Every cutset meets every fibre in certain poset products

Roy Maltby*,1
Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Received 27 June 1995; revised 17 July 1997; accepted 11 August 1997

Abstract

A cutset of a partially ordered set is a subset which meets every maximal chain, and a fibre of a partially ordered set is a subset which meets every maximal antichain. A poset is called skeletal if every cutset meets every fibre. $K_{1, n}$ stands for the linear sum of a singleton and an n-element antichain. Duffus et al. (1990) showed that any Boolean lattice $K_{1,9} \times \cdots \times K_{1,!}$ is skeletal. Gibson and Maltby (1993) showed that $K_{1, m} \times K_{1, n}$ is skeletal and asked if every $K_{1, n_{1}} \times \cdots \times K_{1, n+}$ is skeletal. We prove that $K_{1,1} \times \cdots \times K_{1.1} \times K_{1, m} \times K_{1 . n}$ and $K_{1, /} \times K_{1, m} \times K_{1, n}$ are skeletal. (c) 1999 Elsevier Science B.V. All rights reserved

AMS classification: 06A07
Keywords: Poset; Partial order; Fibre; Cutset; Chain; Antichain; Skeletal

A cutset of a poset is a subset which meets every maximal chain, and a fibre of a poset is a subset which meets every maximal antichain. Call a poset skeletal if it satisfies the following equivalent conditions:
(i) Every fibre meets every cutset.
(ii) Every red-blue colouring of the elements of the poset has a red maximal chain or a blue maximal antichain.
(iii) Every fibre contains a maximal chain.
(iv) Every cutset contains a maximal antichain.

The equivalence of (ii)-(iv) to each other is explained by Duffus et al. in [2], and their equivalence to (i) is explained by Gibson and Maltby in [3]. The main result of [2] is that finite Boolean lattices are skeletal. Gibson and Maltby [3] have several results concerning the skeletalness of posets, including an examination of certain poset operations preserving or destroying skeletalness. The main relevant result of [5], by Maltby and Williamson, is that the union of the k th and $(k+1)$ st levels of the product of

[^0]Fig. 1.
t copies of the whole numbers (i.e. $\left\{\left(x_{1}, \ldots, x_{t}\right): \sum_{i=1}^{t} x_{i}=k\right\} \cup\left\{\left(x_{1}, \ldots, x_{t}\right): \sum_{i=1}^{t} x_{i}=\right.$ $k+1\}$) is skeletal, unless $t=2$ and k is congruent to 2 modulo 3 .
For any $n \in \mathbb{N}$, define $K_{1, n}$ to be the linear sum of a singleton and an n-element antichain. For instance, $K_{1,5}$ is shown in Fig. 1.
For any posets P_{1}, \ldots, P_{k}, define the direct product $P_{1} \times \cdots \times P_{k}$ to be the set of k-tuples $\left(p_{1}, \ldots, p_{k}\right)$ having each $p_{i} \in P_{i}$ and ordered by: $\left(p_{1}, \ldots, p_{k}\right) \leqslant\left(p_{1}^{\prime}, \ldots, p_{k}^{\prime}\right)$ if and only if each $p_{i} \leqslant p_{i}^{\prime}$ in P_{i}. Note that, up to isomorphism, direct product is a commutative and associative binary operation on posets.
If $P \times Q$ is skeletal, then each of P and Q is skeletal [3, Theorem 3.3], but counterexamples to the converse of this are so easy to find that it is perhaps surprising that Questions 1 and 2 remain unanswered. The question from [3] that we address in this paper is:

Question 1. Is $K_{1, m_{1}} \times \cdots \times K_{1, m_{k}}$ skeletal for every $k \in \mathbb{N}$ and all $m_{1}, \ldots, m_{k} \in \mathbb{N}$?
In [3], Gibson and Maltby show that the answer is yes for $k \leqslant 2$. In [2], Duffus et al. show that the answer is yes when $m_{1}=\cdots=m_{k}=1$ (i.e. for finite Boolean lattices). In this paper, we prove positive answers in two more special cases: when $m_{1}=\cdots=m_{k-2}=1$ (Theorem 5) and when $k=3$ (Theorem 6).
A more general question in [3] is:
Question 2. If P_{1}, P_{2}, and P_{3} are posets such that $P_{1} \times P_{2}, P_{1} \times P_{3}$, and $P_{2} \times P_{3}$ are all skeletal, must $P_{1} \times P_{2} \times P_{3}$ also be skeletal?

Theorem 6 provides a positive answer when each P_{i} is some $K_{1, n_{i}}$. Gibson and Maltby [3] achieved a positive answer to this question in the special case of distributive lattices. We say that Question 2 is more general than Question 1 since if the answer to Question 2 is yes, then by induction the answer is yes for the direct product of any number of posets whose pairwise products are skeletal and, in particular, the answer to Question 1 would be yes as well.

We abbreviate $P \times \cdots \times P$ (r times) by P^{r}. We denote set difference by ''; that is, $A \backslash B=\{a \in A: a \notin B\}$. We will use the following notation adapted from Davey and Priestley's book [1]. For any X a subset of a poset P, define

$$
\begin{aligned}
& X \uparrow=\{y \in P: y \geqslant x \text { for some } x \in X\}, \\
& X \uparrow=\{y \in P: y>x \text { for some } x \in X\} \backslash X, \\
& X \downarrow=\{y \in P: y \leqslant x \text { for some } x \in X\},
\end{aligned}
$$

$$
\begin{aligned}
& X \downharpoonright=\{y \in P: y<x \text { for some } x \in X\} \backslash X, \\
& X \downharpoonright=X \uparrow \cup X \downarrow .
\end{aligned}
$$

Actually, we will only use the symbols \uparrow and \downarrow with antichains in this paper, making the ' X ' parts of the definitions unnecessary. We will abbreviate this notation slightly for singletons by dropping the curly braces. For instance, $x \uparrow=\{x\} \uparrow$.

It will be very useful to refer to the construction in the following obvious lemma.
Lemma 3. Let $k \in \mathbb{N}$ and $n_{1}, \ldots, n_{k} \in \mathbb{N}$. Let E_{1}, \ldots, E_{k} be pairwise disjoint sets with $\left|E_{i}\right|=n_{i}$ for each i. Define a poset \mathscr{P} by

$$
\mathscr{P}=\left\{X \subseteq \bigcup_{i=1}^{k} E_{i}:\left|X \cap E_{i}\right| \leqslant 1 \text { for } i=1, \ldots, k\right\}
$$

ordered by set containment. Then $\mathscr{P} \cong K_{1, n_{1}} \times \cdots \times K_{1, n_{k}}$.
The statement of Lemma 4 is less than elegant, but having this statement allows us to shorten the proofs of Theorems 5 and 6 .

Lemma 4. Let $k \in \mathbb{N}$ and $n_{1}, \ldots, n_{k} \in \mathbb{N}$. Suppose $K_{1, m_{1}} \times \cdots \times K_{1, m_{k}}$ is skeletal for all $\left(m_{1}, \ldots, m_{k}\right)<\left(n_{1}, \ldots, n_{k}\right)$ in \mathbb{N}^{k}. Construct $\mathscr{P} \cong K_{1, n_{1}} \times \cdots \times K_{1, n_{k}}$ as described in Lemma 3. If \mathscr{F} is a fibre of \mathscr{P} which contains no maximal chain of \mathscr{P}, then we have $\{x\} \in \mathscr{F}$ for every i such that $n_{i}>1$ and every $x \in E_{i}$.

Proof. Suppose $n_{i}>1, x \in E_{i}$, and $\{x\} \notin \mathscr{F}$. Since $\{\emptyset\}$ is a maximal antichain of \mathscr{P}, we know that $\emptyset \in \mathscr{F}$. Let $\mathscr{P}^{\prime}=\mathscr{P} \backslash\{x\} \uparrow$. So $\mathscr{P} \cong K_{1, n_{1}} \times \cdots \times K_{1, n_{i-1}} \times K_{1, n_{i}-1} \times K_{1, n_{i+1}} \times$ $\cdots \times K_{1, n_{k}}$ and, hence, \mathscr{P}^{\prime} is skeletal. If \mathscr{A} is a maximal antichain of \mathscr{P}^{\prime} disjoint from \mathscr{F}, then $\emptyset \notin \mathscr{A}$, and thus it is easy to see that $\mathscr{A} \cup\{\{x\}\}$ is a maximal antichain of \mathscr{P} disjoint from \mathscr{F}, contradicting \mathscr{F} being a fibre. This tells us that $\mathscr{F} \cap \mathscr{P}^{\prime}$ is a fibre of \mathscr{P}^{\prime}. Hence, since \mathscr{P}^{\prime} is skeletal, there exists $\mathscr{C} \subseteq \mathscr{P}^{\prime} \cap \mathscr{F}$ a maximal chain of \mathscr{P}^{\prime}. But then $\mathscr{C} \subseteq \mathscr{F}$ is a maximal chain of \mathscr{P}, a contradiction.

Theorem 5. Let r, m, and n be natural numbers. Then $\left(K_{1, \mathrm{I}}\right)^{r} \times K_{1, m} \times K_{1, n}$ is skeletal.
Proof. Assume for a contradiction that the theorem is false. Then there is some $(r, m, n) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ for which the theorem fails. Pick (r, m, n) minimal in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ so that ($\left.K_{1,1}\right)^{r} \times K_{1, m} \times K_{1, n}$ is not skeletal. Since direct product is commutative, we may assume, without loss of generality, that $n \geqslant m$. Put $n_{1}=\cdots=n_{r}=1, n_{r+1}=m$, and $n_{r+2}=n$. Then construct \mathscr{P} with $k=r+2$ as in Lemma 3, so we have $\mathscr{P} \cong\left(K_{1,1}\right)^{r}$ $\times K_{1, m} \times K_{1, n}$.
Since \mathscr{P} is not skeletal, it has a fibre \mathscr{F} which contains no maximal chain. $\emptyset \in \mathscr{F}$ since $\{\emptyset\}$ is a maximal antichain. Furthermore, Lemma 4 tells us that if $m>1$ then $\{s\} \in \mathscr{F}$ for each $s \in E_{r+1}$, and if $n>1$ then $\{t\} \in \mathscr{F}$ for each $t \in E_{r+2}$.

We now proceed with the method of [1]. We define sets $X \neq$ analogous to the 'lexical chains' used in [1]. Let $X \in \mathscr{P}$. Define

$$
\begin{aligned}
X \downarrow= & \left\{X, X \backslash E_{1}, X \backslash\left(E_{1} \cup E_{2}\right), \ldots, X \backslash\left(E_{1} \cup E_{2} \cup \cdots \cup E_{r+2}\right)=\emptyset\right\}, \\
X \uparrow= & \left\{X, X \cup E_{1}, X \cup E_{1} \cup E_{2}, \ldots, X \cup E_{1} \cup E_{2} \cup \cdots \cup E_{r}\right\} \\
& \cup\left\{X \cup E_{1} \cup \cdots \cup E_{r} \cup\{s\}: s \in E_{r+1}\right\} \\
& \cup\left\{X \cup E_{1} \cup \cdots \cup E_{r} \cup\{s\} \cup\{t\}: s \in E_{r+1}, t \in E_{r+2}\right\} .
\end{aligned}
$$

Notice that $X \downarrow \subseteq X \downarrow$ and $X \uparrow \subseteq X \uparrow$. Put $X \neq X \uparrow \cup X \downarrow$, so every $X \uparrow$ is a union of maximal chains of \mathscr{P}. For all $\mathscr{X} \subseteq \mathscr{P}$, define $\mathscr{X} \uparrow=\bigcup_{X \in \mathscr{X}} X \uparrow, \mathscr{X} \downarrow=\bigcup_{X \in \mathscr{X}} X \downarrow$, and $\mathscr{X} \ddagger=\mathscr{X} \uparrow \cup \mathscr{X} \downarrow$.

For any $\mathscr{S} \subseteq \mathscr{F}$, call \mathscr{S} critical if there do not exist $\mathscr{A}, \mathscr{B} \subseteq \mathscr{P}$ such that
(1) $\mathscr{A} \cup \mathscr{B}$ is an antichain disjoint from \mathscr{F};
(2) $\mathscr{S} \subseteq \mathscr{A} \downarrow \cup \mathscr{B} \uparrow$;
(3) $\mathscr{A} \subseteq \mathscr{S} \uparrow, \mathscr{B} \subseteq \mathscr{S} \downarrow$.

Notice that \mathscr{F} is critical since if there were \mathscr{A} and \mathscr{B} satisfying (1) and (2) for $\mathscr{S}=\mathscr{F}$, then any maximal antichain containing $\mathscr{A} \cup \mathscr{B}$ (of which there would have to be one) would be disjoint from \mathscr{F}, contradicting \mathscr{F} being a fibre. Furthermore, since \mathscr{F} is finite, \mathscr{F} must contain a minimal critical set \mathscr{M}. That is, \mathscr{M} is critical but no proper subset of \mathscr{M} is critical. Notice that $\mathscr{M} \neq \emptyset$ since for $\mathscr{S}=\emptyset, \mathscr{A}=\mathscr{B}=\emptyset$ satisfy (1)-(3).

For each $X \in \mathscr{M}$ and each $Y \in X \uparrow \backslash \mathscr{F}$, define $\operatorname{rank}(X, Y)$ to be the least i such that $Y \subseteq X \cup E_{1} \cup \cdots \cup E_{i}$. For each $X \in \mathscr{M}$ and each $Y \in X \downarrow \mathscr{F}$, define $\operatorname{rank}(X, Y)$ to be the least i such that $Y=X \backslash\left(E_{1} \cup E_{2} \cup \cdots \cup E_{i}\right)$. For each $X \in \mathscr{M}$, define $\operatorname{rank}(X)=$ $\min \{\operatorname{rank}(X, Y): Y \in X \neq \mathscr{F}\}$ - we know that $X \neq \mathscr{F} \neq \emptyset$ since $X \neq$ is a union of maximal chains of \mathscr{P}, and \mathscr{F} contains no maximal chain of \mathscr{P}.
Let $M \in \mathscr{M}$ such that $\operatorname{rank}(M) \leqslant \operatorname{rank}(X)$ for every $X \in \mathscr{M}$. Let $M^{\prime} \in M 才 \mathscr{F}$ such that $\operatorname{rank}\left(M, M^{\prime}\right)=\operatorname{rank}(M)$. Since $\mathscr{M} \backslash\{M\}$ is not critical, we can pick \mathscr{A}, \mathscr{B} satisfying conditions (1)-(3) for $\mathscr{S}=\mathscr{M} \backslash\{M\}$. Then \mathscr{A}, \mathscr{B} satisfy (1) and (3) for $\mathscr{S}=\mathscr{M}$ also. \mathscr{A}, \mathscr{B} cannot also satisfy (2) since \mathscr{M} is critical, so $M \notin \mathscr{A} \downarrow \cup \mathscr{B} \uparrow$.

We have $\left.M^{\prime} \in M_{\ddagger}^{\ddagger} \backslash M\right\}$, so either $M^{\prime} \in M^{\uparrow}$ or $M^{\prime} \in M \nsubseteq$. We will examine each of these two cases separately and find that each of them leads to a contradiction.
First suppose $M^{\prime} \in M^{\star}$. We will find \mathscr{A}^{\prime} so that $\mathscr{A}^{\prime}, \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S}=\mathscr{M}$, contradicting \mathscr{M} being critical.
Let $\mathscr{A}^{\prime}=\left(\mathscr{A} \backslash M^{\prime} \downarrow\right) \cup\left\{M^{\prime}\right\}$. We now derive a contradiction by showing that $\mathscr{A}^{\prime}, \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S}=\mathscr{M}$. To see that (3) is satisfied (i.e. $\mathscr{A}^{\prime} \subseteq \mathscr{M} \uparrow$ and $\mathscr{B} \subseteq \mathscr{M} \downarrow$), observe the following. Since $M^{\prime} \in \mathscr{M} \uparrow$ and $\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\} \subseteq \mathscr{A} \subseteq \mathscr{M}^{\dagger}$, we know that $\mathscr{A}^{\prime} \subseteq$ $\mathscr{M} \uparrow$. And we already knew that $\mathscr{B} \subseteq \mathscr{M} \uparrow$, so (3) is satisfied.
To see that (2) is satisfied (i.e. $\left.\mathscr{M} \subseteq \mathscr{A}^{\prime} \downarrow \cup \mathscr{B} \uparrow\right)$, observe that $\mathscr{A}^{\prime} \downarrow \cup \mathscr{B} \uparrow=\left(\left(\mathscr{A} \backslash M^{\prime} \downarrow\right)\right.$ $\left.\cup\left\{M^{\prime}\right\}\right) \downarrow \cup \mathscr{B} \uparrow \supseteq \mathscr{A} \downarrow \cup \mathscr{B} \uparrow \supseteq \mathscr{M} \backslash\{M\}$, and $M \in M^{\prime} \downarrow \subseteq \mathscr{A}^{\prime} \downarrow$. So $\mathscr{M} \subseteq \mathscr{A}^{\prime} \downarrow \cup \mathscr{B} \uparrow$. i.e., (2) is satisfied.

Now, we verify that (1) is satisfied (i.e. $\mathscr{A}^{\prime} \cup \mathscr{B}$ is an antichain disjoint from \mathscr{F}), which takes longer than verifying the other two properties. It is obvious that
$\mathscr{A}^{\prime} \cup \mathscr{B}$ is disjoint from \mathscr{F}. Since $\mathscr{A} \cup \mathscr{B}$ is an antichain, we only need to verify that $M^{\prime} \notin\left(\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\}\right) \downarrow$ and $M^{\prime} \notin \mathscr{B} \downarrow$ to show that (1) is satisfied. Since $M^{\prime} \in M^{\dagger}$ and $M \notin \mathscr{A} \downarrow$, we know that $M^{\prime} \notin \mathscr{A} \downarrow \supset\left(\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\}\right) \downarrow$. Since $\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\}=\mathscr{A} \backslash\left\{M^{\prime}\right\} \downarrow$, obviously $M^{\prime} \notin\left(\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\}\right) \uparrow$. So $M^{\prime} \notin\left(\mathscr{A}^{\prime} \backslash\left\{M^{\prime}\right\}\right) \uparrow$, which shows that \mathscr{A}^{\prime} is an antichain. Why is $M^{\prime} \in \mathscr{B} \downarrow$ impossible? Let $B \in \mathscr{B}, B \in \mathscr{M} \ddagger \mathscr{M}$ and so $B \cap E_{1}=\emptyset$. But $M^{\prime} \in M \uparrow$ $\{M\}$ and so $M^{\prime} \cap E_{1} \neq \emptyset$, hence $M^{\prime} \nsubseteq B$. Since there exists $B^{\prime} \in \mathscr{M}$ such that $B \in B^{\prime} \downarrow$ and $\operatorname{rank}\left(B^{\prime}\right) \geqslant \operatorname{rank}(M)$, we know that $B \cap\left(E_{1} \cup \cdots \cup E_{\operatorname{rank}(M)}\right)=\emptyset$. Meanwhile, $M^{\prime} \backslash M$ $\subseteq E_{1} \cup \cdots \cup E_{\mathrm{rank}(M)}$, and we know $B \backslash M \neq \emptyset$ since $M \notin \mathscr{B} \uparrow$. So clearly $\emptyset \neq B$ $M \nsubseteq M^{\prime} \backslash M$, and therefore $B \nsubseteq M^{\prime}$. Hence $M^{\prime} \notin \mathscr{B} \uparrow$. But then $\mathscr{A}^{\prime}, \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S}=\mathscr{M}$, a contradiction. So the case $M^{\prime} \in M \uparrow$ cannot occur.

Now that we have eliminated the case $M^{\prime} \in M^{\uparrow}$, suppose that $M^{\prime} \in M \downarrow$. So $M^{\prime}=$ $M \backslash\left(E_{1} \cup E_{2} \cup \cdots \cup E_{\operatorname{rank}(M)}\right)$. Let $\mathscr{B}^{\prime}=\left(\mathscr{B} M^{\prime} \uparrow\right) \cup\left\{M^{\prime}\right\}$. Let $\mathscr{S}=\mathscr{A}$. Then, dually to the case $M^{\prime} \in M \uparrow$, (2) and (3) are satisfied by $\mathscr{A}, \mathscr{B}^{\prime}$. That $\mathscr{A} \cup \mathscr{B}^{\prime}$ is disjoint from \mathscr{F} and \mathscr{B}^{\prime} is an antichain are also dual to facts in the case $M^{\prime} \in M \uparrow$. But to show that $\mathscr{A} \cap M^{\prime} \uparrow=\emptyset$ and therefore (1) is satisfied requires more work in this case. Let $A \in \mathscr{A} . A \in \mathscr{M}^{\wedge} \backslash \mathscr{M}$ and so $A \cap E_{1} \neq \emptyset$. But $M^{\prime} \in M \downarrow\{M\}$ and so $M^{\prime} \cap E_{1}=\emptyset$, hence $A \nsubseteq M^{\prime}$. It remains only to show that $M^{\prime} \nsubseteq A$. For this we will need the fact that $\left|E_{1}\right|=\cdots=\left|E_{\operatorname{rank}(M)}\right|=1$ which we now prove. It is obvious that this fact holds if $\operatorname{rank}(M) \leqslant r$. It is also clear that $\operatorname{rank}(M)<r+2$ since if $\operatorname{rank}(M)=r+2$ then $M^{\prime}=\emptyset$, contradicting $M^{\prime} \notin \mathscr{F}$. So the only other possibility to consider is $\operatorname{rank}(M)=r+1$ while M^{\prime} is a singleton subset of E_{r+2}. In this case, the fact that $M^{\prime} \notin \mathscr{F}$ together with Lemma 4 tells us that $\left|E_{r+2}\right|=1$. Considering our assumption that $\left|E_{r+1}\right|=m \leqslant n=$ $\left|E_{r+2}\right|$, this tells us that $\left|E_{r+1}\right|=1$. This shows that $\left|E_{1}\right|=\cdots=\left|E_{\text {rank }(M)}\right|=1$. Since there exists $A^{\prime} \in \mathscr{M}$ such that $A \in A^{\prime} \uparrow$ and $\operatorname{rank}\left(A^{\prime}\right) \geqslant \operatorname{rank}(M)$, we know that $1=\left|A \cap E_{1}\right|$ $=\left|A \cap E_{2}\right|=\cdots=\left|A \cap E_{\mathrm{rank}(M) \mid}\right|$. So $M M^{\prime} \subseteq E_{1} \cup \cdots \cup E_{\mathrm{rank}(M)} \subseteq A$. We know that $M \notin \mathscr{A} \downarrow$ so $M \nsubseteq A$, or, equivalently, $M \backslash A \neq \emptyset$. Since $M \backslash A \neq \emptyset$ while $M M^{\prime} \subseteq A$, we know that $\left(M \cap M^{\prime}\right) \backslash \neq \emptyset$, i.e. $M^{\prime} A \neq \emptyset$, so $M^{\prime} \nsubseteq A$. Thus $M^{\prime} \nsubseteq \mathscr{A} \uparrow$. But then $\mathscr{A}, \mathscr{B}^{\prime}$ satisfy (1)-(3) for $\mathscr{S}=\mathscr{M}$, a contradiction. So the case $M^{\prime} \in M \downarrow$ cannot occur.
With this contradiction, we have proven that \mathscr{F} contains a maximal chain.
Theorem 6. Let l, m, and n be natural numbers. Then $K_{1, l} \times K_{1, m} \times K_{1, n}$ is skeletal.
Proof. Assume for a contradiction that the theorem is false. Then there is some $(l, m, n) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ for which the theorem fails. Pick (l, m, n) minimal in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ so that $K_{1, l} \times K_{1, m} \times K_{1, n}$ is not skeletal.
Let $E_{1}=\left\{\mathbf{1}_{1}, 1_{2}, \ldots, \mathbf{1}_{l}\right\}, E_{2}=\left\{2_{1}, 2_{2}, \ldots, 2_{m}\right\}$, and $E_{3}=\left\{3_{1}, 3_{2}, \ldots, 3_{n}\right\}$. Let $\mathscr{P}=$ $\left\{X \subseteq \bigcup_{i=1}^{3} E_{i}:\left|X \cap E_{i}\right| \leqslant 1\right.$ for $\left.i=1,2,3\right\}$. Order \mathscr{P} by set containment. Then $\mathscr{P} \cong$ $K_{1, l} \times K_{1 . m} \times K_{1, n}$ by Lemma 1 . We will abbreviate set notation by omitting commas and parentheses. For instance, $1_{1} 2_{1}$ will stand for $\left\{1_{1}, 2_{1}\right\}$. As an example of the construction, Fig. 2 shows $K_{12} \times K_{1,3} \times K_{1,5}$ with most of the points labelled.
Let \mathscr{F} be a fibre of \mathscr{P} which contains no maximal chain of \mathscr{P}. Then $\emptyset \in \mathscr{F}$ since $\{\emptyset\}$ is a maximal antichain of \mathscr{P}. We know that $l, m, n>1$ since otherwise $K_{1, l} \times K_{1 . m} \times K_{1 . n}$

Fig. 2.
is skeletal by Theorem 5 . So Lemma 4 tells us that \mathscr{F} must include every singleton in \mathscr{P}.

Since the set of all doubletons in \mathscr{P} is a maximal antichain, one of them must be in \mathscr{F}. Assume, without loss of generality, that $1_{1} 2_{1}$ is in \mathscr{F}.

We will now construct $\mathscr{A}=\mathscr{A}_{1} \cup \mathscr{A}_{2} \cup \mathscr{A}_{3}$ a maximal antichain of \mathscr{P} disjoint from \mathscr{F}. Make the following definitions.

$$
\begin{aligned}
& \mathscr{A}_{1}=\left\{1_{i} 2_{j} 3_{k}: 1_{i} 2_{j} \in \mathscr{F}, k=1, \ldots, n\right\}, \mathscr{P}_{1}=\mathscr{A}_{1} \downarrow, \\
& \mathscr{B}=\left\{2_{j}: 2_{j} \notin \mathscr{A}_{1} \downarrow\right\}, \mathscr{P}_{2}=\mathscr{B} \uparrow, \\
& \mathscr{P}_{3}=\mathscr{P} \backslash\left(\mathscr{P}_{1} \cup \mathscr{P}_{2}\right) .
\end{aligned}
$$

It is easy to see that $\left\{\mathscr{P}_{1}, \mathscr{P}_{2}, \mathscr{P}_{3}\right\}$ is a partition of $\mathscr{P} . \mathscr{P}_{2} \cong\left(K_{1, l} \times K_{1, n}\right) \times \bar{b}$, where \bar{b} is a $|\mathscr{B}|$-element antichain.

Obviously, \mathscr{A}_{1} is an antichain and $\left.\mathscr{P}_{1}=\mathscr{A}_{1}\right\rceil . \mathscr{A}_{1}$ is disjoint from \mathscr{F} since \emptyset and all the singletons are in \mathscr{F}, and \mathscr{F} contains no maximal chain, so each $1_{i} 2_{j} \in \mathscr{F}$ implies $1_{i} 2_{j} 3_{k} \notin \mathscr{F}$ for $k=1, \ldots, n$.

Next, we find an antichain $\mathscr{A}_{2} \subseteq \mathscr{P}_{2}$ disjoint from \mathscr{F} such that $\mathscr{P}_{2} \subseteq \mathscr{A}_{2} \uparrow$. To do this, we shall break down \mathscr{P}_{2} into smaller pieces. For each $2_{j} \in \mathscr{P}_{2}$, define $\mathscr{P}_{2, j}=2_{j} \uparrow$. Then $\mathscr{P}_{2}=\bigcup_{j} \mathscr{P}_{2, j}$. Choose a particular $\mathscr{P}_{2, j}$. We want to find an antichain $\mathscr{A}_{2, j} \subset \mathscr{P}_{2, j}$ such that $\mathscr{P}_{2, j} \subseteq \mathscr{A}_{2, j} \uparrow$ and $\mathscr{A}_{2, j}$ is disjoint from $\mathscr{F} .\left\{2_{j}\right\}$ is not a satisfactory choice for $\mathscr{A}_{2, j}$ since $2_{j} \in \mathscr{\mathscr { H }}$ (remember that all singletons are in $\mathscr{\mathscr { F }}$). The next obvious choice to check is the set of all doubletons in $\mathscr{P}_{2, j}$. We know that each $1_{i} 2_{j} \notin \mathscr{F}$ since otherwise we would have $2_{j} \in \mathscr{P}_{1}$. Unfortunately, there is no guarantee that every $2_{j} 3_{k} \notin \mathscr{F}$. But we will make this choice whenever possible; i.e., if $\left\{2_{j} 3_{k}: k=1, \ldots, n\right\} \cap \mathscr{F}=\emptyset$ then let

$$
\mathscr{A}_{2, i}=\left\{1_{i} 2_{j}: i=1, \ldots, l\right\} \cup\left\{2_{j} 3_{k}: k=1, \ldots, n\right\} .
$$

When $\left\{2_{j} 3_{k}: k=1, \ldots, n\right\} \cap \mathscr{F} \neq \emptyset$ we will choose $\mathscr{A}_{2, j}$ as close as possible to the choice just described. We will modify the choice by replacing $2_{j} 3_{k}$ by $1_{1} 2_{j} 3_{k}$ for each $2_{j} 3_{k} \in \mathscr{F}$. Since \mathscr{F} contains no maximal chain of \mathscr{P}, we know that $1_{1} 2_{j} 3_{k} \notin \cdot \overline{\mathcal{F}}$ whenever $2_{j} 3_{k} \in \mathscr{F}$. This choice necessitates dropping $1_{1} 2_{j}$ from $\mathscr{A}_{2, j}$ to keep it an antichain. To put this in the proper notation, if $\left\{2_{j} 3_{k}: k=1, \ldots, n\right\} \cap \mathscr{F} \neq \emptyset$ then let

$$
\begin{aligned}
\mathscr{A}_{2, j}= & \left\{1_{1} 2_{j} 3_{k}: 2_{j} 3_{k} \in \mathscr{\mathscr { F }}, k=1, \ldots, n\right\} \\
& \cup\left(\left\{2_{j} 3_{k}: k=1, \ldots, n\right\} \backslash \mathscr{F}\right) \\
& \cup\left\{1_{i} 2_{j}: i=2, \ldots, l\right\} .
\end{aligned}
$$

By either definition, $\mathscr{A}_{2, j}$ is an antichain disjoint from \mathscr{F}, and $2_{j} \uparrow \subseteq \mathscr{A}_{2, j} \uparrow$. We have just described the choice of a particular $\mathscr{A}_{2, j}$. Apply the same method for every j for which $\mathscr{P}_{2, j}$ is defined. Then let \mathscr{A}_{2} be the union of the $\mathscr{A}_{2, j}$'s. \mathscr{A}_{2} is an antichain since every element of any $\mathscr{A}_{2, j}$ includes 2_{j} and no $2_{j^{\prime}}$ for any $j^{\prime} \neq j$. Thus \mathscr{A}_{2} is an antichain disjoint from \mathscr{F} and $\mathscr{P}_{2} \subseteq \mathscr{A}_{2} \uparrow$. In fact, $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ is an antichain since $\mathscr{A}_{1} \subset \max \mathscr{P}$ and each element of \mathscr{A}_{2} includes a 2_{j} such that $2_{j} \notin \mathscr{A}_{1} \downarrow$. So $\mathscr{A}_{1} \cup \mathscr{A}_{2}$ is an antichain disjoint from \mathscr{F} and $\mathscr{P}_{1} \cup \mathscr{P}_{2} \subseteq\left(\mathscr{A}_{1} \cup \mathscr{A}_{2}\right) \uparrow$.

Another fact we will need is that $\mathscr{A}_{2} \downarrow \cap \mathscr{P}_{3} \subset \mathscr{F} . \mathscr{A}_{2} \uparrow \subset \mathscr{P}_{2} \uparrow=\mathscr{P}_{2}$, leaving just $\mathscr{A}_{2} \upharpoonleft \cap \mathscr{P}_{3} \subset \mathscr{F}$ to be verified. Since \emptyset and all singletons are in \mathscr{F}, the only way this could fail is if there is some $X \in\left(\mathscr{A}_{2} \upharpoonleft \cap \mathscr{P}_{3}\right) \mathscr{F}$ where $|X|=2$. Assume such an X
exists. Then there exists $Y \in \mathscr{A}_{2}$ such that $X \subset Y$ and $|Y|=3 .|Y|=3$ and $Y \in \mathscr{A}_{2}$ imply that $Y=1_{1} 2_{j} 3_{k}$ for some j, k such that $2_{j} 3_{k} \in \mathscr{F}$. So $X \in\left\{1_{1} 2_{j}, 1_{1} 3_{k}, 2_{j} 3_{k}\right\}$. We can eliminate the case $X=2_{j} 3_{k}$ since $2_{j} 3_{k} \in \mathscr{F}$ (also $2_{j} 3_{k} \in \mathscr{P}_{2}$). We can eliminate the case $X=1_{1} 3_{k}$ since $1_{1} 2_{1} \in \mathscr{F}$, so $1_{1} 2_{1} 3_{k} \in \mathscr{A}_{1}$ and $1_{1} 3_{k} \in \mathscr{A}_{1} \downarrow=\mathscr{P}_{1}$. So $X=1_{1} 2_{j}$. $1_{1} 2_{j}=X \in \mathscr{P}_{3}$ implies $1_{1} 2_{j} \notin \mathscr{P}_{2}$, so $2_{j} \in \mathscr{A}_{1} \downarrow$. But $Y=1_{1} 2_{j} 3_{k} \in \mathscr{A}_{2} \subset \mathscr{P}_{2}$ implies $2_{j} \notin$ $\mathscr{A}_{1} \downarrow$. With this contradiction, we conclude that $\mathscr{A}_{2} \downarrow \cap \mathscr{P}_{3} \subset \mathscr{F}$.

For each $i \in\{1, \ldots, l\}$ such that $1_{i} \uparrow \cap \mathscr{P}_{3} \neq \emptyset, 1_{i} \uparrow \cap \mathscr{P}_{3}$ is skeletal as the following two cases show. If $1_{i} \notin \mathscr{P}_{1}$, then $1_{i} \uparrow \cap \mathscr{P}_{3}=1_{i} \uparrow \backslash\left(\mathscr{P}_{1} \cup \mathscr{P}_{2}\right)=1_{i} \uparrow \mathscr{P}_{2}=1_{i} \uparrow \bigcup_{2_{j} \in \mathscr{B}} 1_{i} 2_{j} \uparrow$ $\cong K_{1, m-|\mathscr{F}|} \times K_{1, n}$. We know this product is skeletal since it follows almost immediately from Lemma 4 that $K_{1, p} \times K_{1, q}$ is skeletal for every $p, q \in \mathbb{N}$. (See also [3, Theorem 3.9].) Now suppose $1_{i} \in \mathscr{P}_{1}$. This means there is some $j \in\{1, \ldots, m\}$ for which $1_{i} 2_{j} \in \mathscr{F}$, and hence $\left\{1_{i} 2_{j} 3_{k}: k=1, \ldots, n\right\} \subseteq \mathscr{A}_{1}$, so $\left\{1_{i} 3_{k}: k=1, \ldots, n\right\} \subseteq \mathscr{P}_{1}$. So $1_{i} \uparrow \cap \mathscr{P}_{3} \subseteq\left\{1_{i} 2_{j}: j=1, \ldots, m\right\} \cup\left\{1_{i} 2_{j} 3_{k}: j=1, \ldots, m ; k=1, \ldots, n\right\}$. For $j=1, \ldots, m$,

$$
1_{i} 2_{j} \in \mathscr{F} \Leftrightarrow\left\{1_{i} 2_{j} 3_{k}: k=1, \ldots, n\right\} \subset \mathscr{P}_{1} \Leftrightarrow \mathbf{1}_{i} 2_{j} \in \mathscr{P}_{1}
$$

and

$$
\left\{1_{i} 2_{j} 3_{k}: k=1, \ldots, n\right\} \subset \mathscr{P}_{2} \Leftrightarrow 2_{j} \in \mathscr{B} \Leftrightarrow 1_{i} 2_{j} \in \mathscr{P}_{2} .
$$

Hence, $1_{i} \uparrow \cap \mathscr{P}_{3} \cong \sum_{\bar{r}} K_{1, n}$ where $r=m-|\mathscr{B}|-\left|\left\{1_{i} 2_{j} \in \mathscr{F}\right\}\right|$ and \bar{r} denotes an r-element antichain. We know that $\sum_{\bar{r}} K_{1, n}$ is skeletal since it is clear that $K_{1, n}$ is skeletal, and it is easy to see that the cardinal sum of skeletal posets is skeletal. (This is an easy and special case of Theorem 2.3 in [3] which is concerned with lexicographic sums in general.)

Finally, we find an antichain \mathscr{A}_{3} in \mathscr{P}_{3} such that \mathscr{A}_{3} is disjoint from \mathscr{F} and $\mathscr{P}_{3} \subset \mathscr{A}_{3} \uparrow$. For each $i=1, \ldots, l$, if $1_{i} \uparrow \cap \mathscr{P}_{3}=\emptyset$, then put $\mathscr{A}_{3, i}=\emptyset$, otherwise pick $\mathscr{A}_{3, i}$ a maximal antichain of $1_{i} \uparrow \cap \mathscr{P}_{3}$ disjoint from \mathscr{F}, which we know is possible by the following. Since $1_{i} \uparrow \cap \mathscr{P}_{3}$ is skeletal, if $1_{i} \uparrow \cap \mathscr{P}_{3} \cap \mathscr{F}$ is a fibre of $1_{i} \uparrow \cap \mathscr{P}_{3} \neq \emptyset$, then it contains a maximal chain of $1_{i} \uparrow \cap \mathscr{P}_{3}$ whose union with $\left\{\emptyset, 1_{i}\right\}$ is a maximal chain of \mathscr{P} contained in \mathscr{F}, a contradiction. Thus, $1_{i} \uparrow \cap \mathscr{P}_{3} \cap \mathscr{F}$ is not a fibre of $1_{i} \uparrow \cap \mathscr{P}_{3}$ and we can pick $\mathscr{A}_{3, i}$ a maximal antichain of $1_{i} \uparrow \cap \mathscr{P}_{3}$ disjoint from $\mathscr{A}_{3}=\bigcup_{i=1}^{l} \mathscr{A}_{3, i} . \mathscr{A}_{3}$ is an antichain since each $\mathscr{A}_{3, i}$ is an antichain, and each element of any $\mathscr{A}_{3, i}$ includes 1_{i}, making it impossible for elements of distinct $\mathscr{A}_{3, i}$'s to be comparable. So \mathscr{A}_{3} is an antichain disjoint from \mathscr{F} and $\mathscr{P}_{3} \subseteq \mathscr{A}_{3} \uparrow$. Recall $\left.\mathscr{A}_{2}\right\rceil \cap$ $\mathscr{P}_{3} \subset \mathscr{F}_{\text {, }}$, and $\mathscr{A}_{1} \downarrow=\mathscr{P}_{1}$, so $\mathscr{A}_{3} \subset \mathscr{P}_{3} \backslash\left(\mathscr{A}_{1} \uparrow \cup \mathscr{A}_{2} \downarrow\right)$. Thus, $\mathscr{A}_{1} \cup \mathscr{A}_{2} \cup \mathscr{A}_{3}$ is a maximal antichain of $\mathscr{P}=\mathscr{P}_{1} \cup \mathscr{P}_{2} \cup \mathscr{P}_{3}$ and is disjoint from \mathscr{F}, which we assumed was a fibre.

This contradiction completes the proof.

Acknowledgements

I am grateful to Prof. Bill Sands for advising me on how to make this paper presentable.

References

[1] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, MA, 1990.
[2] D. Duffus, B. Sands, P. Winkler, Maximal chains and antichains in Boolean lattices, SIAM J. Discrete Math. 3 (2) (May 1990) 197-205.
[3] P. Gibson, R. Maltby, Posets in which every cutset meets every fibre, preprint, 1993.
[4] R. Maltby, Cutsets and fibres in partially ordered sets, Master's thesis, University of Calgary, 1993.
[5] R. Maltby, S. Williamson, A note on maximal antichains in ordered sets, Order 9 (1992) 55-67.

[^0]: * E-mail: maltby@cs.sfu.ca.
 ${ }^{1}$ These results are taken from the author's Master's thesis [4], during the writing of which the author was supported by the NSERC Operating Grants of Profs. Bill Sands, Richard Guy, and Karen Seyffarth.

