

Discrete Mathematics 194 (1999) 195-203

Every cutset meets every fibre in certain poset products

DISCRETE MATHEMATICS

Roy Maltby^{*,1}

Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Received 27 June 1995; revised 17 July 1997; accepted 11 August 1997

Abstract

A cutset of a partially ordered set is a subset which meets every maximal chain, and a *fibre* of a partially ordered set is a subset which meets every maximal antichain. A poset is called *skeletal* if every cutset meets every fibre. $K_{1,n}$ stands for the linear sum of a singleton and an *n*-element antichain. Duffus et al. (1990) showed that any Boolean lattice $K_{1,1} \times \cdots \times K_{1,1}$ is skeletal. Gibson and Maltby (1993) showed that $K_{1,m} \times K_{1,n}$ is skeletal and asked if every $K_{1,n_1} \times \cdots \times K_{1,n_k}$ is skeletal. We prove that $K_{1,1} \times \cdots \times K_{1,1} \times K_{1,m} \times K_{1,n}$ and $K_{1,l} \times K_{1,m} \times K_{1,n}$ are skeletal. (c) 1999 Elsevier Science B.V. All rights reserved

AMS classification: 06A07

Keywords: Poset; Partial order; Fibre; Cutset; Chain; Antichain; Skeletal

A *cutset* of a poset is a subset which meets every maximal chain, and a *fibre* of a poset is a subset which meets every maximal antichain. Call a poset *skeletal* if it satisfies the following equivalent conditions:

- (i) Every fibre meets every cutset.
- (ii) Every red-blue colouring of the elements of the poset has a red maximal chain or a blue maximal antichain.
- (iii) Every fibre contains a maximal chain.
- (iv) Every cutset contains a maximal antichain.

The equivalence of (ii)–(iv) to each other is explained by Duffus et al. in [2], and their equivalence to (i) is explained by Gibson and Maltby in [3]. The main result of [2] is that finite Boolean lattices are skeletal. Gibson and Maltby [3] have several results concerning the skeletalness of posets, including an examination of certain poset operations preserving or destroying skeletalness. The main relevant result of [5], by Maltby and Williamson, is that the union of the *k*th and (k+1)st levels of the product of

^{*} E-mail: maltby@cs.sfu.ca.

¹ These results are taken from the author's Master's thesis [4], during the writing of which the author was supported by the NSERC Operating Grants of Profs. Bill Sands, Richard Guy, and Karen Seyffarth.

t copies of the whole numbers (i.e. $\{(x_1, \ldots, x_t): \sum_{i=1}^t x_i = k\} \cup \{(x_1, \ldots, x_t): \sum_{i=1}^t x_i = k+1\}$) is skeletal, unless t = 2 and k is congruent to 2 modulo 3.

For any $n \in \mathbb{N}$, define $K_{1,n}$ to be the linear sum of a singleton and an *n*-element antichain. For instance, $K_{1,5}$ is shown in Fig. 1.

For any posets P_1, \ldots, P_k , define the *direct product* $P_1 \times \cdots \times P_k$ to be the set of k-tuples (p_1, \ldots, p_k) having each $p_i \in P_i$ and ordered by: $(p_1, \ldots, p_k) \leq (p'_1, \ldots, p'_k)$ if and only if each $p_i \leq p'_i$ in P_i . Note that, up to isomorphism, direct product is a commutative and associative binary operation on posets.

If $P \times Q$ is skeletal, then each of P and Q is skeletal [3, Theorem 3.3], but counterexamples to the converse of this are so easy to find that it is perhaps surprising that Questions 1 and 2 remain unanswered. The question from [3] that we address in this paper is:

Question 1. Is $K_{1,m_1} \times \cdots \times K_{1,m_k}$ skeletal for every $k \in \mathbb{N}$ and all $m_1, \ldots, m_k \in \mathbb{N}$?

In [3], Gibson and Maltby show that the answer is yes for $k \leq 2$. In [2], Duffus et al. show that the answer is yes when $m_1 = \cdots = m_k = 1$ (i.e. for finite Boolean lattices). In this paper, we prove positive answers in two more special cases: when $m_1 = \cdots = m_{k-2} = 1$ (Theorem 5) and when k = 3 (Theorem 6).

A more general question in [3] is:

Question 2. If P_1 , P_2 , and P_3 are posets such that $P_1 \times P_2$, $P_1 \times P_3$, and $P_2 \times P_3$ are all skeletal, must $P_1 \times P_2 \times P_3$ also be skeletal?

Theorem 6 provides a positive answer when each P_i is some K_{1,n_i} . Gibson and Maltby [3] achieved a positive answer to this question in the special case of distributive lattices. We say that Question 2 is more general than Question 1 since if the answer to Question 2 is yes, then by induction the answer is yes for the direct product of any number of posets whose pairwise products are skeletal and, in particular, the answer to Question 1 would be yes as well.

We abbreviate $P \times \cdots \times P$ (r times) by P^r . We denote set difference by '\'; that is, $A \setminus B = \{a \in A : a \notin B\}$. We will use the following notation adapted from Davey and Priestley's book [1]. For any X a subset of a poset P, define

 $X\uparrow = \{ y \in P: \ y \ge x \text{ for some } x \in X \},\$ $X\uparrow = \{ y \in P: \ y > x \text{ for some } x \in X \} \backslash X,\$ $X\downarrow = \{ y \in P: \ y \le x \text{ for some } x \in X \},\$

$$X_{\downarrow}^{\uparrow} = \{ y \in P \colon y < x \text{ for some } x \in X \} \setminus X,$$
$$X_{\downarrow}^{\uparrow} = X_{\uparrow}^{\uparrow} \cup X_{\downarrow}.$$

Actually, we will only use the symbols \uparrow and \downarrow with antichains in this paper, making the 'X' parts of the definitions unnecessary. We will abbreviate this notation slightly for singletons by dropping the curly braces. For instance, $x\uparrow = \{x\}\uparrow$.

It will be very useful to refer to the construction in the following obvious lemma.

Lemma 3. Let $k \in \mathbb{N}$ and $n_1, \ldots, n_k \in \mathbb{N}$. Let E_1, \ldots, E_k be pairwise disjoint sets with $|E_i| = n_i$ for each *i*. Define a poset \mathcal{P} by

$$\mathscr{P} = \left\{ X \subseteq \bigcup_{i=1}^{k} E_i : |X \cap E_i| \leq 1 \text{ for } i = 1, \dots, k \right\}$$

ordered by set containment. Then $\mathscr{P} \cong K_{1,n_1} \times \cdots \times K_{1,n_k}$.

The statement of Lemma 4 is less than elegant, but having this statement allows us to shorten the proofs of Theorems 5 and 6.

Lemma 4. Let $k \in \mathbb{N}$ and $n_1, \ldots, n_k \in \mathbb{N}$. Suppose $K_{1,m_1} \times \cdots \times K_{1,m_k}$ is skeletal for all $(m_1, \ldots, m_k) < (n_1, \ldots, n_k)$ in \mathbb{N}^k . Construct $\mathscr{P} \cong K_{1,n_1} \times \cdots \times K_{1,n_k}$ as described in Lemma 3. If \mathscr{F} is a fibre of \mathscr{P} which contains no maximal chain of \mathscr{P} , then we have $\{x\} \in \mathscr{F}$ for every i such that $n_i > 1$ and every $x \in E_i$.

Proof. Suppose $n_i > 1$, $x \in E_i$, and $\{x\} \notin \mathcal{F}$. Since $\{\emptyset\}$ is a maximal antichain of \mathcal{P} , we know that $\emptyset \in \mathcal{F}$. Let $\mathcal{P}' = \mathcal{P} \setminus \{x\}$. So $\mathcal{P} \cong K_{1,n_1} \times \cdots \times K_{1,n_{i-1}} \times K_{1,n_{i-1}} \times K_{1,n_{i+1}} \times \cdots \times K_{1,n_k}$ and, hence, \mathcal{P}' is skeletal. If \mathcal{A} is a maximal antichain of \mathcal{P}' disjoint from \mathcal{F} , then $\emptyset \notin \mathcal{A}$, and thus it is easy to see that $\mathcal{A} \cup \{\{x\}\}$ is a maximal antichain of \mathcal{P}' is a fibre of disjoint from \mathcal{F} , contradicting \mathcal{F} being a fibre. This tells us that $\mathcal{F} \cap \mathcal{P}'$ is a fibre of \mathcal{P}' . Hence, since \mathcal{P}' is skeletal, there exists $\mathcal{C} \subseteq \mathcal{P}' \cap \mathcal{F}$ a maximal chain of \mathcal{P}' . But then $\mathcal{C} \subseteq \mathcal{F}$ is a maximal chain of \mathcal{P} , a contradiction. \Box

Theorem 5. Let r, m, and n be natural numbers. Then $(K_{1,1})^r \times K_{1,m} \times K_{1,n}$ is skeletal.

Proof. Assume for a contradiction that the theorem is false. Then there is some $(r, m, n) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ for which the theorem fails. Pick (r, m, n) minimal in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ so that $(K_{1,1})^r \times K_{1,m} \times K_{1,n}$ is not skeletal. Since direct product is commutative, we may assume, without loss of generality, that $n \ge m$. Put $n_1 = \cdots = n_r = 1$, $n_{r+1} = m$, and $n_{r+2} = n$. Then construct \mathscr{P} with k = r + 2 as in Lemma 3, so we have $\mathscr{P} \cong (K_{1,1})^r \times K_{1,m} \times K_{1,m}$.

Since \mathscr{P} is not skeletal, it has a fibre \mathscr{F} which contains no maximal chain. $\emptyset \in \mathscr{F}$ since $\{\emptyset\}$ is a maximal antichain. Furthermore, Lemma 4 tells us that if m > 1 then $\{s\} \in \mathscr{F}$ for each $s \in E_{r+1}$, and if n > 1 then $\{t\} \in \mathscr{F}$ for each $t \in E_{r+2}$.

We now proceed with the method of [1]. We define sets $X \ddagger$ analogous to the 'lexical chains' used in [1]. Let $X \in \mathscr{P}$. Define

$$X \downarrow = \{X, X \setminus E_1, X \setminus (E_1 \cup E_2), \dots, X \setminus (E_1 \cup E_2 \cup \dots \cup E_{r+2}) = \emptyset\},$$

$$X \uparrow = \{X, X \cup E_1, X \cup E_1 \cup E_2, \dots, X \cup E_1 \cup E_2 \cup \dots \cup E_r\}$$

$$\cup \{X \cup E_1 \cup \dots \cup E_r \cup \{s\} : s \in E_{r+1}\}$$

$$\cup \{X \cup E_1 \cup \dots \cup E_r \cup \{s\} \cup \{t\} : s \in E_{r+1}, t \in E_{r+2}\}.$$

Notice that $X \downarrow \subseteq X \downarrow$ and $X^{\uparrow} \subseteq X^{\uparrow}$. Put $X^{\uparrow}_{\downarrow} = X^{\uparrow} \cup X \downarrow$, so every $X^{\uparrow}_{\downarrow}$ is a union of maximal chains of \mathscr{P} . For all $\mathscr{X} \subseteq \mathscr{P}$, define $\mathscr{X}^{\uparrow}_{\uparrow} = \bigcup_{X \in \mathscr{X}} X^{\uparrow}_{\uparrow}, \mathscr{X}^{\downarrow}_{\downarrow} = \bigcup_{X \in \mathscr{X}} X^{\downarrow}_{\downarrow}$, and $\mathscr{X}^{\uparrow}_{\downarrow} = \mathscr{X}^{\uparrow}_{\downarrow} \cup \mathscr{X}^{\downarrow}_{\downarrow}$.

For any $\mathscr{S} \subseteq \mathscr{F}$, call \mathscr{S} critical if there do not exist $\mathscr{A}, \mathscr{B} \subseteq \mathscr{P}$ such that (1) $\mathscr{A} \cup \mathscr{B}$ is an antichain disjoint from \mathscr{F} ;

- (2) $\mathscr{S} \subseteq \mathscr{A} \downarrow \cup \mathscr{B} \uparrow;$
- (3) $\mathscr{A} \subseteq \mathscr{G}^{\uparrow}, \mathscr{B} \subseteq \mathscr{G}_{\downarrow}.$

Notice that \mathscr{F} is critical since if there were \mathscr{A} and \mathscr{B} satisfying (1) and (2) for $\mathscr{S} = \mathscr{F}$, then any maximal antichain containing $\mathscr{A} \cup \mathscr{B}$ (of which there would have to be one) would be disjoint from \mathscr{F} , contradicting \mathscr{F} being a fibre. Furthermore, since \mathscr{F} is finite, \mathscr{F} must contain a minimal critical set \mathscr{M} . That is, \mathscr{M} is critical but no proper subset of \mathscr{M} is critical. Notice that $\mathscr{M} \neq \emptyset$ since for $\mathscr{S} = \emptyset$, $\mathscr{A} = \mathscr{B} = \emptyset$ satisfy (1)-(3).

For each $X \in \mathcal{M}$ and each $Y \in X^{\uparrow} \setminus \mathcal{F}$, define $\operatorname{rank}(X, Y)$ to be the least *i* such that $Y \subseteq X \cup E_1 \cup \cdots \cup E_i$. For each $X \in \mathcal{M}$ and each $Y \in X \downarrow \setminus \mathcal{F}$, define $\operatorname{rank}(X, Y)$ to be the least *i* such that $Y = X \setminus (E_1 \cup E_2 \cup \cdots \cup E_i)$. For each $X \in \mathcal{M}$, define $\operatorname{rank}(X) = \min\{\operatorname{rank}(X, Y) : Y \in X^{\uparrow}_{\downarrow} \setminus \mathcal{F}\}$ — we know that $X^{\uparrow}_{\downarrow} \setminus \mathcal{F} \neq \emptyset$ since $X^{\uparrow}_{\downarrow}$ is a union of maximal chains of \mathcal{P} , and \mathcal{F} contains no maximal chain of \mathcal{P} .

Let $M \in \mathcal{M}$ such that $\operatorname{rank}(M) \leq \operatorname{rank}(X)$ for every $X \in \mathcal{M}$. Let $M' \in M^{+}_{\mathcal{F}}$ such that $\operatorname{rank}(M, M') = \operatorname{rank}(M)$. Since $\mathcal{M} \setminus \{M\}$ is not critical, we can pick \mathcal{A}, \mathcal{B} satisfying conditions (1)-(3) for $\mathcal{S} = \mathcal{M} \setminus \{M\}$. Then \mathcal{A}, \mathcal{B} satisfy (1) and (3) for $\mathcal{S} = \mathcal{M}$ also. \mathcal{A}, \mathcal{B} cannot also satisfy (2) since \mathcal{M} is critical, so $M \notin \mathcal{A} \downarrow \cup \mathcal{B}^{\uparrow}$.

We have $M' \in M^{\uparrow}_{\downarrow} M$, so either $M' \in M^{\uparrow}$ or $M' \in M^{\downarrow}_{\downarrow}$. We will examine each of these two cases separately and find that each of them leads to a contradiction.

First suppose $M' \in M^{\uparrow}$. We will find \mathscr{A}' so that $\mathscr{A}', \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S} = \mathscr{M}$, contradicting \mathscr{M} being critical.

Let $\mathscr{A}' = (\mathscr{A} \setminus M' \downarrow) \cup \{M'\}$. We now derive a contradiction by showing that $\mathscr{A}', \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S} = \mathscr{M}$. To see that (3) is satisfied (i.e. $\mathscr{A}' \subseteq \mathscr{M}^{\uparrow}$ and $\mathscr{B} \subseteq \mathscr{M}^{\downarrow}$), observe the following. Since $M' \in \mathscr{M}^{\uparrow}$ and $\mathscr{A}' \setminus \{M'\} \subseteq \mathscr{A} \subseteq \mathscr{M}^{\uparrow}$, we know that $\mathscr{A}' \subseteq \mathscr{M}^{\uparrow}$. And we already knew that $\mathscr{B} \subseteq \mathscr{M}^{\uparrow}$, so (3) is satisfied.

To see that (2) is satisfied (i.e. $\mathcal{M} \subseteq \mathscr{A}' \downarrow \cup \mathscr{B}\uparrow$), observe that $\mathscr{A}' \downarrow \cup \mathscr{B}\uparrow = ((\mathscr{A} \setminus M' \downarrow) \cup \{M'\}) \downarrow \cup \mathscr{B}\uparrow \supseteq \mathscr{A} \downarrow \cup \mathscr{B}\uparrow \supseteq \mathscr{M} \setminus \{M\}$, and $M \in M' \downarrow \subseteq \mathscr{A}' \downarrow$. So $\mathcal{M} \subseteq \mathscr{A}' \downarrow \cup \mathscr{B}\uparrow$. i.e., (2) is satisfied.

Now, we verify that (1) is satisfied (i.e. $\mathscr{A}' \cup \mathscr{B}$ is an antichain disjoint from \mathscr{F}), which takes longer than verifying the other two properties. It is obvious that

198

 $\mathscr{A}' \cup \mathscr{B}$ is disjoint from \mathscr{F} . Since $\mathscr{A} \cup \mathscr{B}$ is an antichain, we only need to verify that $M' \notin (\mathscr{A}' \setminus \{M'\}) \uparrow$ and $M' \notin \mathscr{B} \uparrow$ to show that (1) is satisfied. Since $M' \in M \uparrow$ and $M \notin \mathscr{A} \downarrow$, we know that $M' \notin \mathscr{A} \downarrow \supset (\mathscr{A}' \setminus \{M'\}) \downarrow$. Since $\mathscr{A}' \setminus \{M'\} = \mathscr{A} \setminus \{M'\} \downarrow$, obviously $M' \notin (\mathscr{A}' \setminus \{M'\}) \uparrow$. So $M' \notin (\mathscr{A}' \setminus \{M'\}) \downarrow$, which shows that \mathscr{A}' is an antichain. Why is $M' \in \mathscr{B} \uparrow$ impossible? Let $B \in \mathscr{B}$. $B \in \mathscr{M} \downarrow \setminus \mathscr{M}$ and so $B \cap E_1 = \emptyset$. But $M' \in M \uparrow \land$ $\{M\}$ and so $M' \cap E_1 \neq \emptyset$, hence $M' \notin B$. Since there exists $B' \in \mathscr{M}$ such that $B \in B' \downarrow$ and rank $(B') \ge \operatorname{rank}(M)$, we know that $B \cap (E_1 \cup \cdots \cup E_{\operatorname{rank}(M)}) = \emptyset$. Meanwhile, $M' \setminus M$ $\subseteq E_1 \cup \cdots \cup E_{\operatorname{rank}(M)}$, and we know $B \setminus M \neq \emptyset$ since $M \notin \mathscr{B} \uparrow$. So clearly $\emptyset \neq B \setminus$ $M \notin M' \setminus M$, and therefore $B \notin M'$. Hence $M' \notin \mathscr{B} \uparrow$. But then $\mathscr{A}', \mathscr{B}$ satisfy (1)-(3) for $\mathscr{S} = \mathscr{M}$, a contradiction. So the case $M' \in M \uparrow$ cannot occur.

Now that we have eliminated the case $M' \in M^{\uparrow}$, suppose that $M' \in M^{\downarrow}$. So M' = $M \setminus (E_1 \cup E_2 \cup \cdots \cup E_{\operatorname{rank}(M)})$. Let $\mathscr{B}' = (\mathscr{B} \setminus M' \uparrow) \cup \{M'\}$. Let $\mathscr{S} = \mathscr{M}$. Then, dually to the case $M' \in M^{\uparrow}$, (2) and (3) are satisfied by $\mathscr{A}, \mathscr{B}'$. That $\mathscr{A} \cup \mathscr{B}'$ is disjoint from \mathscr{F} and \mathscr{B}' is an antichain are also dual to facts in the case $M' \in M^{\uparrow}$. But to show that $\mathscr{A} \cap M' \uparrow = \emptyset$ and therefore (1) is satisfied requires more work in this case. Let $A \in \mathscr{A}$. $A \in \mathscr{M} \upharpoonright \mathscr{M}$ and so $A \cap E_1 \neq \emptyset$. But $M' \in M \downarrow \backslash \{M\}$ and so $M' \cap E_1 = \emptyset$, hence $A \not\subseteq M'$. It remains only to show that $M' \not\subseteq A$. For this we will need the fact that $|E_1| = \cdots = |E_{\text{rank}(M)}| = 1$ which we now prove. It is obvious that this fact holds if $\operatorname{rank}(M) \leq r$. It is also clear that $\operatorname{rank}(M) < r+2$ since if $\operatorname{rank}(M) = r+2$ then $M' = \emptyset$, contradicting $M' \notin \mathcal{F}$. So the only other possibility to consider is rank(M) = r + 1while M' is a singleton subset of E_{r+2} . In this case, the fact that $M' \notin \mathscr{F}$ together with Lemma 4 tells us that $|E_{r+2}| = 1$. Considering our assumption that $|E_{r+1}| = m \le n =$ $|E_{r+2}|$, this tells us that $|E_{r+1}| = 1$. This shows that $|E_1| = \cdots = |E_{\operatorname{rank}(M)}| = 1$. Since there exists $A' \in \mathcal{M}$ such that $A \in A' \uparrow$ and rank $(A') \ge \operatorname{rank}(M)$, we know that $1 = |A \cap E_1|$ $= |A \cap E_2| = \cdots = |A \cap E_{\operatorname{rank}(M)}|$. So $M \setminus M' \subseteq E_1 \cup \cdots \cup E_{\operatorname{rank}(M)} \subseteq A$. We know that $M \notin \mathcal{A} \downarrow$ so $M \notin A$, or, equivalently, $M \setminus A \neq \emptyset$. Since $M \setminus A \neq \emptyset$ while $M \setminus M' \subseteq A$, we know that $(M \cap M') \setminus A \neq \emptyset$, i.e. $M' \setminus A \neq \emptyset$, so $M' \notin A$. Thus $M' \notin \mathscr{A} \uparrow$. But then $\mathscr{A}, \mathscr{B}'$ satisfy (1)–(3) for $\mathscr{S} = \mathscr{M}$, a contradiction. So the case $M' \in M_{\downarrow}$ cannot occur.

With this contradiction, we have proven that \mathscr{F} contains a maximal chain. \Box

Theorem 6. Let l, m, and n be natural numbers. Then $K_{1,l} \times K_{1,m} \times K_{1,n}$ is skeletal.

Proof. Assume for a contradiction that the theorem is false. Then there is some $(l,m,n) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ for which the theorem fails. Pick (l,m,n) minimal in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ so that $K_{1,l} \times K_{1,m} \times K_{1,n}$ is not skeletal.

Let $E_1 = \{1_1, 1_2, \dots, 1_l\}$, $E_2 = \{2_1, 2_2, \dots, 2_m\}$, and $E_3 = \{3_1, 3_2, \dots, 3_n\}$. Let $\mathscr{P} = \{X \subseteq \bigcup_{i=1}^3 E_i : |X \cap E_i| \le 1$ for $i = 1, 2, 3\}$. Order \mathscr{P} by set containment. Then $\mathscr{P} \cong K_{1,l} \times K_{1,m} \times K_{1,n}$ by Lemma 1. We will abbreviate set notation by omitting commas and parentheses. For instance, $1_1 2_1$ will stand for $\{1_1, 2_1\}$. As an example of the construction, Fig. 2 shows $K_{1,2} \times K_{1,3} \times K_{1,5}$ with most of the points labelled.

Let \mathscr{F} be a fibre of \mathscr{P} which contains no maximal chain of \mathscr{P} . Then $\emptyset \in \mathscr{F}$ since $\{\emptyset\}$ is a maximal antichain of \mathscr{P} . We know that l, m, n > 1 since otherwise $K_{1,l} \times K_{1,m} \times K_{1,n}$

Fig. 2.

is skeletal by Theorem 5. So Lemma 4 tells us that \mathscr{F} must include every singleton in \mathscr{P} .

Since the set of all doubletons in \mathcal{P} is a maximal antichain, one of them must be in \mathcal{F} . Assume, without loss of generality, that $l_1 2_1$ is in \mathcal{F} .

We will now construct $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{A}_3$ a maximal antichain of \mathscr{P} disjoint from \mathscr{F} . Make the following definitions.

$$\mathcal{A}_{1} = \{1_{i}2_{j}3_{k} : 1_{i}2_{j} \in \mathcal{F}, \ k = 1, \dots, n\}, \ \mathcal{P}_{1} = \mathcal{A}_{1} \downarrow,$$
$$\mathcal{B} = \{2_{j} : 2_{j} \notin \mathcal{A}_{1} \downarrow\}, \ \mathcal{P}_{2} = \mathcal{B} \uparrow,$$
$$\mathcal{P}_{3} = \mathcal{P} \backslash (\mathcal{P}_{1} \cup \mathcal{P}_{2}).$$

It is easy to see that $\{\mathscr{P}_1, \mathscr{P}_2, \mathscr{P}_3\}$ is a partition of \mathscr{P} . $\mathscr{P}_2 \cong (K_{1,l} \times K_{1,n}) \times \overline{b}$, where \overline{b} is a $|\mathscr{B}|$ -element antichain.

Obviously, \mathscr{A}_1 is an antichain and $\mathscr{P}_1 = \mathscr{A}_1 \uparrow$. \mathscr{A}_1 is disjoint from \mathscr{F} since \emptyset and all the singletons are in \mathscr{F} , and \mathscr{F} contains no maximal chain, so each $1_i 2_j \in \mathscr{F}$ implies $1_i 2_j 3_k \notin \mathscr{F}$ for k = 1, ..., n.

Next, we find an antichain $\mathscr{A}_2 \subseteq \mathscr{P}_2$ disjoint from \mathscr{F} such that $\mathscr{P}_2 \subseteq \mathscr{A}_2 \uparrow$. To do this, we shall break down \mathscr{P}_2 into smaller pieces. For each $2_j \in \mathscr{P}_2$, define $\mathscr{P}_{2,j} = 2_j \uparrow$. Then $\mathscr{P}_2 = \bigcup_j \mathscr{P}_{2,j}$. Choose a particular $\mathscr{P}_{2,j}$. We want to find an antichain $\mathscr{A}_{2,j} \subset \mathscr{P}_{2,j}$ such that $\mathscr{P}_{2,j} \subseteq \mathscr{A}_{2,j} \uparrow$ and $\mathscr{A}_{2,j}$ is disjoint from \mathscr{F} . $\{2_j\}$ is not a satisfactory choice for $\mathscr{A}_{2,j}$ since $2_j \in \mathscr{F}$ (remember that all singletons are in \mathscr{F}). The next obvious choice to check is the set of all doubletons in $\mathscr{P}_{2,j}$. We know that each $1_i 2_j \notin \mathscr{F}$ since otherwise we would have $2_j \in \mathscr{P}_1$. Unfortunately, there is no guarantee that every $2_j 3_k \notin \mathscr{F}$. But we will make this choice whenever possible; i.e., if $\{2_j 3_k : k = 1, ..., n\} \cap \mathscr{F} = \emptyset$ then let

$$\mathscr{A}_{2,i} = \{1_i 2_j : i = 1, \dots, l\} \cup \{2_j 3_k : k = 1, \dots, n\}$$

When $\{2_j3_k : k = 1, ..., n\} \cap \mathscr{F} \neq \emptyset$ we will choose $\mathscr{A}_{2,j}$ as close as possible to the choice just described. We will modify the choice by replacing 2_j3_k by $1_12_j3_k$ for each $2_j3_k \in \mathscr{F}$. Since \mathscr{F} contains no maximal chain of \mathscr{P} , we know that $1_12_j3_k \notin \mathscr{F}$ whenever $2_j3_k \in \mathscr{F}$. This choice necessitates dropping 1_12_j from $\mathscr{A}_{2,j}$ to keep it an antichain. To put this in the proper notation, if $\{2_j3_k : k = 1, ..., n\} \cap \mathscr{F} \neq \emptyset$ then let

$$\mathcal{A}_{2,j} = \{1_1 2_j 3_k : 2_j 3_k \in \mathscr{F}, k = 1, \dots, n\}$$
$$\cup (\{2_j 3_k : k = 1, \dots, n\} \setminus \mathscr{F})$$
$$\cup \{1_i 2_j : i = 2, \dots, l\}.$$

By either definition, $\mathscr{A}_{2,j}$ is an antichain disjoint from \mathscr{F} , and $2_j \uparrow \subseteq \mathscr{A}_{2,j} \uparrow$. We have just described the choice of a particular $\mathscr{A}_{2,j}$. Apply the same method for every *j* for which $\mathscr{P}_{2,j}$ is defined. Then let \mathscr{A}_2 be the union of the $\mathscr{A}_{2,j}$'s. \mathscr{A}_2 is an antichain since every element of any $\mathscr{A}_{2,j}$ includes 2_j and no $2_{j'}$ for any $j' \neq j$. Thus \mathscr{A}_2 is an antichain disjoint from \mathscr{F} and $\mathscr{P}_2 \subseteq \mathscr{A}_2 \uparrow$. In fact, $\mathscr{A}_1 \cup \mathscr{A}_2$ is an antichain since $\mathscr{A}_1 \subset \max \mathscr{P}$ and each element of \mathscr{A}_2 includes a 2_j such that $2_j \notin \mathscr{A}_1 \downarrow$. So $\mathscr{A}_1 \cup \mathscr{A}_2$ is an antichain disjoint from \mathscr{F} and $\mathscr{P}_1 \cup \mathscr{P}_2 \subseteq (\mathscr{A}_1 \cup \mathscr{A}_2) \uparrow$.

Another fact we will need is that $\mathscr{A}_2 \uparrow \cap \mathscr{P}_3 \subset \mathscr{F}$. $\mathscr{A}_2 \uparrow \subset \mathscr{P}_2 \uparrow = \mathscr{P}_2$, leaving just $\mathscr{A}_2 \downarrow \cap \mathscr{P}_3 \subset \mathscr{F}$ to be verified. Since \emptyset and all singletons are in \mathscr{F} , the only way this could fail is if there is some $X \in (\mathscr{A}_2 \downarrow \cap \mathscr{P}_3) \setminus \mathscr{F}$ where |X| = 2. Assume such an X

exists. Then there exists $Y \in \mathscr{A}_2$ such that $X \subset Y$ and |Y| = 3. |Y| = 3 and $Y \in \mathscr{A}_2$ imply that $Y = 1_1 2_j 3_k$ for some j, k such that $2_j 3_k \in \mathscr{F}$. So $X \in \{1_1 2_j, 1_1 3_k, 2_j 3_k\}$. We can eliminate the case $X = 2_j 3_k$ since $2_j 3_k \in \mathscr{F}$ (also $2_j 3_k \in \mathscr{P}_2$). We can eliminate the case $X = 1_1 3_k$ since $1_1 2_1 \in \mathscr{F}$, so $1_1 2_1 3_k \in \mathscr{A}_1$ and $1_1 3_k \in \mathscr{A}_1 \downarrow = \mathscr{P}_1$. So $X = 1_1 2_j$. $1_1 2_j = X \in \mathscr{P}_3$ implies $1_1 2_j \notin \mathscr{P}_2$, so $2_j \in \mathscr{A}_1 \downarrow$. But $Y = 1_1 2_j 3_k \in \mathscr{A}_2 \subset \mathscr{P}_2$ implies $2_j \notin \mathscr{A}_1 \downarrow$. With this contradiction, we conclude that $\mathscr{A}_2 \uparrow \cap \mathscr{P}_3 \subset \mathscr{F}$.

For each $i \in \{1, ..., l\}$ such that $1_i \uparrow \cap \mathscr{P}_3 \neq \emptyset$, $1_i \uparrow \cap \mathscr{P}_3$ is skeletal as the following two cases show. If $1_i \notin \mathscr{P}_1$, then $1_i \uparrow \cap \mathscr{P}_3 = 1_i \uparrow (\mathscr{P}_1 \cup \mathscr{P}_2) = 1_i \uparrow \vee \mathscr{P}_2 = 1_i \uparrow \vee \bigcup_{2_j \in \mathscr{B}} 1_i 2_j \uparrow \cong K_{1,m-|\mathscr{B}|} \times K_{1,n}$. We know this product is skeletal since it follows almost immediately from Lemma 4 that $K_{1,p} \times K_{1,q}$ is skeletal for every $p, q \in \mathbb{N}$. (See also [3, Theorem 3.9].) Now suppose $1_i \in \mathscr{P}_1$. This means there is some $j \in \{1, ..., m\}$ for which $1_i 2_j \in \mathscr{F}$, and hence $\{1_i 2_j 3_k : k = 1, ..., n\} \subseteq \mathscr{A}_1$, so $\{1_i 3_k : k = 1, ..., n\} \subseteq \mathscr{P}_1$. So $1_i \uparrow \cap \mathscr{P}_3 \subseteq \{1_i 2_j : j = 1, ..., m\} \cup \{1_i 2_j 3_k : j = 1, ..., m\}$. For j = 1, ..., m,

$$1_i 2_j \in \mathscr{F} \Leftrightarrow \{1_i 2_j 3_k : k = 1, \dots, n\} \subset \mathscr{P}_1 \Leftrightarrow 1_i 2_j \in \mathscr{P}_1$$

and

$$\{1_i2_j3_k: k=1,\ldots,n\} \subset \mathscr{P}_2 \Leftrightarrow 2_j \in \mathscr{B} \Leftrightarrow 1_i2_j \in \mathscr{P}_2.$$

Hence, $1_i \uparrow \cap \mathscr{P}_3 \cong \sum_{\overline{r}} K_{1,n}$ where $r = m - |\mathscr{B}| - |\{1_i 2_j \in \mathscr{F}\}|$ and \overline{r} denotes an *r*-element antichain. We know that $\sum_{\overline{r}} K_{1,n}$ is skeletal since it is clear that $K_{1,n}$ is skeletal, and it is easy to see that the cardinal sum of skeletal posets is skeletal. (This is an easy and special case of Theorem 2.3 in [3] which is concerned with lexicographic sums in general.)

Finally, we find an antichain \mathscr{A}_3 in \mathscr{P}_3 such that \mathscr{A}_3 is disjoint from \mathscr{F} and $\mathscr{P}_3 \subset \mathscr{A}_3 \downarrow$. For each i = 1, ..., l, if $1_i \uparrow \cap \mathscr{P}_3 = \emptyset$, then put $\mathscr{A}_{3,i} = \emptyset$, otherwise pick $\mathscr{A}_{3,i}$ a maximal antichain of $1_i \uparrow \cap \mathscr{P}_3$ disjoint from \mathscr{F} , which we know is possible by the following. Since $1_i \uparrow \cap \mathscr{P}_3$ is skeletal, if $1_i \uparrow \cap \mathscr{P}_3 \cap \mathscr{F}$ is a fibre of $1_i \uparrow \cap \mathscr{P}_3 \neq \emptyset$, then it contains a maximal chain of $1_i \uparrow \cap \mathscr{P}_3$ whose union with $\{\emptyset, 1_i\}$ is a maximal chain of \mathscr{P} contained in \mathscr{F} , a contradiction. Thus, $1_i \uparrow \cap \mathscr{P}_3 \cap \mathscr{F}$ is not a fibre of $1_i \uparrow \cap \mathscr{P}_3$ and we can pick $\mathscr{A}_{3,i}$ a maximal antichain of $1_i \uparrow \cap \mathscr{P}_3$ disjoint from $\mathscr{A}_3 = \bigcup_{i=1}^{l} \mathscr{A}_{3,i}$. \mathscr{A}_3 is an antichain since each $\mathscr{A}_{3,i}$ is an antichain, and each element of any $\mathscr{A}_{3,i}$ includes 1_i , making it impossible for elements of distinct $\mathscr{A}_{3,i}$'s to be comparable. So \mathscr{A}_3 is an antichain disjoint from \mathscr{F} and $\mathscr{P}_3 \subseteq \mathscr{A}_3 \uparrow$. Recall $\mathscr{A}_2 \downarrow \cap \mathscr{P}_3 \subset \mathscr{F}$, and $\mathscr{A}_1 \downarrow = \mathscr{P}_1$, so $\mathscr{A}_3 \subset \mathscr{P}_3 \setminus (\mathscr{A}_1 \downarrow \cup \mathscr{A}_2 \downarrow)$. Thus, $\mathscr{A}_1 \cup \mathscr{A}_2 \cup \mathscr{A}_3$ is a maximal antichain of $\mathscr{P} = \mathscr{P}_1 \cup \mathscr{P}_2 \cup \mathscr{P}_3$ and is disjoint from \mathscr{F} , which we assumed was a fibre.

This contradiction completes the proof. \Box

Acknowledgements

I am grateful to Prof. Bill Sands for advising me on how to make this paper presentable.

References

- [1] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge, MA, 1990.
- [2] D. Duffus, B. Sands, P. Winkler, Maximal chains and antichains in Boolean lattices, SIAM J. Discrete Math. 3 (2) (May 1990) 197-205.
- [3] P. Gibson, R. Maltby, Posets in which every cutset meets every fibre, preprint, 1993.
- [4] R. Maltby, Cutsets and fibres in partially ordered sets, Master's thesis, University of Calgary, 1993.
- [5] R. Maltby, S. Williamson, A note on maximal antichains in ordered sets, Order 9 (1992) 55-67.