up to 70% of insulin release in healthy subjects. In type 2 diabetes,
although the incretin effect is greatly depressed, the action of GLP-1
seems to be preserved; however, both hormones are substrates of DPP
IV, a ubiquitous enzyme found to be associated with cell surfaces and
as a circulating form. Since plasma levels of GLP-1 and GIP decrease rap-
idly because of DPP IV activity, DPP IV inhibitors could increase the half-
life of active GLP-1, potentiating the insulinotropic effect and glycemic
control (Power, Nongonierma, Jakeman, & FitzGerald, 2014).

Diverse proteins are considered as precursors of DPP [V-inhibitory
peptides (Power, Nongonierma et al., 2014). In silico approaches
revealed several peptides encrypted within the amino acid sequences
of dietary proteins that could act as DPP IV inhibitors (Lacroix &
Li-Chan, 2012a; Nongonierma & FitzGerald, 2013b, 2014), including
bovine, ovine and caprine whey proteins (Tulipano, Cocchi, & Caroli,
2012). Treatment of whey proteins by proteases is thus investigated to
generate hydrolysates able to inhibit DPP IV activity. Such approach rep-
resents a valuable strategy from both basic and applied perspectives,
expanding our knowledge on DPP IV-inhibitory peptides (Table 4),
also suggesting that hydrolysates and peptides might be useful in the
management of type 2 diabetes.

Lacroix and Li-Chan (2012b) performed the in vitro simulated gas-
trointestinal digestion of sodium caseinate, WPI, milk protein concen-
trate, and skim milk powder using a pepsin-pancreatin system, and
evaluated the DPP IV inhibitory activity of the hydrolysates. WPI hydro-
lysates, obtained after 60 min of pepsin treatment, displayed the higher
inhibition of DPP IV (ICsq of 0.075 mg/mL), and further hydrolysis with
pancreatin decreased the DPP IV inhibitory potential. Other 11 commer-
cial proteases were also employed to hydrolyze WPI (60 min treatment)
and, although peptic hydrolysates remained as the best DPP IV inhibitor
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(78% of DPP IV inhibition at 0.375 mg/mL), hydrolysates obtained with
thermolysin and Umamizyme K also showed high DPP IV inhibitory
activity (63 and 61%, respectively, at 0.475 mg/mL). Therefore, protease
specificity affects the DPP IV inhibitory activity of the resulting hydroly-
sates. Sequential ultrafiltration of WPI hydrolysates was demonstrated
to increase the DPP IV-inhibitory activity of hydrolysates obtained
with pepsin (1-3 kDa), thermolysin (<1 kDa) and Umamizyme K
(1-3 kDa), indicating that smaller peptides were not the main contrib-
utors for DPP IV inhibitory activity in all cases (Lacroix & Li-Chan,
2012b). Hydrolysates of bovine WPC and 3-LG, obtained with a prote-
ase preparation from Cucurbita ficifolia, were ultrafiltered and further
fractionated by reversed-phase high performance liquid chromatogra-
phy (RP-HPLC). Fractions of <3 kDa tended to display higher DPP IV in-
hibitory activities, especially those from WPC hydrolysates (Babij et al.,
2014).

Hydrolysis of whey protein by commercial gastro-intestinal prep-
arations resulted in hydrolysates able to competitively inhibit DPP IV
activity, with ICsg values in the range of 0.99-1.43 mg/mL, also dem-
onstrating superoxide radical scavenging activity (Nongonierma &
FitzGerald, 2013a,c). Treatment of the hydrolysates with DPP IV,
followed by evaluation of DPP IV inhibition, caused no significant ef-
fect on the ICsq value (Nongonierma & FitzGerald, 2014). Also, simu-
lated gastrointestinal digestion of the whey protein hydrolysate
increased its DPP IV inhibitory potential (ICso = 1.02 mg/mL)
(Nongonierma & FitzGerald, 2013a). Fractionation of whey protein
hydrolysate (ICso of 1.33 mg/mL) obtained with Corolase PP by ultra-
filtration through 5 and 2 kDa cutoff membranes resulted in enrichment
of DPP IV inhibitory peptides (ICso of 0.48 mg/mL); also, fractionation
through a solid-phase extraction cartridge indicated that the hydro-
philic portion displayed higher DPP IV inhibition (ICso of 1.11 mg/mL)
(Nongonierma & FitzGerald, 2013a).

Tryptic hydrolysates of bovine 3-LG were reported to decrease blood
glucose level in mice when compared to controls after an oral glucose
tolerance test. This hydrolysate was able to inhibit DPP IV in vitro (ICsq
of 210 uM), and the peptide VAGTWY was suggested to be the major
compound responsible for this effect, displaying an ICso of 174 uM
(Uchida, Ohshiba, & Mogami, 2011). TPCK-trypsin was employed to
cleave bovine B-LG, and the resulting hydrolysate inhibited DPP IV
with an ICsq value of 1.6 mg/mL, also demonstrating antioxidant and
ACE-inhibitory activities (Power, Fernandez et al., 2014; Tables 1 and
2). Diafiltration permeates of 5 and 2 kDa membranes displayed

Table 4
Whey protein-derived peptides with dipeptidyl peptidase IV (DPP IV)-inhibitory activity.
Origin Enzyme Peptide sequence®  Fragment from MW  Netcharge Isoelectric ICso Mode of Reference
treatment original protein  (kDa) (pH 7)¢ point (uM)  inhibition?
Bovine R-lactoglobulin  In silico IPAP f(78-80) 0.30° 0 6.01¢ 49 Competitive Tulipano et al. (2011)
Trypsin  VAGTWY f(15-20) 0.70 0 5.93¢ 174  nd. Uchida et al. (2011)
749 Power, Fernandez et al. (2014)
IPAVF 78-82) 0.54 0 6.01¢ 447 nd. Silveira et al. (2013)
IPAVFK 78-83) 0.67¢ 1 10.10° 1491 nd. Power, Fernandez et al. (2014)
143.0 Silveira et al. (2013)
TPEVDDEALEK f(125-135) 124 —4 3.50°¢ 578.7 n.d. Power, Fernandez et al. (2014)
3195 Silveira et al. (2013)
VLVLDTDYK f(92-100) 1.06° -1 3.88¢ 4244 nd. Silveira et al. (2013)
Pepsin LKPTPEGDL f(46-54) 0.97 —1 4,07 45 Un-competitive Lacroix and Li-Chan (2014)
LKPTPEGDLEIL f(46-57) 132 -2 3.83 57 Un-competitive
IPAVFKIDA f(78-86) 0.97 0 5.84 191 Competitive
Bovine a-lactalbumin  Pepsin WLAHKAL f(104-110) 0.83 1.1 8.76 286 Non-competitive  Lacroix and Li-Chan (2014)
WLAHKALCSEKLDQ  f(104-117) 1.64 0 6.74 141 Un-competitive
LAHKALCSEKL f(105-115) 1.21 1 8.21 165 Competitive
LCSEKLDQ f(110-117) 0.93 -1 4.37 186 Non-competitive
TKCEVFRE f(4-11) 1.01 0 5.81 166 Un-competitive
IVQNNDSTEYGLF f(41-53) 1.50 -2 3.67 337 Non-competitive
ILDKVGINY f(95-103) 1.03 0 5.83 263 Competitive

2 Amino acid sequence presented as a one-letter code.
b Peptide synthesized following in silico digestion of 3-LG.

¢ As calculated using the ‘Peptide Property Calculator’, available at: http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp.

9 n.d.: not determined
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increased inhibition of DPP IV, with ICsq values of 0.58 and 0.53 mg/mL,
respectively, although diafiltration retentates had no effect on DPP IV,
indicating that low molecular mass peptides appeared to be responsible
for the observed bioactivity. From this hydrolysate, Power, Fernandez
etal. (2014) also identified VAGTWY as the most potent DPP IV inhibitor
(ICsp of 74.9 uM), and the DPP IV inhibitory activity of IPAVFK and
TPEVDDEALEK was demonstrated (Table 4). Interestingly, VAGTWY
seems to be a multifunctional bioactive peptide, since it also displayed
significant antioxidant and ACE-inhibitory activities. Also, VAGTWY,
IPAVFK, and TPEVDDEALEK were previously reported to possess antimi-
crobial properties against Gram-positive bacteria (Table 3). A hydroly-
sate of a bovine WPC obtained with trypsin was reported to inhibit
DPP IV activity, with an ICsq value of 1.51 mg/mL (Silveira, Martinez-
Maqueda, Recio, & Hernandez-Ledesma, 2013). Sixteen 3-LG peptides
were identified from this hydrolysate and, from the six peptides synthe-
sized, IPAVF and IPAVFK displayed higher DPP IV inhibition (Silveira
et al,, 2013; Table 4). Additionally, VLVLDTDYK (from [3-LG) was previ-
ously demonstrated to possess antimicrobial action (Table 3).

The inhibition of DPP IV by various whey proteins hydrolyzed by
pepsin for 60 min was reported by Lacroix and Li-Chan (2013). Hydro-
lysates derived from a-LA presented higher inhibition (ICso of 0.036
mg/mL), whereas WPI, B-LG, and lactoferrin displayed higher ICsq
values. After sequential fractionation of the peptic WPI hydrolysates
by cation-exchange chromatography (CEC), size-exclusion chromatog-
raphy (SEC), and RP-HPLC, two fractions displayed the higher DPP
[V-inhibitory activities, with ICso values of 0.216 and 0.081 mg/mL,
respectively, when compared to the whole (unfractioned) WPI hydroly-
sate (ICsp = 0.075 mg/mL) (Lacroix & Li-Chan, 2014). Regarding o-LA
hydrolysates, after sequential SEC and RP-HPLC, two fractions presented
ICs values of 0.019 and 0.016 mg/mL, respectively, which were more
effective than the unfractionated a-LA hydrolysate (ICsq = 0.036
mg/mL; Lacroix & Li-Chan, 2013). From these experiments, higher DPP
IV inhibition was displayed by hydrolysate fractions enriched in
non-polar peptides. Subsequently, 24 a-LA peptides and 11 B-LG pep-
tides were identified from the most active fractions of WPI and o-LA
hydrolysates, and among the synthesized peptides, LKPTPEGDL and
LKPTPEGDLEIL from R-LG, and WLAHKALCSEKLDQ from a-LA displayed
the higher inhibitory potential towards DPP IV (Lacroix & Li-Chan, 2014;
Table 4).

From the studies summarized in Table 4, DPP IV-inhibitory peptides
identified from hydrolysates usually have molecular masses below 2
kDa, and most contain proline and/or hydrophobic amino acid residues
within their sequence (Lacroix & Li-Chan, 2012a). Length, net charge,
and polarity of whey-derived peptides do not appear to have, per se, a
predictable impact on inhibitory action or potency; nevertheless,
amino acid sequence seems to play more important roles for DPP IV
inhibition (Lacroix & Li-Chan, 2014). Peptide inhibitory capabilities
seem to result from competitive, un-competitive or non-competitive
modes of inhibition (Table 4); thus, peptides displaying the same
mode of inhibition could share some features, as well as distinct peptide
properties might be more relevant for each mode of action.

DPP IV is an enzyme that releases dipeptides preferentially contain-
ing proline (P) as the second residue (P;) from the N-terminus of poly-
peptides. Although at slower rates, this enzyme could cleave dipeptides
with, for instance, A, L, V, and G at P; (Power, Nongonierma et al., 2014).
Diprotin A (IPI) and diprotin B (VPL) are potent DPP IV inhibitors show-
ing an apparent competitive behavior by acting as enzyme substrates. In
vitro evaluation of the synthesized peptide IPA, derived from 3-LG by in
silico digestion, was demonstrated to inhibit DPP IV in a competitive
manner, with an ICsq value of 49 uM; however, the release of IPA during
p-LG gastrointestinal digestion remains to be proven (Tulipano, Sibilia,
Caroli, & Cocchi, 2011). Similarly, DPP IV competitive inhibition was
reported for the peptide IPAVFKIDA (from bovine 3-LG), which might
result from its substrate-like structure (Lacroix & Li-Chan, 2014), as
also reported for casein-derived peptides (Nongonierma & FitzGerald,
2013b). Similarly, it could be argued that the peptides IPAVF, and

IPAVFK (Table 4) might inhibit DPP IV in a similar way. As for the inhib-
itory potential, their ICsq values demonstrate decreasing values in the
order IPAVF ~ IPA < IPAVFK < IPAVFKIDA (Table 4). For IPAVFK, the pres-
ence of a K residue at the C-terminus could decrease the hydrophobicity
of the peptide, affecting the binding or enzyme inhibition; analo-
gously, residues V and F could improve this effect in [IPAVF when
compared to IPA (Silveira et al., 2013). Considering that the P; spec-
ificity of DPP IV usually decreases with increasing substrate length
(Power, Nongonierma et al., 2014), a high molecular mass could be
associated with increased ICsq values, at least for competitive substrate-
like inhibitors. Regarding the peptide TPEVDDEALEK, Silveira et al.
(2013) suggested that, although presenting a P residue at Py, its
higher length could have been responsible for its moderate DPP IV
inhibitory activity; also, the C-terminal K residue affects peptide hydro-
phobicity. Peptides LAHKALCSEKL and ILDKVGINY, from o-LA, were
also demonstrated to inhibit DPP IV by direct interactions with the
enzyme active sites (Lacroix & Li-Chan, 2014), and Uchida et al.
(2011) compared the similarity of the B-LG peptide VAGTWY with the
six N-terminal amino acid residues of GLP-1 (HAEGTF) in terms of Py,
and the presence of G, T, and aromatic amino acids within the peptide
sequence. In this context, amino acid residues near the P; position
of the peptide could affect DPP IV activity (Lacroix & Li-Chan,
2012a). However, studies on the susceptibility of peptide bonds
within these peptides to hydrolysis by DPP IV, and also identification
and testing of hydrolysis products, are needed to clarify the actual
mechanism(s) responsible for the observed DPP IV inhibition, such
as substrate- or prodrug-type inhibition (Nongonierma & FitzGerald,
2014).

Peptides containing P or hydroxyl-P at position P;’ are not cleaved by
DPP IV (Power, Nongonierma et al., 2014). However, the 3-LG peptides
LKPTPEGDL and LKPTPEGDLEIL, shown to be among the most potent
DPP IV inhibitors identified from whey protein hydrolysates, acted to in-
hibit DPP IV activity in an un-competitive manner, that is, by potentially
binding to enzyme-substrate complexes outside the active site and
decreasing reaction velocity (Lacroix & Li-Chan, 2014). Interestingly,
the o-LA peptide WLAHKALCSEKLDQ displayed an un-competitive
inhibitor behavior, whereas WLAHKAL and LCSEKLDQ were reported
to act as non-competitive inhibitors, that is, potentially binding out-
side the DPP IV catalytic center on either the enzyme or the enzyme-
substrate complex, and LAHKALCSEKL acted as competitive inhibitor
(Lacroix & Li-Chan, 2014). Therefore, structure-activity relationships
and the exact means by which whey-derived peptides exert DPP IV in-
hibition are not completely elucidated (Power, Nongonierma et al.,
2014).

Considering the diversity of peptides and their modes of action,
whey protein hydrolysates or mixtures of peptides therein could act
synergistically, leading to a greater inhibition of DPP IV when compared
to individual peptides (Lacroix & Li-Chan, 2014). Fractionation strate-
gies are demonstrated to be suitable and feasible techniques aiming to
selectively enrich the DPP IV inhibitory activity of hydrolysates.
However, conventional drugs employed as DPP IV inhibitors, such
as sitagliptin, are much more potent (ICso in the nanomolar range)
than whey protein hydrolysates and peptides (Table 4). Thus, hydroly-
sates and peptides might not be intended to replace available drugs.

In vitro investigations suggest the potential use of whey protein
hydrolysates and peptides as natural complementary approaches, that
could be implemented through dietary intervention and food-drug
therapies, for the management of type 2 diabetes by inhibiting DPP IV
activity and thereby increasing the half-life of incretin hormones
(Lacroix & Li-Chan, 2012b; Power, Nongonierma et al., 2014). For
instance, an additive effect on DPP IV inhibition was observed when
whey-derived peptides and diprotin A (IPI tripeptide; IC59 ~ 3-7
UM) were tested in combination with sitagliptin (Nongonierma &
FitzGerald, 2013a).

The in vivo availability and activity of whey protein hydrolysates and
peptides remain to be determined. A major concern surrounding DPP
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IV-inhibitory peptides is their bioavailability upon ingestion. Small-
sized and hydrophobic peptides are candidates for intestinal absorption,
allowing them to reach the circulatory system and display bioactivity
(Nongonierma & FitzGerald, 2014). The components of a whey protein
hydrolysate responsible for the insulinotropic effect on BRIN-BD11
cells were able to cross the barrier of an intestinal permeation
model (Gaudel et al.,, 2011). Nevertheless, absorption might not
be needed for these peptides to exert DPP IV inhibition, since this
enzyme is expressed in high amounts by endothelial cells in close
proximity to incretin-producing intestinal cells (Jakubowicz & Froy,
2013). Hence, if DPP IV-inhibitory peptides are present in the
intestinal lumen, they could act locally without needing to reach high
circulating levels (Tulipano et al., 2012). Shigemori et al. (2014) devel-
oped a 3-LG-secreting Lactococcus lactis strain, and tryptic hydrolysates
of recombinant B-LG were observed to inhibit DPP IV activity in vitro.
Such bacterium could be potentially employed for in situ expression of
-LG near the intestinal mucosa, which could be hydrolyzed by intesti-
nal enzymes to release DPP IV inhibitory peptides.

6.2. Inhibition of a-glucosidase

Another strategy to manage type 2 diabetes is the inhibition of
carbohydrate-hydrolyzing enzymes, such as the membrane-bound
a-glucosidase from the epithelial mucosa of the small intestine, which
releases monosaccharides from complex carbohydrates, delaying the
degradation of carbohydrates in the gastrointestinal tract, and thus
decreasing the postprandial levels of blood glucose (Kahn et al., 2014).

The inhibition of Saccharomyces cerevisiae a-glucosidase by fractions
of bovine WPC and 3-LG hydrolysates, produced with a protease from
C. ficifolia, was also investigated (Babij et al., 2014). Particularly, from
15 RP-HPLC fractions of WPC hydrolysates containing <3 kDa peptides,
six displayed ICsq values below 2 mg/mL; whereas from 20 RP-HPLC
fractions of WPC hydrolysates with 3-10 kDa peptides, 5 showed an
ICs50 below 4 mg/mL. As a general trend, RP-HPLC fractions from p-LG
hydrolysates (<3, and 3-10 kDa) were demonstrated to be less efficient
in inhibiting a-glucosidase (Babij et al., 2014). Peptic hydrolysates of
bovine WPI, B-LG, and a-LA, at 2.5 mg/mL were observed to inhibit
mammalian (rat) intestinal a-glucosidase by 36, 33, and 24%, respec-
tively, whereas the non-hydrolyzed counterparts have not displayed
enzyme inhibition. For WPI and B-LG hydrolysates, ICsq values were
4.5 and 3.5 mg/mL, respectively (Lacroix & Li-Chan, 2013).

As few non-saccharide inhibitors of a-glucosidase are reported, in-
vestigations should focus on the identification of the peptides responsi-
ble for enzyme inhibition, also aiming to gain insight on the inhibitory
mechanism and in vivo significance (Lacroix & Li-Chan, 2013; Yu et al,,
2011).

7. Miscellaneous activities

In addition to the biological activities described in the previous
sections, a number of other properties have been also associated with
peptides derived from hydrolysis of whey proteins. Hydrolysates,
peptide fractions, and/or isolated peptides are described to possess im-
munomodulatory, antiproliferative, opioid, and other biological activi-
ties (Hernandez-Ledesma, Ramos, & Gémez-Ruiz, 2011; Madureira,
Tavares, Gomes, Pintado, & Malcata, 2010).

A number of immunomodulatory peptides have been associated
with whey-derived products (Gauthier, Pouliot, & Saint-Sauveur,
2006; Szwajkowska, Wolanciuk, Barlowska, Krél, & Litwinczuk, 2011).
Peptides derived from WPI hydrolysis with trypsin/chymotrypsin
seem to modulate immune parameters in vivo using non-infected and
E. coli infected mice model. In particular, the basic F3 peptide fraction
showed promising results, stimulating serum TGF-31 secretion, which
coincided with a significant increase in IgA levels (Saint-Sauveur,
Gauthier, Boutin, Montoni, & Fliss, 2009). Eriksen, Vegarud, Langsrud,
Almaas, and Lea (2008) investigated if whey-derived products with

different immunological responses may be generated by using different
enzymes. Samples of cow and goat whey were hydrolyzed with either
commercial enzymes pepsin and Corolase PP, or by using human gastric
(HG) and duodenal (HD) juices. Whey protein samples from both goat
and cow showed dose-dependent inhibition of peripheral blood mono-
nuclear cell proliferation in vitro. This effect is suggested to be associated
with intact or hydrolyzed components in whey samples that affect the
generation of important activating signals, thus inhibiting further lym-
phocyte proliferation.

Eleven synthetic peptides derived from theoretical release from
B-LG and a-LA by hydrolysis with trypsin or chymotrypsin were evalu-
ated for their immunomodulatory properties. The peptides R-LG
f(15-20), f(55-60), f(84-91), f(92-105), f(139-148), f(142-148) and
«a-LA f(10-16) stimulated proliferation to different extents, whereas
p-LG f(15-20), f(55-60) and f(139-148) also induced various inhibiting
and/or stimulating effects on cytokine secretion (Jacquot, Gauthier,
Drouin, & Boutin, 2010). These results confirm that hydrolysis of a-LA
and R-LG by digestive enzymes may result in peptides that have the
potential to influence the specific immune response through the modu-
lation of splenocyte proliferation and cytokine secretion. Recent reports
indicate that the addition of whey peptides has a positive effect in devel-
opment of immune-modulating diets in both murine (Yanagawa et al.,
2013) and rat models (Kume, Okazaki, Takahashi & Yamaji, 2014).

Opioid activity of peptides derived from hydrolysis of 3-LG or
a-LA hydrolysis with digestive enzymes has been described earlier
(Antila et al., 1991). Opioid-like sequences are encrypted in the
primary structure of major whey proteins: human and bovine a-LA
f(50-53) and bovine R-LG f(102-15), which have been termed o-
and B-lactorphins, respectively (Pihlanto-Leppald, 2001). The whey
protein-derived peptide, a-lactorphin, with proved opioid activity,
although with lower affinity towards p-opioid receptors than {3-
casomorphin 7, can induce mucin secretion and mucin gene expression
in human colonic goblet-like cells (Martinez-Maqueda et al., 2012).
Similar effect was observed for a trypsin 3-LG hydrolysate and p-
lactorphin, probably operating through an opioid pathway (Martinez-
Maqueda, Miralles, Ramos, & Recio, 2013). Whey protein hydrolysates
with the ability to modulate mucin production could be promising for
improving gastrointestinal protection.

Studies on animal models suggest that certain peptides and amino
acids derived from dietary proteins may influence carcinogenesis.
These studies, usually for colon and mammary tumorigenesis, indicate
that whey protein is superior to other dietary proteins for suppression
of tumor development (Parodi, 2007). This benefit is accredited to its
high content of cystine/cysteine and y-glutamylcysteine dipeptides,
which are efficient substrates for the synthesis of glutathione.
Lactoferrin, a minor whey protein, has received most attention
since it inhibits intestinal tumors and possibly other tumors. The
lactoferrin-derived peptide lactoferricin acts by induction of apoptosis,
modulation of carcinogen metabolizing enzymes and perhaps acting
as an iron scavenger (Gilford, Hunter, & Vogel, 2005; Mader, Salsman,
Conrad, & Hoskin, 2005).

Peptide concentrates obtained from whey hydrolysis with proteases
of C. cardunculus displayed antiulcerogenic activity. Both the peptide
concentrate and its fraction containing peptides with molecular mass
below 3 kDa were both effective against ulcerative lesions of the gastric
mucosa induced by oral administration of ethanol in a rat model. Gastric
cytoprotection by low molecular mass peptides appears to depend on
sulfhydryl-containing moieties, whereas peptide concentrate likely pro-
tects the gastric mucosa via the prostaglandin cycle and production of
nitric oxide (Tavares, Contreras et al., 2011; Tavares, Monteiro et al.,
2011). The hypocholesterolemic peptide IIAEK was identified from
tryptic hydrolysates of 3-LG. Studies on Caco-2 cells and animal model
indicate that serum and liver cholesterol levels were significantly
decreased in rats fed 3-LG hydrolysates, and the inhibition of micellar
solubility of cholesterol seems to cause the suppression of cholesterol
absorption (Nagaoka et al., 2001). Lastly, the inhibitory activity of
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xanthine oxidase by dipeptides Val-Trp or Trp-Val, and the lactoferrin
hydrolysate obtained by gastric and pancreatic enzymes was recently
described (Nongonierma & FitzGerald, 2012). In vivo, xanthine oxidase
is involved in the oxidation of the aldehyde groups in xanthine or hypo-
xanthine, producing uric acid. Thus, lactoferrin hydrolysates and dipep-
tides could have potential as a natural alternative to synthetic drugs for
xanthine oxidase inhibition, eliminating the side effects associated with
drugs such as Allopurinol.

8. Conclusion and perspectives

The dairy industry generates substantial amounts of whey, which
should be adequately managed not only to attend to environmental
concerns, but also to generate added valued products. The conversion
of whey into useful products can be achieved by enzymatic catalysis. In-
tensive research has been devoted to investigate the ability of different
enzymes and conditions to generate bioactive peptides from whey.
Several proteolytic enzymes have been used to produce whey-derived
products showing improved biological activities, such as antimicrobial,
antioxidant, antihypertensive, and antidiabetic, among others. The
association of this variety of biological activities with diverse peptide
sequences derived from whey proteins indicates that whey is an impor-
tant source of bioactive peptides. However, additional research is neces-
sary regarding cytotoxicity studies to ensure safety and the absence of
adverse effects in vivo. The importance and necessity of confirming the
already established effects by human trials, evaluating different aspects
such as dose, toxicity, and possible side effects should be also consid-
ered. Detailed investigation is required to provide a better knowledge
about the maintenance of bioactivity during gastrointestinal transit,
mechanisms of peptide absorption, and their fate and site(s) of action
in vivo. The mechanism of action of many whey-derived bioactive pep-
tides needs to be completely elucidated. As these peptides (or hydroly-
sates) would be intended to be ingested in food formulations, the
interaction with other components in the food matrix should be inves-
tigated. In addition, their incorporation as free or encapsulated ingredi-
ents is also an interesting topic for future research. The cost of peptide
isolation or synthesis leads to the necessity of large-scale production
methodologies to warrant sufficient material for in vivo studies and
food formulations. Therefore, further technological studies are required
to establish experimental conditions to reach higher yields of these bio-
active molecules.
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