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Every cutset meets every fibre in certain poset products
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Abstract

A cutset of a partially ordered set is a subset which meets every maximal chain, and a fibre of a
partially ordered set is a subset which meets every maximal antichain. A poset is called skeletal if
every cutset meets every fibre. K, , stands for the linear sum of a singleton and an n-element an-
tichain. Duffus et al. (1990) showed that any Boolean lattice Ky, x --- x Kj is skeletal. Gibson
and Maltby (1993) showed that Ki ., x K1, is skeletal and asked if every K, X --- X Ki,,
is skeletal. We prove that Ki3 x -+ X K1y X Ki,m XK1, and K, ; x Ky » x K;, are skeletal.
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A cutset of a poset is a subset which meets every maximal chain, and a fibre of
a poset is a subset which meets every maximal antichain. Call a poset skeletal if it
satisfies the following equivalent conditions:

(1) Every fibre meets every cutset.
(i) Every red-blue colouring of the elements of the poset has a red maximal chain
or a blue maximal antichain.
(iti) Every fibre contains a maximal chain.
(iv) Every cutset contains a maximal antichain.

The equivalence of (ii)—(iv) to each other is explained by Duffus et al. in [2], and
their equivalence to (i) is explained by Gibson and Maltby in [3]. The main result
of [2] is that finite Boolean lattices are skeletal. Gibson and Maltby [3] have several
results concerning the skeletalness of posets, including an examination of certain poset
operations preserving or destroying skeletalness. The main relevant result of [5], by
Maltby and Williamson, is that the union of the kth and (k+1)st levels of the product of
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t copies of the whole numbers (i.e.{(x1,...,x): Y5 xi=k}U{(r1,....x): Soi_ %=
k + 1}) is skeletal, unless 1 =2 and k is congruent to 2 modulo 3.

For any n€ N, define K , to be the linear sum of a singleton and an r-element

antichain. For instance, K5 is shown in Fig. 1.
For any posets Py,...,P;, define the direct product P; x --- x Py to be the set of
k-tuples (pi,..., px) having each p;€P and ordered by: (pi,..., pr)<(pi,.... P})
if and only if each p;<p} in P. Note that, up to isomorphism, direct product is a
commutative and associative binary operation on posets.

If P x Q is skeletal, then each of P and Q is skeletal [3, Theorem 3.3], but coun-
terexamples to the converse of this are so easy to find that it is perhaps surprising that
Questions 1 and 2 remain unanswered. The question from [3] that we address in this
paper is:

Question 1. Is K ,, X -+ XK, skeletal for every k€N and all m,,...,m € N?

In [3], Gibson and Maltby show that the answer is yes for £<2. In [2], Duffus

et al. show that the answer is yes when m;=-.--=m; =1 (i.e. for finite Boolean
lattices). In this paper, we prove positive answers in two more special cases: when
my=---=my_p=1 (Theorem 5) and when £ =3 (Theorem 6).

A more general question in [3] is:

Question 2. If P;, P,, and P; are posets such that P, x P, P; x P;, and P, X P3 are
all skeletal, must P; x P, x P; also be skeletal?

Theorem 6 provides a positive answer when each P, is some K ,. Gibson and
Maltby [3] achieved a positive answer to this question in the special case of distributive
lattices. We say that Question 2 is more general than Question 1 since if the answer
to Question 2 is yes, then by induction the answer is yes for the direct product of any
number of posets whose pairwise products are skeletal and, in particular, the answer
to Question 1 would be yes as well.

We abbreviate P x --- x P (r times) by P". We denote set difference by \’; that
is, AAB={acA:a¢ B}. We will use the following notation adapted from Davey and
Priestley’s book [1]. For any X a subset of a poset P, define

X1={yeP: y=x for some x€X},
X]={yeP: y>x for some x€X}\X,
X|={yeP: y<x for some x€X},
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X|={yeP: y<x for some xe X}\X,
X][=XTUX]|.

Actually, we will only use the symbols | and | with antichains in this paper, making
the “\X” parts of the definitions unnecessary. We will abbreviate this notation slightly
for singletons by dropping the curly braces. For instance, xT = {x}1.

It will be very useful to refer to the construction in the following obvious lemma.

Lemma 3. Let k€N and ny,...,n, €N. Let Ey,...,E; be pairwise disjoint sets with
|E;| = n; for each i. Define a poset ? by

k
P = {Xg UE,~ CXNE| <] for i=1,...,k}

i=1

ordered by set containment. Then # =K, ,, % -+ X K| p,.

The statement of Lemma 4 is less than elegant, but having this statement allows us
to shorten the proofs of Theorems 5 and 6.

Lemma 4. Let ke N and ny,...,n, € N. Suppose Ky, X - - X K|, is skeletal for
all (my,...,mg)<(ny,...,n) in NX. Construct # =K, , x --- xK, ,, as described in
Lemma 3. If & is a fibre of ? which contains no maximal chain of 2, then we have
{x} € & for every i such that n;>1 and every x € E;.

Proof. Suppose n;>1, x € E;, and {x} ¢ #. Since {{}} is a maximal antichain of 2, we
know that € #. Let ' =2\{x}1. So P2K, », X -+ X Kjn_, X Kiny—1 X Ky, X

- X K3, and, hence, &’ is skeletal. If o/ is a maximal antichain of 2’ disjoint from
Z, then 0 ¢ o/, and thus it is easy to see that o/ U {{x}} is a maximal antichain of 2
disjoint from %, contradicting & being a fibre. This tells us that F N %’ is a fibre of
2. Hence, since & is skeletal, there exists € C 2 NF a maximal chain of #’. But
then ¥ C # is a maximal chain of £, a contradiction. [J

Theorem 5. Let r, m, and n be natural numbers. Then (K, ) X K\ , x K\ » is skeletal.

Proof. Assume for a contradiction that the theorem is false. Then there is some
(r,m,n) € N x N x N for which the theorem fails. Pick (r,m,n) minimal in N x N x N
so that (X)) x K| » x K, , is not skeletal. Since direct product is commutative, we
may assume, without loss of generality, that n2m. Putn; =---=n, =1, n,,.; =m, and
n,+>=n. Then construct # with k=r + 2 as in Lemma 3, so we have 2= (K, )
X Kl, m X K l,n-

Since 2 is not skeletal, it has a fibre & which contains no maximal chain. d € &#
since {@} is a maximal antichain. Furthermore, Lemma 4 tells us that if m>1 then
{s} € F for each s€E,,, and if n>1 then {¢t} € F for each t€E,,.
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We now proceed with the method of [1]. We define sets X i analogous to the ‘lexical
chains’ used in [1]. Let X € 2. Define

X|={X,X\E,X\(E|UEy),....X\(E\ UE;U- - -UE, ;) =0},

X1 ={X,XUE,XUE UE,,....XUEUE,U--.UE,}
U{XUE U---UE,U{s}:s€E 1}
U{XUEU--UE U{s}U{t}:s€E 1,t€E 1}

Notice that X[ CX| and XfCXT. Put X]=XfUX], so every X{ is a union of
maximal chains of 2. For all ¥ C2, define 1=y, XT, #{=Uyc X!, and
A i =ZTUZ|.

For any ¥ C %, call & critical if there do not exist &/, % C & such that
(1) &/ U2 is an antichain disjoint from % ;
2)SCAIUBT;

(3) ¥ C o1, BC L.

Notice that % is critical since if there were &/ and & satisfying (1) and (2) for
& =%, then any maximal antichain containing .&/ U % (of which there would have to
be one) would be disjoint from &, contradicting & being a fibre. Furthermore, since
& 1is finite, ¥ must contain a minimal critical set .#. That is, .# is critical but no
proper subset of .# is critical. Notice that .# £ since for & =0, .o/ = % = satisfy
(1)-G3).

For each X € .# and each Y € X1\#, define rank(X,Y) to be the least i such that
YCXUE U---UE;. For each X € .# and each Y € X|\#, define rank(X,Y) to be
the least i such that Y =X\(E,UE;U---UE;). For each X € .#, define rank(X)=
min{rank(X,Y): Y € X{\#} — we know that X{\# # 0 since X] is a union of max-
imal chains of 2, and % contains no maximal chain of 2.

Let M € .4 such that rank(M)<rank(X) for every X € #. Let M’ e M{\# such
that rank(M, M’) = rank(M). Since .#\{M} is not critical, we can pick </, # satisfying
conditions (1)—(3) for & = .#\{M}. Then </, # satisfy (1) and (3) for & = .# also.
o/, cannot also satisfy (2) since .# is critical, so M & <7 | UAT.

We have M’ € M {M}, so either M’ € MT or M’ € M|. We will examine each of
these two cases separately and find that each of them leads to a contradiction.

First suppose M’ € M}. We will find .o/’ so that o/, # satisty (1)-(3) for & =4,
contradicting .# being critical.

Let o' =(/\M’|)U{M'}. We now derive a contradiction by showing that /', %#
satisfy (1)—(3) for & =.#. To see that (3) is satisfied (i.e. &' C .#7 and BC .A)),
observe the following. Since M’ € .#% and &\{M'} C .o/ C .#%, we know that /' C
MF. And we already knew that # C .#%, so (3) is satisfied.

To see that (2) is satisfied (i.e. 4 C .o/’ UAT), observe that of' | UBT = (M’ |)
U{M'DIVBTI DA UBT D MM}, and MeM'| C'|. So 4 C ' |UBT. ie.,
(2) is satisfied.

Now, we verify that (1) is satisfied (i.e. .2/'UZ is an antichain disjoint from
&), which takes longer than verifying the other two properties. It is obvious that
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' U is disjoint from #. Since &/ U is an antichain, we only need to verify
that M’ & (o/"{M'})] and M’ & %] to show that (1) is satisfied. Since M’ € M?T and
M /|, we know that M’ ¢ o/ | D(/"{M'})]. Since /" {M'} =/ {M'}|, obvi-
ously M’ & (/" {M'})T. So M’ &(=/""{M'})], which shows that ./’ is an antichain.
Why is M’ € 2] impossible? Let B€ #. B€ .4 |'.#4 and so BNE, ={. But M’ ¢ M}
{M} and so M'NE| #0, hence M’ & B. Since there exists B’ € .# such that B€ B'|
and rank(B’) =rank(M), we know that BN(E| U - - U Enkar)) = 0. Meanwhile, MM
CE\U- - UEunkum), and we know BM #0Q since Mg #1. So clearly 0+#£B"
M ¢ M""M, and therefore B & M’. Hence M' ¢ 2]. But then /', # satisfy (1)-(3)
for ¥ = .4, a contradiction. So the case M’ € M1 cannot occur.

Now that we have eliminated the case M’ € M7, suppose that M e M|. So M’ =
MYE|UE, U UEpar). Let B =(B M TY)U{M'}. Let ¥ =.4#. Then, dually to
the case M’ € M?, (2) and (3) are satisfied by .«/,%’. That &/ U#’ is disjoint from
Z and #' is an antichain are also dual to facts in the case M’ € M7. But to show
that &/ NM’'] =0 and therefore (1) is satisfied requires more work in this case. Let
Aedd. Ae M1 A and so ANE,#0. But M e M|\ {M} and so M'NE, =0, hence
A & M’ It remains only to show that M’ & A. For this we will need the fact that
|Ei|= -+ =|Emn] =1 which we now prove. It is obvious that this fact holds if
rank(M) <r. It is also clear that rank (M) <7 -+2 since if rank(M)=r+2 then M’ =),
contradicting M’ € #. So the only other possibility to consider is rank(M)=r + 1
while M’ is a singleton subset of E,,,. In this case, the fact that M’ ¢ F together with

Lemma 4 tells us that |E,.,|=1. Considering our assumption that |E, . |=m<n=
|E,i2], this tells us that |E,.;|=1. This shows that |E||= - = |Ewmnk,| = 1. Since
there exists 4’ € .# such that 4 € 4’1 and rank(4’) =rank(M ), we know that | = [4NE|
= |A ﬂE2|: s = |A mErank(M)|- So M\M'CE /U -- UErank(M) CA. We know that

Mg/ so M & A, or, equivalently, M 4 #0. Since M'A#() while M M' C A, we
know that (MNM')4#0, ie. M"4+£B, so M' £ A. Thus M'¢.«/]. But then
o, B satisfy (1)—(3) for & =.4#, a contradiction. So the case M’ € M| cannot
oceur.

With this contradiction, we have proven that & contains a maximal chain. [

Theorem 6. Let [, m, and n be natural numbers. Then K| ; x K, ,, x K| ,, is skeletal.

Proof. Assume for a contradiction that the theorem is false. Then there is some
({,m,n) € N x N x N for which the theorem fails. Pick (/,m,#) minimal in N x N x N
so that K ; x K| ,, X K| , is not skeletal.

Let E, :{11, 12,...,1[}, E2:{21,22,...,2m}, and E; 2{31,37_,...,3,,}. Let #=
{xXc U?:IE,-:|X|’1E,-| <1 for i=1,2,3}. Order ? by set containment. Then # =
K xK, %K, by Lemma 1. We will abbreviate set notation by omitting com-
mas and parentheses. For instance, 1,2 will stand for {1;,2,}. As an example of the
construction, Fig. 2 shows K, x K3 x K5 with most of the points labelled.

Let # be a fibre of 2 which contains no maximal chain of 2. Then () € # since {{}
is a maximal antichain of 2. We know that [, m,n > 1 since otherwise K| ; x K| , x K ,
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is skeletal by Theorem 5. So Lemma 4 tells us that % must include every singleton
in 2.

Since the set of all doubletons in £ is a maximal antichain, one of them must be
in & . Assume, without loss of generality, that 1,2, is in %.
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We will now construct .o/ = ./ U/, U.o/3 a maximal antichain of £ disjoint from
Z . Make the following definitions.

d1:{1121'3k:1,'2/657, k=1,...,n}, letﬂll,
B={2;:2;¢ A |}, Pr=27,
Py=P(P1UP).

It is easy to see that {#,%,,#;} is a partition of 2. P, = (K, ; x K;1.4)x b, where b
is a |4|-element antichain.

Obviously, ./, is an antichain and 2| = o/, ]. ./, is disjoint from Z since () and all
the singletons are in %, and & contains no maximal chain, so each 1,2; € # implies
1,23, ¢ F for k=1,.

Next, we find an antlchaln oy C P, disjoint from F such that 2, C .o/ ]. To do this,
we shall break down £, into smaller pieces. For each 2; € #,, define #, ; =2;1. Then
#2=J; #2.;. Choose a particular 2, ;. We want to ﬁnd an antichain &/, ; C #, ; such
that #, ; C .o/, ;] and </, ; is disjoint from #. {2;} is not a satisfactory choice for
/5 ; since 2; € # (remember that all singletons are in % ). The next obvious choice to
check is the set of all doubletons in 2, ;. We know that each 1,2; ¢ # since otherwise
we would have 2; € 2. Unfortunately, there is no guarantee that every 2,3, ¢ #. But
we will make this choice whenever possible; i.e., if {2,3;:k=1,..., ntNF =0 then
let

Sﬂg,:{liz/ﬂ izl,...,l}U{Z_,Sk: k:1,...,n}.

When {2;3;:k=1,....,n}NF #0 we will choose o/, as close as possible to the
choice just descrxbed. We will modify the choice by replacing 2,3, by 1,2;3; for
each 2,3, € #. Since # contains no maximal chain of 2, we know that 1,2,3; & #
whenever 2,3, € #. This choice necessitates dropping 1,2, from &/, ; to keep it an
antichain. To put this in the proper notation, if {2;3,:k=1....,n} N.F #{ then let

o ;={1123c: 2;3xr € F,k=1,...,n}
U({23: k=1,....n}\F)
u{1.2;:i=2,...,1}.

By either definition, ./, ; is an antichain disjoint from #, and 2,7 C ./, ;]. We have
just described the choice of a particular .o/ ;. Apply the same method for every j for
which 2 ; is defined. Then let o/ be the union of the ./, ;’s. .o/ is an antichain
since every element of any ./, ; includes 2; and no 2, for any ;' #j. Thus .o/> is
an antichain disjoint from # and 2, C .o/]. In fact, <, U/ is an antichain since
&/ Cmax Z and each element of &/, includes a 2; such that 2, & .o/, |. So .« U.o/»
is an antichain disjoint from & and &, U2, C (/] Ulsafz)l.

Another fact we will need is that @A[NP3 C F MzTCQ”zT 25, leaving just
Hh| NP3 C F to be verified. Since @ and all smgletons are in %, the only way this
could fail is if there is some X € (| NP3 )\F where |X|=2. Assume such an X
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exists. Then there exists ¥ € .o/ such that X CY and |¥Y|=3. |Y|=3 and Y€
imply that ¥ =1,2;3; for some j,k such that 2;3; € #. So X € {1,2;,1;3x,2;3x}. We
can eliminate the case X =2;3; since 2;3; € # (also 2;3; € #;). We can eliminate
the case X =13 since 1;2) € #, so 1,213, €%/ and 1,3, € o | =2,. So X =1,2;.
112j =XeP; 1mp11es 1]2j gg)p_, so 2j€&¢1,],. But Y=112j3k6.52¢2C.@2 1mp11es 2/¢
</ |. With this contradiction, we conclude that o, NP; C Z.

For each i€ {1,...,1} such that 1,1 N5 #0, 1,7 NP5 is skeletal as the following
two cases show. If 1, &€ 2, then ;TN P =1,T(P,UPy)=1;1"\?, = 1,1\ Uz,-ega 1;2,7
=K\ m—|# X K1,,. We know this product is skeletal since it follows almost imme-
diately from Lemma 4 that K , x K, is skeletal for every p,q€N. (See also [3,
Theorem 3.9].) Now suppose ;€ #,. This means there is some j€{l,...,m} for
which 1,2;€ %, and hence {1,2;3;:k=1,...,n} C |, so {1;3;::k=1,...,n} C2,.
So ,LTNZ3C{1.2;:j=1,....m}U{1,2,3;:j=1,....mk=1,...,n}. For j=1,...,m,

1,-2}'6:7;{:} {1,~2j3k:k=1,...,n}C9’1 4 1,-2}'691
and
{1i2j3k:k=l,...,n}C9’2 @2,-693@ 1,-2/'692.

Hence, 1,1 NP3 =Y K, , where r =m—|%|—|{1,2;, € #}| and 7 denotes an r-element
antichain. We know that ) _K; , is skeletal since it is clear that K , is skeletal, and
it is easy to see that the cardinal sum of skeletal posets is skeietal. (This is an easy
and special case of Theorem 2.3 in [3] which is concerned with lexicographic sums in
general.)

Finally, we find an antichain 2/ in #; such that < is disjoint from &% and
P3 C 3] For each i=1,...,1, if 1,TNP3=0, then put =7;; =0, otherwise pick
&/3,; a maximal antichain of 1,T N %5 disjoint from %, which we know is possible by
the following. Since 1,71 NP is skeletal, if 1,TNP;NF is a fibre of 1,7 NP3 #0,
then it contains a maximal chain of 1;TN%; whose union with {@,1;} is a max-
imal chain of # contained in &, a contradiction. Thus, 1,TN#;NZF is not a fi-
bre of 1,7 M %; and we can pick /3, a maximal antichain of 1,7 N&; disjoint from
&y = Ule &3 ;. o3 is an antichain since each .o/;; is an antichain, and each element of
any /3, includes 1;, making it impossible for elements of distinct /3 ;’s to be com-
parable. So .o/; is an antichain disjoint from % and %3 C .o/;]. Recall &[N
P3CF, and A [ =Py, s0 o3 C P3N [UA]). Thus, o Uoly U.of; is a maximal
antichain of Z = Z,U#,U%; and is disjoint from &%, which we assumed was a
fibre.

This contradiction completes the proof. [
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