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Abstract 

A cutset of a partially ordered set is a subset which meets every maximal chain, and afibre of a 
partially ordered set is a subset which meets every maximal antichain. A poset is called skeletal if 
every cutset meets every fibre. K~,n stands for the linear sum of a singleton and an n-element an- 
tichain. Duffus et al. (1990) showed that any Boolean lattice K~.~ × • • • x K~.I is skeletal. Gibson 
and Maltby (1993) showed that Kl,m × KI,~ is skeletal and asked if every K~,n~ × . •. × Kl,,,k 
is skeletal. We prove that K1.1 x . • • × K1.1 x Kl,,, × KI., and Kl,i × KI,,, × Kl,n are skeletal. 
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A cutset  of a poset is a subset which meets every maximal chain, and a f ibre  of 

a poset is a subset which meets every maximal antichain. Call a poset skeletal  if  it 

satisfies the following equivalent conditions: 

(i) Every fibre meets every cutset. 

(ii) Every red-blue colouring of the elements of the poset has a red maximal chain 

or a blue maximal antichain. 

(iii) Every fibre contains a maximal chain. 

(iv) Every cutset contains a maximal antichain. 

The equivalence of ( i i ) - ( i v )  to each other is explained by Duffus et al. in [2], and 

their equivalence to (i) is explained by Gibson and Maltby in [3]. The main result 

of  [2] is that finite Boolean lattices are skeletal. Gibson and Maltby [3] have several 

results concerning the skeletalness of posets, including an examination of certain poset 

operations preserving or destroying skeletalness. The main relevant result of  [5], by 

Maltby and Williamson, is that the union of the kth and ( k+  1 )st levels of the product of 
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Fig. 1. 

t 
t copies of  the whole numbers (i.e.{(Xl . . . . .  x t ) :  ~-~i=1 xi = k }  U {(Xl . . . . .  x t ) :  Y~I=I xi -~- 

k + 1}) is skeletal, unless t = 2 and k is congruent to 2 modulo 3. 
For any n E ~,  define Kl,n to be the linear sum of  a singleton and an n-element 

antichain. For instance, Kl,5 is shown in Fig. 1. 
For any posets P~ . . . . .  Pk, define the direct product P1 × "'" × Pk to be the set of  
k-tuples (pl  . . . . .  pk) having each PiEP, and ordered by: (pl . . . . .  pk)<<.(p~,...,p~) 
if  and only if each Pi <~ P~ in P/. Note that, up to isomorphism, direct product is a 
commutative and associative binary operation on posets. 

I f  P × Q is skeletal, then each of P and Q is skeletal [3, Theorem 3.3], but coun- 
terexamples to the converse of  this are so easy to find that it is perhaps surprising that 
Questions 1 and 2 remain unanswered. The question from [3] that we address in this 
paper is: 

Question 1. Is g l , m l  × " ' "  × K l , m k  skeletal for every k E ~ and all ml . . . . .  mk E ~?  

In [3], Gibson and Maltby show that the answer is yes for k ~<2. In [2], Duffus 
et al. show that the answer is yes when ml . . . . .  mk = 1 (i.e. for finite Boolean 
lattices). In this paper, we prove positive answers in two more special cases: when 
ml . . . . .  mk-z = 1 (Theorem 5) and when k =  3 (Theorem 6). 

A more general question in [3] is: 

Question 2. I f  P1, P2, and P3 are posets such that PI x P2, P1 x P3, and P2 × P3 are 
all skeletal, must P1 × P2 × P3 also be skeletal? 

Theorem 6 provides a positive answer when each Pi is some Kl,nj. Gibson and 
Maltby [3] achieved a positive answer to this question in the special case of  distributive 
lattices. We say that Question 2 is more general than Question 1 since if the answer 
to Question 2 is yes, then by induction the answer is yes for the direct product of  any 
number of  posets whose pairwise products are skeletal and, in particular, the answer 
to Question 1 would be yes as well. 

We abbreviate P × . . .  × P (r times) by pr.  We denote set difference by ' \ ' ;  that 
is, A\B= {a EA:a  q~B}. We will use the following notation adapted from Davey and 
Priestley's book [1]. For any X a subset of  a poset P, define 

X'r = {yEP:  y>>.x for some x E X } ,  

XoT = {y EP:  y > x  for some x EX}\X, 

X J . = { y E P :  y<<.x for some x E X } ,  
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X ~ = { y E P :  y < x  for some x ~ X } \ X ,  

xI=xTtOX~. 

Actually, we will only use the symbols ~ and ~ with antichains in this paper, making 

the ' \X '  parts o f  the definitions unnecessary. We will abbreviate this notation slightly 

for singletons by dropping the curly braces. For instance, xT = {x}T. 
It will be very useful to refer to the construction in the following obvious lemma. 

Lemma 3. Let k 

lEvi = ni for each 

E ~ and n~ . . . . .  nk ~ ~. Let El . . . . .  Ek be pairwise disjoint sets with 

i. Define a poser ~ by 

{k } ~ =  X ~  ~ E g :  IXnE,  l<~l for  i = l  . . . . .  k 
i=1 

ordered by set containment. Then ~ ~ K~,,, x . . .  × Kl,n~, 

The statement o f  Lemma 4 is less than elegant, but having this statement allows us 

to shorten the proofs o f  Theorems 5 and 6. 

Lennna 4. Let k E N  and nl . . . . .  nk E ~. Suppose Kl,m~ × " '"  × Kl,mk is skeletal for  
all (ml . . . . .  m k)< (n l  . . . . .  nk) in [~k. Construct ~ K 1 . n ~  × . . .  × Kl,,k as described in 

Lemma 3. I f  ~ is a fibre o f  ~ which contains no maximal chain o f  ~ ,  then we have 

{x} E ~- for  every i such that ni > 1 and every x ~ Ei. 

Proof.  Suppose ni > 1, x E El, and {x} ~ ~-. Since {0} is a maximal antichain o f  ~ ,  we 

know that O E ~ .  Let ~ ' = ~ \ { x } T .  So ~ K l , n ~  × . . .  ×Kl.n,_l ×Kl,ni-1 × K l  .... , × 
• • • × Kl,,k and, hence, ~ '  is skeletal. I f  ~¢ is a maximal antichain o f  ~ '  disjoint from 

~,, then 0 $ z¢, and thus it is easy to see that ~¢ tO {{x}} is a maximal antichain o f  
disjoint from ~,, contradicting ~ being a fibre. This tells us that ~ N ~ '  is a fibre o f  

~ ' .  Hence, since ~ '  is skeletal, there exists ¢g C_ ~ ' A  ~- a maximal chain o f  ~ ' .  But 

then ~ C_ ~ is a maximal chain o f  ~ ,  a contradiction. [] 

Theorem 5. Let r, m, and n be natural numbers• Then (Kl,l)r × gl,m × KI,n is skeletal. 

Proof.  Assume for a contradiction that the theorem is false• Then there is some 
( r ,m,n)E ~ × ~ x [~ for which the theorem fails. Pick (r ,m,n) minimal in ~ × ~ × 

so that (Kl,1)r × Kl,m × Kl ,n  is not skeletal. Since direct product is commutative, we 

may assume, without loss o f  generality, that n ~>m. Put nl . . . . .  nr = 1, n r +  1 = m ,  and 

nr+2 = n .  Then construct ~ with k = r  + 2 as in Lemma 3, so we have ~ (Kl•l)r 

× g l , m  × g l , n .  

Since ~ is not skeletal, it has a fibre ~-  which contains no maximal chain. 0 E 

since {0} is a maximal antichain. Furthermore, Lemma 4 tells us that if  m >  1 then 

{s} E ~ -  for each sEEd+l, and i f n > l  then { t } E f f  for each tEE~+2. 
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We now proceed with the method of [1]. We define sets X~ analogous to the 'lexical 
chains' used in [ 1 ]. Let X E ~.  Define 

X~ = {X,X\E1,X\(E1 UE2) . . . . .  X\(E1 UE2 U. . -UEr+2)  = ~}, 

X T = {X, XUEI,XUE1 UE2 . . . . .  XUE1 UE2 U . . . U E r }  

U{XUE, U.--UErU{s} :s6Er+,} 

U{XUEIU"'UE~U{s}U{t}:sEE~+I,t6Er+2}. 

Notice that X~ C X I  and X~ C_XT. Put X~ =X ~  u x ~ ,  so every x ~  is a union of 
maximal chains of ~ .  For all Y'___~, define y ' [ = U x ~ . x ~ ,  y '~=Uxc~.x~,  and 

For any ~ C ~-, call oq' critical if  there do not exist ~d, ,~ C .~ such that 
(1) d U N  is an antichain disjoint from ~ ;  
(2) ,9° C_ d.l.U.~ T; 
(3) d c _ 6 P l ,  ~_c ~9°~. 

Notice that ~ is critical since if there were s~' and M satisfying (1) and (2) for 
= ~-, then any maximal antichain containing ~¢ U ~ (of which there would have to 

be one) would be disjoint from ~ ,  contradicting o~ being a fibre. Furthermore, since 
o~ is finite, ~ must contain a minimal critical set ~ ' .  That is, ./g is critical but no 
proper subset of Jg is critical. Notice that ~ ¢ 0 since for 6 P = 0, ~¢ = ~ = 0 satisfy 
(1)-(3) .  

For each X E ~ and each Y EX~\o~, define rank(X, Y) to be the least i such that 
YC_XUE1U...UEi. For each X E ~  and each YEX~\~ ,  define rank(X,Y) to be 
the least i such that Y =X\(EI UE2 U . . .  UEi). For each X E J¢/, define rank(X) = 
min{rank(X, Y): Y EX~\o~} - -  we know that X~\o~ ~ ~ since X~ is a union of max- 
imal chains of  ~ ,  and ~ contains no maximal chain of ~ .  

Let M E ~ such that rank(M)-..<rank(X) for every X E de. Let M' EM~\o~ such 
that rank(M,M')= rank(M). Since ~ \ { M }  is not critical, we can pick d ,  N satisfying 
conditions (1 ) - (3 )  for 5 ° =  J¢l\{M}. Then ~ , ~  satisfy (1) and (3) for 5 ° = M /  also. 
d , ~  cannot also satisfy (2) since J¢/ is critical, so M ~ d ~ .  UNT. 

We have M' ~ M~\{M}, so either M'  E My or M' E M~. We will examine each of 
these two cases separately and find that each of them leads to a contradiction. 

First suppose M' EM~. We will find ~ '  so that ~ ' ,  ~ satisfy (1 ) - (3 )  for ~ =  ~/4, 
contradicting ~ being critical. 

Let ~ ' =  (~ \M' J . )U  {M'}. We now derive a contradiction by showing that ~ ' , ~  
satisfy (1 ) - (3 )  for 5 ~ = ~  '. To see that (3) is satisfied (i.e. s t '_c  ~ and NC_ ~ '~) ,  
observe the following. Since M' E ~/4~ and ~' \{M'}  c_ ~ C_ .¢g~, we know that s¢' _C 
~ .  And we already knew that ~ c_ ~ ,  so (3) is satisfied. 

To see that (2) is satisfied (i.e. J/C_ ~"l.  uNT) ,  observe that ~ 'J .  u ~ T  = ((~\M'~.)  
U { M ' } ) ~ U ~ T D ~ $ U ~ T D M / \ { M } ,  and MEM'JC~¢'~. So ./A"c_sJ'J.u.~T. i.e., 
(2) is satisfied. 

Now, we verify that (1) is satisfied (i.e. ~¢~ U N is an antichain disjoint from 
o~), which takes longer than verifying the other two properties. It is obvious that 
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~/ '  U M is disjoint from ~ .  Since ~ '  U M is an antichain, we only need to verify 

that M '  ~( ,~¢ ' \{M'})~ and M '  ~ to show that (1) is satisfied. Since M '  EM~ and 

M ~ e J . ,  we know that M ' ~ ¢ ~  DO~I' \{M'})+.  Since ~ ¢ ' \ { M ' } = ~ 4 \ { M ' } + ,  obvi- 

ously M '  ~ ( N ' ~ { M ' } ) T .  So M '  ~ ( ~ ' \ { M ' } ) ~ ,  which shows that d '  is an antichain. 

Why is M '  E ~ impossible? Let B E ~ .  B E M/~X/// and so BAE1 = (3. But M '  C M T 

{M} and so M~AEI ¢(3, hence M ~ ~ B. Since there exists B~E ..g/ such that B E B ~  

and rank(B ~) >~rank(M), we know that B N (El U . . .  U E~nktM))= (3- Meanwhile, M ' M  
C_E1U"'UEr~nk(M), and we know B\M¢(3 since M ¢ ~ T .  So clearly ( 3 ¢ B '  

M ~ M'\M, and therefore B ~ M' .  Hence M '  ~ .  But then ~ d ' , ~  satisfy ( 1 ) - ( 3 )  

for ~9 ° = ,//g, a contradiction. So the case M '  E M~ cannot occur. 

Now that we have eliminated the case M ~ E M T, suppose that M '  E M{. So M ' =  

M\(E1 U E2 U " -  U Crank(M))- Let M' = ( ~ \ M ' T )  U {M'}. Let .Sf = ,//g. Then, dually to 
the case MtEMT,  (2) and (3) are satisfied by .~¢,~C That ~ ' U ~  ~ is disjoint from 

~- and ~ is an antichain are also dual to facts in the case M~E M~. But to show 

that ,~¢OM'~ = (3 and therefore (1) is satisfied requires more work in this case. Let 

AEo~ ¢. A E ~#T"o//Z and so AAEI ¢~.  But M ' E M ~ \ { M }  and so M'NE~ =(3, hence 

A ~ MC It remains only to show that M ~ ~ A. For this we will need the fact that 

]Ell . . . . .  ]E~nk(M}] = 1 which we now prove. It is obvious that this fact holds if 

rank(M) ~< r. It is also clear that rank(M) < r + 2 since if rank(M) = r + 2 then M '  = (3, 

contradicting M ' ~ f f .  So the only other possibility to consider is r a n k ( M ) - r  + 1 

while M '  is a singleton subset o f  E~+2. In this case, the fact that M ~ ~ .~  together with 

Lemma 4 tells us that lEt+z[ = 1. Considering our assumption that [Er~ ~[ = m ~<n = 

[E,-+2[, this tells us that [E,-+~[ = 1. This shows that [Eli . . . . .  [E~a~kUw!] = 1. Since 
there exists A ~ E ~/g such that A E A~T and rank(W)~> rank(M), we know that 1 = ]AN E~[ 

= [A~E2[ . . . . .  [A~Erank(M)[. So M~'M ' C_ E~ U " -  UE~ank(M} C_A. We know that 
M ~°~¢+ so M ~ A, or, equivalently, M'~A ~(3. Since M".A ~(3 while M M  ~ C_A, we 

know that (MVIM~)\A¢(3, i.e. M~A¢(3, so M ~ A .  Thus M ~ / ~ .  But then 

. ~ / , ~  satisfy ( 1 ) - ( 3 )  for 5 ~ = ~ / ,  a contradiction. So the case M ~ M ~  cannot 

occur .  

With this contradiction, we have proven that o~ contains a maximal chain. 

Theorem 6. Let l, m, and n be natural numbers. Then Kl,/ × Kkm x KI.,, is' skeletal. 

Proof.  Assume for a contradiction that the theorem is false. Then there is some 
(l,m,n) E ~ x N x ~ for which the theorem fails. Pick (l,m,n) minimal in ~ x N x 

so that K~,t x K~,,, x Kkn is not skeletal. 

Let E l = { l l , 1 2  . . . . .  b}, E2={21 ,22  . . . .  ,2m}, and E3={31 ,32  . . . . .  3,}. Let ~ =  
{XC_ U~_IEi:IXMEi] ~<1 for i = 1 , 2 , 3 } .  Order ,~ by set containment. Then 2,°~ 
Kl.t x Kl.m X Kl.,, by Lemma 1. We will abbreviate set notation by omitting com- 

mas and parentheses. For instance, 1121 will stand for {b,21}. As an example of  the 
construction, Fig. 2 shows Kl2 x K13 z K~ 5 with most o f  the points labelled. 

Let ~ be a fibre o f  ~ which contains no maximal chain o f  2 .  Then (3 E ,~- since {(3} 

is a maximal antichain o f ~ .  We know that l,m,n > 1 since otherwise Kl.i x Kl.m × Kk,, 
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112131 

112135 

112231 

11223s 

112331 

112335 

~3~ 

135 

331 

335 

122131 

122135 

122231 

122235 

122331 

~_ 12233s 

Fig. 2. 

is skeletal by Theorem 5. So Lemma 4 tells us that ~,~ must include every singleton 
in ~ .  

Since the set of  all doubletons in ~ is a maximal antichain, one of them must be 
in ~-. Assume, without loss of  generality, that ll2z is in ~-~. 
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We will now construct ~¢ = d l  U d 2  U ~¢3 a maximal antichain of  7 disjoint from 

f t .  Make the following definitions. 

0~¢1 = {li2j3k : 1~2/E ~@, k = 1 . . . . .  n}, 71 = ~ l ~ ,  

~ = {2/ : 2j ¢ ~4,,~}, 72  = ~T,  

7 3  = "J~\(;~l U 7 2). 

It is easy to see that {71 ,72 ,  ~3 } is a partition of 7 .  72 ~ (KI,I × Kl,n)x/~, where /~ 
is a [~[-element antichain. 

Obviously, ~¢i is an antichain and 71 = d l  ~. s#l is disjoint from Y since 0 and all 
the singletons are in ~-, and o~ contains no maximal chain, so each li2j E ~ implies 
li2j3k ~ J~ for k = 1 . . . . .  n. 

Next, we find an antichain ~'2 C_ 72  disjoint from f f  such that 72  c_ ~42~. To do this, 

we shall break down 72  into smaller pieces. For each 2J c J~2, define 7 2 , / =  2/T. Then 
72 = Ui 72,j .  Choose a particular 72,i .  We want to find an antichain ~¢2, /c  2)°2./ such 
that 72,/c_ ~¢2,j~[ and ~2 . j  is disjoint from f t .  {2i} is not a satisfactory choice for 
o42.j since 2i E f f  ( remember that all singletons are in ,~-). The next obvious choice to 
check is the set o f  all doubletons in 724.  We know that each b2j  ~ Y since otherwise 
we would have 2j E 71.  Unfommately,  there is no guarantee that every 2j3k ~ .~-. But 

we will make this choice whenever possible; i.e., if {2i3k :k = 1 . . . . .  n} C3.~-= ~ then 
let 

o~¢2, i = {1i2i : i = 1 . . . . .  l} U {2/3~ : k = 1 . . . . .  n}. 

When {2j3k :k = 1 . . . . .  n} N f f  ¢ 0 we will choose ~2 . j  as close as possible to the 
choice just described. We will modify the choice by replacing 2j3k by 112i3~ for 

each 2j3k E f t .  Since o~ contains no maximal chain of  7 ,  we know that 112/3k ¢ J 
whenever 2/3k E f t .  This choice necessitates dropping l~2j from S~2, j to keep it an 
antichain. To put this in the proper notation, i f  {2/3k : k = 1 . . . . .  n} N f f  ¢ !3 then let 

~¢2,i = {l12j3k : 2j3k E f t ,  k =  1 . . . . .  n} 

U ({2i3k : k = 1 . . . . .  n},.5~) 

U{li2j  : i = 2  . . . . .  1}. 

By either definition, ~¢2,/ is an antichain disjoint from ~@, and 2yT c_ ~'2.i~. We have 
just described the choice of  a particular ~12,j. Apply the same method for every j for 
which 724  is defined. Then let ~¢2 be the union of  the o~¢2,i'S. ~¢'2 is an antichain 

since every element of  any ~¢2./ includes 2i and no 2~' for any f C j .  Thus ~¢2 is 
an antichain disjoint from o~ and 72  c_ ~2~.  In fact, ~ U o~¢2 is an antichain since 

.~/~ C max 7 and each element of  ~ includes a 2i such that 2 / ~  ,~1 ,~. So , ~  U ,~2 
is an antichain disjoint from o~ and 7~ U 72 ~ (~1 U ~12 )I" 

Another fact we will need is that ~'2~7173 C f f .  ~¢2Tc72T = 72,  leaving just 
o~¢2~ N 7 3  c~@ to be verified. Since 0 and all singletons are in i f ,  the only way this 
could fail is if  there is some X ~ (~¢2~ N 7 3 ) \ f f  where IX[ = 2. Assume such an X 



202 R. Maltby/Discrete Mathematics 194 (1999) 195-203 

exists. Then there exists Y E ~¢2 such that X C Y and I Y I : 3. I Y I --- 3 and Y E ~¢2 
imply that Y = 112j3k for some j ,k such that 2j3k E ~-. So X E {112j, l13k,2j3k}. We 
can eliminate the case X - - 2 j 3 k  since 2j3~ ~ -  (also 2 j 3 ~ z ) .  We can eliminate 

the case X = 113~ since 1121 E ~-,  so 11213~ ~ ~¢1 and 113k ~ ~1  ~. = ~1.  So X = 112j. 

112y = X  E ~3 implies 112j ~ 2 ,  so 2j 6 ~1~.  But Y = 112j3~ ~ J 2  C ~ implies 2j 
~1 ~. With this contradiction, we conclude that ~¢2~ n ~3 C ~ ' .  

For each i ~ { 1 . . . . .  l} such that l i t  n ~3 # 0, liT n ~3 is skeletal as the following 

two cases show. I f  li ~ ~1, then l i t  n ~3 = l iT \ (~ l  u ~ e )  -- l iT\~2 = liT \ Uey ~ a li2jT 
~--K1,m-I~] ×Kl,n. We know this product is skeletal since it follows almost imme- 
diately from Lemma 4 that Kl,p ×Kl,q is skeletal for every p, qE~.  (See also [3, 
Theorem 3.9].) Now suppose l i E ~ l .  This means there is some j E { 1 , . . . , m }  for 

which l i 2 j C ~ ,  and hence {li2y3k:k=l ..... n}_C.~¢l, so { l i 3 ~ : k = l  . . . . .  n } C ~ l .  

So lit n ~ 3  ~_ {li2j : j  : 1 . . . . .  m} U {li2j3k : j  = 1 . . . . .  m;k = 1 . . . .  ,n}. For j = 1 . . . . .  m, 

and 

li2j E ~ ¢* {li2j3k :k  = 1 . . . . .  n} C ~l ¢~ li2j E ~'1 

{ li2j3k : k =  1 . . . . .  n} C ~2 ¢~ 2y E ~ ¢~ li2j E~2. 

Hence, liT n ~3 ~ ~TK1,n where r = m - 1 ~ [ -  [{li2j E ~}1 and ~ denotes an r-element 
antichain. We know that ~-TKl,n is skeletal since it is clear that Kl,n is skeletal, and 
it is easy to see that the cardinal sum of  skeletal posets is skeletal. (This is an easy 
and special case of  Theorem 2.3 in [3] which is concerned with lexicographic sums in 
general.) 

Finally, we find an antichain ~3 in ~3 such that d~' 3 is disjoint from ~-  and 
~3 c d 3 I .  For each i = 1 . . . . .  l, i f  lit n :~3----0, then put d3 , i  = 0, otherwise pick 
~3,i a maximal antichain o f  liT n ~3 disjoint from ~ ,  which we know is possible by 

the following. Since l i t  n ~3 is skeletal, if  l i t  n ~3 n ~ is a fibre o f  l i t  n ~3 Y~ 0, 
then it contains a maximal chain of  liT N ~ 3  whose union with {0,1i} is a max- 
imal chain of  ~ contained in ~-,  a contradiction. Thus, l i T h e 3  n ~ -  is not a fi- 

bre o f  liT N ~ 3  and we can pick ~¢3,i a maximal antichain of  liT n ~ 3  disjoint from 
~¢3 = U~=I ~13,i. ~3  is an antichain since each ~¢3,i is an antichain, and each element of  
any ~3,i includes li, making it impossible for elements o f  distinct ~¢3,i's to be com- 
parable. So d 3  is an antichain disjoint from ~ and ~3_c~¢3I .  Recall ~ z ~ n  

~3 C ~ ,  and ~¢1I :-  ~ l ,  so ~2~ 3 C ~3\(~¢1~ U ~ 2 I ) .  Thus, ~¢1U~¢2 U ~¢3 is a maximal 
antichain of  ~ = ~1 U ~2  U ~3 and is disjoint from ~ ,  which we assumed was a 
fibre. 

This contradiction completes the proof. [] 
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