Journal of Saudi Chemical Society (2010) 14, 175-182

King Saud University

www.ksu.edu.sa

Journal of Saudi Chemical Society

ORIGINAL ARTICLE

Potentiometric and conductometric studies of malonyl bis(salicyloylhydrazone) and divalent metal complexes

E.I. Askar^a, H. Shokry^{a,*}, D. Al. Hashmy^b

^a Chemistry Department, Faculty of Applied Science (Girls), Umm-Al Qura University, Makkah, Saudi Arabia ^b Chemistry Department, Faculty of Education (Girls), Taif University, Taif, Saudi Arabia

Received 28 June 2009; accepted 17 November 2009 Available online 4 February 2010

KEYWORDS

Potentiometric; Conductometric; IR spectra and stability constants **Abstract** A series of complexes of divalent transition metal ions with malonyl bis(salicyloylhydrazone) (H₄MSH) have been prepared and characterized with the help of conductometric, potentiometric methods. The proton–ligand and metal–ligand stability constants were obtained pH-metrically. The electrical conductivity of solid complexes was measured at 289 K. The low molar conductance values observed for these complexes indicate that, they are non-electrolytes. They are soluble to a limited extent in DMF and DMSO. The elemental analyses of the complexes indicate that the complexes have 1:1 and 2:1 (M:L) stoichiometry with the existence of water, chloride, acetone molecules inside the coordination sphere as evidence from the IR spectral studies. Further, the complexes have been formulated by comparing C, H, N & metal analysis data, and UV–visible spectra of the complexes have been discussed. The protonation constants of the ligand and the stability constants of their metal complexes will be evaluated potentiometrically. The stoichiometric ratios of the complexes formed in solution will be evaluated applying the molar ratio (spectrophotometric) method and confirmed conductometrically. © 2010 King Saud University.Open access under CC BY-NC-ND license.

1. Introduction

2.01

ELSEVIER

A number of hydrazone rare earth(III) complexes Guskos et al., 2005 have gained wide interest, because they show a broad spectrum of biological and pharmaceutical activities,

* Corresponding author. E-mail address: dr_H_shokry@hotmail.com (H. Shokry).

1319-6103 © 2010 King Saud University. Open access under CC BY-NC-ND license. doi:10.1016/j.jscs.2010.02.001

Production and hosting by Elsevier

such as antimicrobial, antitumor, antituberculo-static, and anticancer actions. The values of the protonation constants of 5,5-dimethylcyclo-hexane, 2-(2-hydroxyphenyl)hydrazonol 1,3-dione and the stability constants of its complexes with Ni(II), Sm(III) and Yb(III) were evaluated using pH-metric method (Ramadan et al., 1986) in various mixed aqueous, isopropanol, acetone, ethanol and methanol solvents at 30 °C and ionic strength 0.01 M NaClO₄. The variation of protonation and stability constants with the inverse of dielectric constant or mole-fraction of the solvent was investigated. The metal–ligand stability constants of the Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(III), UO₂(II) and Ln(III) chelates of 3-(α -carboxymethyl aminobenzylidene hydrazino)-5,6-diphenyl-1,2,4-triazine (H₁PHt) were determined in 75% (vol./ vol.) dioxane-water medium at 10, 20 and 30 °C and $\mu = 0.1 \text{ M KNO}_3$ (Ramadan et al., 1993). The thermodynamic parameters for the proton-ligand and metal-ligand stability constants were obtained by the temperature coefficient method (H1PHt) behaves as a diprotic bidenate (NNO) donor ligand towards the metal ions as inferred from the IR spectra of its metal complexes. 2,6-Diacetyl pyridine bis (benzoyl hydrazone) (DADBH) and 2,6-diacetyl pyridine bis (2-hydroxybenzoyl hydrazone) (Sasaki, 1986) (DADSH) were prepared, characterized and their analytical applications were studied. Both reagents were compared for the determination of iron and vanadium. A procedure for the determination of V using DADBH was proposed. The reagent reacts with V(V) at pH 2.6-4.0 to produce a yellow complex at $\lambda_{\text{max}} = 335 \text{ nm}, \ \epsilon = 2.74 \times 10^4 \text{ 1 mol}^{-1} \text{ cm}^{-1}, \ \text{in DMF}$ H₂O(2:8) mixture. DADSH was tested to determine iron. The reagent produces a yellow complex at $\lambda_{max} = 336 \text{ nm}$ $(\varepsilon = 2.77 \times 10^4 1 \text{ mol}^{-1} \text{ cm}^{-1})$ in pH 2–3.5 in DMF-H₂O (1:1) mixture. The sensitivities of the procedures describe are high, but the selectivity is low.

2. Experimental

2.1. Materials and solutions

The chemicals used were of the highest purity available (Aldrich and E. Merck). These were hydrochloric (sp. gr. 1.18), nitric (sp.gr. 1.42) acetic acids, hydrazine hydrate and salicylaldehyde. Copper, nickel, cobalt, iron and chromium chloride, sodium bicarbonate, sodium hydroxide, cetyltrimethylammoniumbromide, potassiumphethalat. Copper and nickel sheets, Ethanol, acetone, diethyl ether, acetonitril, dimethyl formamide and dimethyl sulphoxid. The aqueous solution of metal ion was standardized according to a well known method (Scott and Furman, 1962). Different buffer solution from (pH 2.2–10) were prepared (Vogel, 1978).

2.2. Preparation of ligand (H_4MSH)

To 0.4 M of salicylaldehyde solution, add dropwise 0.2 M of alcoholic solution of malonyldihydrazine with vigorous stirring. The reaction mixture was refluxed on a water bath for one hour and left to cool. The white precipitate which obtained, filtered, washed with ethanol and dried over anhydrous $CaCl_2$.

2.3. Preparation of the metal complexes by direct interaction

The metal complexes were prepared by slow addition of 20 ml of 2 mM ethanolic solution of the metal salts, (chloride) to 30 ml of 2 mM of aqueous-ethanol solution of the ligand. The mixture was refluxed on a water bath for 3.5 h and concentrated to half of its volume. The isolated solid complex is filtered off, washed with ethanol and finally dried in a vacuum desiccators over anhydrous CaCl₂, the yield is (\sim 65–70%) Karabocek et al., 2004.

2.4. Preparation of the metal complexes by electrochemical techniques

The direct anodic electrochemical oxidation of metal was performed in a solution of 50 ml acetone containing ~ 0.3 g of the ligand plus 0.5 g of cetyltrimethylammonium bromide as electrolyte. The precipitate formed at the anode surface or in solution was collected, washed with diethylether, dried and kept in vacuum desiccators. The yield (\sim 88–98%) was higher than that obtained by the usual chemical procedure.

2.5. Chemical analyses

To access in suggesting the formula of the isolated complexes, elemental analyses of the dried solids were proceeded as follows: Carbon and hydrogen contents were determined in the Microanalytical Unit of the University of Cairo Egypt, Metals were determined by spectrophotometric methods (Vogel, 1978). Infrared spectra of the ligand and their complexes in the region 4000-400 cm⁻¹ were recorded on a FT-IR 8400S Fourier transfrom infrared spectrophotometer (Shimadzu) at Girl's College of Education in Jeddah and FT/IR-460 piles (JASCO), Fourier Trans from Infrared Spectrometer at King Abdul Aziz University in Jeddah. Electronic spectra of DMF solution of the solid complexes were carried out on a Spectro UV/vis Auto (UV-2602) Lab Med. Inc. The absorption spectra of solution were measured on the range 300-800 using 1 cm matched quartz cells at Faculty of Applied Science (Girls), Umm-Al Qura University.

2.6. Conductance procedure

- (a) Molar conductivity of 5×10^{-3} M of the solid complexes was measured with a conductivity meter (JENWAY) 4520 (Italy).
- (b) Conductometric titration of the chosen metal with H₄MSH was performed using conductivity meter (JENWAY) 4520 (Italy). The conductivity meter is calibrated by measuring the conductivity of 0.01 M KCl solution from which the cell constant is determined.

2.7. Potentiometric procedure

The procedure for the determination of the protonation constants of the ligand (H_4MSH) and the stability constants of its complexes with different metal ions, involves the preparation of the following:

- (a) 1 ml of 10⁻³ M HCl plus 2.5 ml KCl and 10 ml of acetonitrile plus 2 ml ethyl alcohol (acid mixture).
- (b) 1 ml of 10^{-3} M HCl plus 2.5 ml KCl and 10 ml of 10^{-3} M H₄MSH in plus 2 ml ethyl alcohol (ligand mixture).
- (c) 1 ml of 10^{-3} M HCl plus 2.5 ml KCl, 2 ml of 10^{-3} M of metal and 10 ml of 10^{-3} M H₄MSH (complex mixture).

The volume of every mixture completed to 25 ml with distilled water. The pH-meter used for carrying out potentiometric titrations (Toshniwal inst. CAT NO-CL-54); (LC \pm 0.02 pH unit).

2.8. Calculation

The average number of protons associated with the ligand, \bar{n}_A at different pH values is calculated utilizing the acid and ligand titration curves using Iriving and Rossotti equation (Irving and Rossetti, 1953) as follows:

$$\overline{n}_A = y - \frac{(V_2 - V_1)(N^\circ + E^\circ)}{(V^\circ + V_1)T_{CL}^\circ},$$
(1)

where V_1 and V_2 are the volumes of alkali required to reach the same pH in acid and ligand titration curves. T_{CL}° the total ligand concentration, y is the total number of dissociable protons attached to the ligand molecule, N° is the normality of the alkali, E° is the initial concentration of the free acid and V° is the total volume of the titrated solution, where

$$K_a = \frac{n_A}{(1 - \overline{n}_A)[H^+]} \tag{2}$$

for monobasic acid

$$\log K_a = pH + \log \frac{\overline{n}_A}{1 - \overline{n}_A} \tag{3}$$

for dibasic acid

$$\log K_{a1} = \mathrm{pH} + \log \frac{\overline{n}_A - 1}{2 - \overline{n}_A}.$$
(4)

The proton–ligand formation constant, K_a was also calculated from the formation curves obtained by plotting \overline{n}_A versus pH where the pH values at $\overline{n}_A = 0.5$ and 1.5 gives log K_a and log K_{a1} , respectively.

2.9. Metal-ligand stability constants

The step wise formation constants of the metal complexes in a homogenous solution are given by Eq. (5)

$$K_n = \frac{C_{ML_n}}{C_{ML_{n-1}}} \quad (n = 1, 2, 3, \dots, n),$$
(5)

where K_n is called the metal stability constant. The formation constants are obtained by plotting a graph between average number of ligand molecules attached to metal ion \overline{n} and the free ligand exponent (pL) where \overline{n} and pL are calculated using Eqs. (6) and (7) (Irving and Rossetti, 1953):

$$\overline{n} = \frac{(V_3 - V_2)(N^\circ + E^\circ)}{(V^\circ + V_2)\overline{n}_A T^\circ_{CM}}$$
(6)

and

$$pL = \frac{1 + \beta_1 [H^+] + \beta_2 [H^+]^2 + B_j [H^+]^j}{T_{CL}^\circ - \overline{n} T_{CM}^\circ} \cdot \frac{V^\circ + V_3}{V^\circ}$$
(7)

where T_{CM}° denotes the total concentration of metal present in solution, β_n^H , is the overall proton ligand stability constant, the other terms have their usual meaning as mentioned before. The successive stability constants are computed using the interpolation at half \overline{n} values from \overline{n} vs. pL formation curves. The values of log K_1 , log K_2 and log K_3 were obtained by interpolation at 0.5, 1.5 and 2.5, respectively Alternatively, the least square method was used for calculation of log K_1 or log K_2 by plotting log $\frac{\overline{n}}{\overline{l}.\overline{n}}$ vs. pL or log $\frac{\overline{n}-1}{\overline{n}}$ vs. pL respectively.

3. Results and discussion

3.1. Structural characterization of H₄MSH ligand

 H_4MSH has octa-coordination sites and four labile hydrogen atoms. It may function as mono- and/or di-basic manner through the deprotonation of one or two of the OH groups and tri or tetra-basic through the deprotonation of the car-

bonyl groups. Depending on the data gathered from i.r. spectrum of H₄MSH, the band at 3051 cm⁻¹ is due to v(NH) of CONH group Husain et al., 1991. The stretching and bending vibrations of the phenolic OH group have appeared at 3205 and 1427 cm⁻¹, respectively (Ibrahim et al., 1985). The sharp bands observed at 1672 and 1651 cm⁻¹ are due to the free and bonded carbonyl group (Ibrahim et al., 1985). The v(C-O) phenolic has observed at 1266 cm^{-1} (Husain et al., 1991). The bands at 1571 and 1126 cm⁻¹ are attributed to v(C=N)and v(N-N) vibrations, respectively (El-Asmy et al., 1993). The appearance of the v(N-H) band at lower wave number than that reported for similar compounds (Husain et al., 1991; El-Asmy et al., 1993), suggesting an intramolecular hydrogen bonding as shown in Fig. 1a. Strong evidence for the hydrogen bond is the appearance of broad band at 2500 and 1975 cm^{-1} due to $v(O-H \cdots N)$ vibrations Silverstein et al., 1981.

3.2. Synthesis and structural characterization of $M-H_4MSH$ complexes

New complexes of Cu(II), Ni(II) and Co(II) with H₄MSH, were prepared by chemical and electrochemical methods. The ligand is an example of a novel compound capable of existing multidentate behaviour by virtue of having a greater number of donor atoms and is more flexible in the three dimensions. The reactions of Cu(II), Ni(II), and Co(II) ions with H₄MSH capable of existing the ligand as shown in Fig. 1a – keto, b – keto/enol and c – enol forms under variable experimental conditions.

The major reactions for the complexes prepared by the usual chemical interaction are:

$$\mathrm{MCl}_{2} + \mathrm{H}_{4}\mathrm{MSH} \xrightarrow{\mathrm{EtOH, H_2O}}_{\mathrm{reflux, 3 h}} \mathrm{M}(\mathrm{H}_{2}\mathrm{MSH})\mathrm{Cl}_{2}(\mathrm{H}_{2}\mathrm{O})_{n}$$

where M = Cu, Ni or Co, n = 1 and 2.

MCl₂ + H₄MSH
$$\xrightarrow{\text{EtOH}, \text{H}_2\text{O}}$$
 M(H₂MSH)Cl₂ (H₂O)_n
where M = Cu, Ni or Co
n = 1-2

Figure 1 Structural formula of the H_4MSH in the (a) keto (b) keto/enol and (c) enol forms.

The complexes prepared electrochemically follow the following mechanism:

$$\begin{split} & M \rightarrow M^{2+} + 2e^-, \\ & H_4MSH + 4e^- \rightarrow MSH^{4-} + 2H_2(g), \\ & MSH^{4-} + 2M^{2+} \rightarrow M_2(MSH). \end{split}$$

The data gathered from the elemental analysis are given in Table 2. The structure of H_4MSH and some of its chloro

complexes as shown in Table 1, which show that the ligand reacts in the keto form Fig. 1a in the complexes having the formula of $M(H_4MSH)(Cl)_n(H_2O)_m$ where (M = Cu, Ni and Co; n = 2, m = 0-2). On the light of the following evidence: The small shift (<10 cm⁻¹) to higher wave number of the carbonyl bands is taking as an evidence for their participation in bonding.

All the amides and NH_2 bands remain more or less at the same position. The appearance of v(M-O) Abu El-Reash

Table 1 Structural formula of the H4MSH and its of	complexes.	
	Structure	Mwt
<i>Ligand</i> H ₄ MSH Malonyl bis(salicyloylhydrazone)	$ \begin{array}{c} \begin{array}{c} H \\ H $	340.33
	Malonyl bis(salicylhydrazone)(H ₄ MSH)	
Complex prepared electrochemically Cu–H ₄ MSH	[Cu ₂ (MSH)(Me ₂ CO) ₂]	569.5898
	H_{2} H_{2	
Ni–H ₄ MSH	[Ni ₂ (MSH)(Me ₂ CO) ₂ (H ₂ O) ₄]	631.877
Complex prepared from chloride salts Cu–H ₄ MSH	$[Cu(H_4MSH)Cl_2] (H_2O)_2$	510.883
	$ \begin{array}{c} \begin{array}{c} H \\ C = N \\ \end{array} \\ \begin{array}{c} H \\ C = N \\ \end{array} \\ \begin{array}{c} H \\ C \\ \end{array} \\ \begin{array}{c} H \\ C \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ \end{array} \\ \begin{array}{c} H \\ O \\ H \\ O \\ \end{array} \\ \end{array} $	
Ni–H ₄ MSH	[Ni(H ₄ MSH)Cl ₂ (H ₂ O) ₂] 2H ₂ O	542.0278
Co–H ₄ MSH	[Co(H ₄ MSH)Cl ₂ (H ₂ O) ₂] H ₂ O	524.2708

Table 2	Elemental	analysis	data	of M-H	₄ MSH	complexes

Type of complexes	Color	Calculat	Calculated (%)		Found (%)			Molar conductance $(mol^{-1})_m$	
		С	Н	М	С	Н	М	$(\text{ohm}^{-1} \text{ cm}^2 \Lambda)$	
[Cu ₂ (MSH))(Me ₂ CO) ₂] ^a	Green	35.8	2.81	22.3	35.7	2.91	22.1		
$[Cu(H_4MSH)Cl_2](H_2O)_2^b$	Green	39.9	3.10	12.4	39.8	3.00	12.61	25.9	
[Ni ₂ (MSH) (Me ₂ CO) ₂ (H ₂ O) ₄] ^a	Green	32.3	2.50	18.7	32.6	2.48	18.6		
[Ni(H ₄ MSH)Cl ₂ (H ₂ O) ₂]2H ₂ O ^b	Green	37.6	2.90	10.8	37.1	2.72	10.6	16	
[Co(H ₄ MSH)Cl ₂ (H ₂ O) ₂]Cl·H ₂ O ^b	Pink	36.4	2.80	10.5	39.1	3.10	11.5	46.6	

^a Complexes prepared electrochemically.

^b Complexes prepared from chloride salts.

et al., 1992 at $\approx 450 \text{ cm}^{-1}$ indicate the bonding through the carbonyl oxygen. The molar conductivity values Table 2 are $(25.9 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ for $[\text{Cu}(\text{H}_4\text{MSH})\text{Cl}_2]$ $(\text{H}_2\text{O})_2$, $(16 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ for $[\text{Ni}(\text{H}_4\text{MSH})\text{Cl}_2(\text{H}_2\text{O})_2](\text{H}_2\text{O})_2$ lie in the range of non-electrolyte complexes and $(46.6 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ for $[\text{Co}(\text{H}_4\text{MSH})\text{Cl}_2(\text{H}_2\text{O})_2]\text{Cl}$. H₂O commensurate with the value of 1:1 electrolyte. From these observations we can conclude that H₄MSH binds with the metal chloride as neutral bidentate ligand coordinating via its carbonyl groups.

The electrochemical technique which is based on electrochemical oxidation of Cu, and Ni in the presence of non-aqueous solution (acetone) of H₄MSH yields complexes with the formulae $M_2(MSH)(OH)_2(H_2O)_n(Me_2CO)_m$ where (M = Cu, M)Ni and Co, n = 0-2, m = 2). The ligand act as a tetrabasic hexa-dentate meaning every metal ion forms three bonds with ligand and replaces the four labile hydrogen atoms and complete its coordination sphere by water or acetone molecules. Most of the products are insoluble in the reaction mixture, the collection procedure involved filtration, after which the solid was washed with diethyl ether. The values of the electrochemical efficiency ($E_f = 0.5 \pm 0.07 \text{ mol } \text{F}^{-1}$) corroborate with the metal to be divalent in these complex (Vogel, 1978). The electrochemical conditions applied during the preparation of complexes are listed in Table 3. All the complexes are stable in air. They are insoluble in most common organic solvents but are easily soluble in dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).

The mode of chelation is confirmed on the light of the following observation: The disappearance of v(C=O) and $v(N_1H)$, $v(N_2H)$ indicating the eno-lization of the amide groups with the appearance of new bands at ≈ 1530 , 1080 and $\approx 990 \text{ cm}^{-1}$ due to v(C=N) Abu El-Reash et al., 1992, $v_{as}(C-O)$ and $v_s(C-O)$ Silverstein et al., 1981 vibrations, respectively. The stretching and binding vibrations of the OH group are completely absent indicating its deprotonation during the complex formation. The band at 1517 cm⁻¹ assigned to v(C=N) in the ligand shifts to 1515 cm⁻¹ proving that the azomethine group is taking part in coordination. The bands observed at the low frequency region at \approx 450 and \approx 460 cm⁻¹ are assigned to v(M-O) and v(M-N) vibration respectively (Speca et al., 1974; Ibrahim et al., 1991) The appearance of new bands at \approx 570 cm⁻¹ is a strong evidence of the coordinated water molecules. All these observation suggest the structure as shown in Table 1.

The electronic spectra of Cu(II) complexes. [Cu(H₄MSH)-Cl₂]·(H₂O)₂ show two bands at 23,360 cm⁻¹ and 29,069 cm⁻¹, which is safely assigned to the ${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$ transition in an tetrahedral symmetry. The magnetic moments value 1.87 BM is below the expected values (1.7–2.2 BM) for a tetrahedral geometry (Said and Tuck, 1981). On the other hand the electronic spectrum of [Cu(H₂MSH)]·(H₂O)₂, shows one band at 25,348 cm⁻¹ indicating a square-planar geometry (Preti and Tosi, 1976). For square-planar complexes, three spin-allowed transition are possible, assigned to ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$, ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$ and ${}^{2}B_{1g} \rightarrow {}^{2}E_{g}$ but the band could not resolved into three bands. This geometry is further supported by the value of its magnetic moment 1.55 BM. The electronic spectra of other H₄MSH complexes are shown in Fig. 2 and listed in Table 4.

3.3. Absorption spectra of M-H₄MSH complexes

The absorption spectra of the ligand H₄MSH in definite buffer solution at specific pH were scanned over the range 300–800 nm. The maxima were obtained for the ligand H₄MSH at 325 nm. On comparing the absorption spectra of M^{n+} -L (where M = Cu, Ni and Co) with that of the L alone as shown in Fig. 3 for Cu–H₄MSH.

The red shift of the maximum absorbance of the complexes from the maximum absorption of ligand reveals the formation of compound between the metal species and the ligand. Results listed in Table 5 indicate the maximum absorption of each mixture and their shift from that assigned to the H₄MSH.

The data indicate the presence of shifts account of \approx 49–204 nm such conspicuous shift is attributed to the increase of

Table 3 The electrochemical data of the $M-H_4MSH$ complexes.									
Amount of ligand (mg)	Metal	Initial volt (V)	Time of electrolysis (h)	Metal used (mg)	Yield (mg)	Percent (%)	$E_f \pmod{\mathrm{F}^{-1}}$		
300	Cu	25	3	48	370	94	0.47		
300	Ni	35	3	22	365	88.3	0.49		

Figure 2 Electronic spectra of (a) Cu-H₄MSH and (b) Ni-H₄MSH complexes prepared from chloride salts.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	etic susceptibility
$\begin{array}{cccc} Cu^{b} & [Cu(H_{4}MSH)Cl_{2}]\cdot(H_{2}O)_{2} & 2 & 23,360 & {}^{2}T_{2g} \rightarrow {}^{2}E_{g} & \text{Tetrahedral 1.87} \\ & & 29,069 & \\ Ni & Ni^{a} & [Ni_{2}(MSH))(Me_{2}CO)_{2}(H_{2}O)_{4}] & 2 & 25,720 & {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F) & \text{Octahedral 3.54} \\ & & 31,308 & {}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P) & \\ \end{array}$	
Ni Ni ^a $[Ni_2(MSH))(Me_2CO)_2(H_2O)_4] = 2$ 25,720 ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ Octahedral 3.54 31,308 ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$	
2 - 2 - 2 - 5	
Ni ^o [Ni(H ₄ MSH)Cl ₂ (H ₂ O) ₂]·2H ₂ O 2 $25,531$ $^{3}A_{2g} \rightarrow ^{3}T_{1g}(F)$ Octahedral 3.56 $28,738$ $^{3}A_{2g} \rightarrow ^{3}T_{1g}(P)$	
Co Co ^b [Co(H ₄ MSH)Cl ₂ ·(H ₂ O) ₂]Cl·H ₂ O 2 24,331 ${}^{4}T_{1g} \rightarrow {}^{4}A_{2g}$ Octahedral 4.5 28,571 ${}^{4}T_{1g} \rightarrow {}^{4}T_{1g}(P)$	

Table 4 The electronic spectra of M-H₄MSH complexes.

^a Complexes prepared electrochemically.

^b Complexes prepared directly from chloride salt.

delocalization of the π electrons during the reaction with the metal ions leading to the decrease in the energy gap between the excited and ground state (Babko and Plipenko, 1971).

3.4. Molar ratio (spectrophotometric) method

The molar ratio method has been utilized to investigate the type of the compound formed in solution. A series of solutions was prepared by keeping the metal concentration constant and the ligand concentration varied between $(1 \times 10^{-5} - 2.3 \times 10^{-4} \text{ M})$.

For H₄MSH, the absorbance of the resulting solutions was measured at their λ_{max} against the ligand solution as blank. The plots of the absorbance versus the mole fraction of the metal species are presented graphically in Fig. 4 and the distinct stoichiometric ratios of the compounds formed in solution are summarized in Table 6. The data indicate that the formation of compounds with different ratios, the highly stable complex is formed with 1:2 and 1:1 ratio for Cu^{2+} , Ni^{2+} and Co^{2+} with H₄MSH.

Conductometric titrations were performed for in sight to the nature of bonding and stoichiometry of the formed species in solution. In the procedure, the variation of conductance of 50 ml of 10^{-4} M solutions of MSH was followed during the course of titration with $5 \times 10^{-3} \text{ M}$ solution of Cu^{2+} , Ni^{2+} or Co^{2+} . The molar ratio (M/L) was calculated for each increment of metal species and plotted against the conductance values as shown in Fig. 5. The titration graphs obtained are more or less smooth-straight with breaks at definite molecular ratios corresponding to the composition of the formed species in solution. A general behavior of the formed species is the continuous increase in conductance of their solutions. This may be due to the liberation of the highly conducting species

Figure 3 Absorption spectra for H_4MSH and $Cu-H_4MSH$ mixture at pH 6.

Figure 4 The relation between absorbance vs. $[H_4MSH/M^{+2}]$ of M–H₄MSH complexes.

Table 5	Maximum absorbance	of the different M-I	mixtures and their shift fro	om λ_{\max} of the ligand.
---------	--------------------	----------------------	------------------------------	------------------------------------

Ligand	Metal species	λ_{max} M–L (nm)	$\lambda_{max} L (nm)$	Shift from the maxima of absorbance of the ligand (nm)
H ₄ MSH	Cu ²⁺	400	325	75
	Ni ²⁺	379		54
	Co ²⁺	390		65

Table 6	Stoi	chior	metric	ratios	of	the	for	med	compo	ounds
applying methods.	from	the	condu	ctomet	ric	titrat	ion	and	molar	ratio

Metal ion $[M^{n+}]$	H ₄ MSH			
	M.R.	Cond.		
Cu ²⁺	1:1, 2:1	1:1, 2:1		
Ni ²⁺	1:1, 2:1	1:1, 2:1		
Co ²⁺	1:1, 2:1	1:1, 2:1		

during complexation like hydrogen ions. Since the slopes of portions of the graphs are governed by the change in ionic conductance of the ion present. The slopes of the portions of the graphs vary widely with the ratio of the compound formed. Further the increases of conductance during titration indicate that chelation takes place after deprotonated of ligand at high pH values.

A comparison between the stoichiometric ratios obtained by applying the molar ratio and conductometric titration methods is given in Table 6. Inspection of the data indicates the agreement of results of the stoichiometric ratio of the compounds formed in solution either from the spectrophotometric molar ratio method or from the conductometric titration technique. The titration graphs obtained by applying the preceding

Figure 5 The relation between Conductance vs. $[M^{+2}/H_4MSH]$ for $(M-H_4MSH)$ complexes.

Figure 6 Potentiometric titration curves for $(M-H_4MSH)$ complexes.

steps are less smooth straight with breaks corresponding to the formation of 1:1 and 2:1 ratio. The 2:1 metal to ligand complexes is highly dissociated and less stable than 1:1 complexes.

3.5. Determination of protonation constants of malonyl bis (salicyolhydrazone) H_4MSH

Potontiometric method is widely applicable technique currently available for the study of ionic equilibria in solution (Ibrahim et al., 2007). The method depends upon titration of three mixtures (acid mixture, ligand mixture and complex mixture) respectively. The titration curves of H₄MSH Fig. 5 are characterized by the presence of two neutralization steps. So the average number of protons associated with the ligand molecule \overline{n}_A at different pH values was calculated from the acid and ligand titration curves where the first and second protonation constants $\log k_n H$ (n = 1, 2) are evaluated from the protonation ligand formation curves Fig. 6 corresponding to 0.5 and 1.5 on the \overline{n}_A scale. In some cases the first protonation constant, log k₁H cannot be evaluated from the protonation curves as the curves fall at more than 0.5 on the \overline{n}_A scale. Therefore, the values of log k_1H are calculated using Eq. (8) (Sadhu et al., 1976)

$$\log k_1 = 2pH_{(\bar{n}=1)} - pH_{(\bar{n}=1.5)}.$$
(8)

Figure 7 Relation between \overline{n} vs. pL using half method for (M–H₄MSH) complexes.

Figure 8 The relation between $\log \frac{\overline{n}}{1-\overline{n}}$ vs. pL for M⁺².

System M–L	Haff method			Least-squares method			
	$Log K_1$	$Log K_2$	$\log \beta$	$Log K_1$	$Log K_2$	$\log \beta$	
Cu(II)–MSH	19.2	10.4	29.6	19.4	10.9	30.3	
Ni(II)–MSH	17.6	9	26.6	16.9	9.25	26.15	
Co(II)-MSH	15.4	8	23.4	15.6	7.65	23.2	

Table 7Stability constants for M-H4MSH complexes.

The pk_a values are also calculated applying the point wise method by plotting $\log \frac{\overline{n}_A}{1-\overline{n}_A}$ for the first ionization step and $\log \frac{\overline{n}_A-1}{2-\overline{n}_A}$ for the second ionization step versus PL; straight lines are obtained intersecting the x-axis at the pk_a-values Fig. 8.

The high basicity of the hydrazones may be attributed to the presence of strong intramolecular H-bonding especially in less polar medium (95% acetonitrile + 5% DMF). The values of $pk_{\rm H}$ in acetonitrile and DMF (H₄MSH) are close those reported in literature (Seleem et al., 2003; Seleem, 2003; Moez et al., 1989) for similar hydrazones under the same experimental conditions. Inspection of the data reveals the following: $K_1/K_2 > 1.0$ for most complexes, indicating that the vacant sites of the metal ions are more freely available for binding (Seleem et al., 2006).

3.6. Determination of stability constants for $(M-H_4MSH)$ complexes

The stability constants of Cu^{2+} , Ni^{2+} and Co^{2+} complexes with (H₄MSH) are calculated from the complexes and ligand titration curves Fig. 6. The stability constants were calculated by plotting the average number of ligand attached per metal ion \bar{n} against free exponent (pL) as shown in Fig. 7. The \bar{n} and pL values were calculated using the equation indicated in experimental section. The pK values are also calculated applying point wise method by plotting $\log \frac{\bar{n}}{1-\bar{n}}$ against pL for pk_1 as see in Fig. 8.

The calculation of the stability constants (log k_1 and log k_2) of the investigated metal complexes is based on the fact that the pH-measurements during the titration of a ligand solution in presence and in the absence of a metal ion could be used to calculate the free base exponent (pL) and the number of ligand molecules attached per metal ion \overline{n} . The Irving–Rossetti relations $\log \frac{\overline{n}}{1-\overline{n}} = \log k_1 - pL$ and $\log \frac{\overline{n}-1}{2-\overline{n}} = \log k_2 - pL$, have been constructed and analyzed to determine log k_1 and log k_2 , respectively. The stability constants are summarized in Table 7.

4. Conclusion

The interaction of Malonyl bis (salicyloylhydrazone) (H₄MSH) with bivalent metal ions has been investigated using different method. The stoichiometry of the formed complexes in solution was ascertained using the spectrophotometric molar ratio method and was confirmed by the conductometric titration technique, the results obtained indicate the formation of 1:1 and 2:1 (M:L). the arrangement of the stability constant in the order $Cu^{2+} > Ni^{2+} > Co^{2+}$ agree with the trend previ-

ously reported (Shukla and Sharma, 1994). The higher of the stability constant of Cu^{2+} complexes is due to Jahn–Teller distortion and to its nature as $3d^9$ element which is different from $3d^n$ elements.

References

- Abu El-Reash, G.M., Ibrahim, K.M., Taha, F.I., Feteih, N.A., 1992. Synth. React. Inorg. Met.-Org. Chem. 22, 1211.
- Babko, A., Plipenko, A., 1971. Photometric Analysis. General Principles and Working Tools, vol. 87. Mir Publishers, Moscow.
- El-Asmy, A.A., Mabrouk, H.E., Al-Ansi, T.A., Amin, R.R., Al-Shahat, M.F., 1993. Synth. React Inorg. Met.-Org. Chem. 23, 1709.
- Guskos, N., Paschalidis, D.G., Majszczyk, J., Typek, J., Maryniak, M., 2005. Materials Science-Poland 4, 23.
- Husain, M., Bhattacharjee, S.S., Singh, K.B., Lal, R.A., 1991. Polyhedron 10, 779.
- Ibrahim, K.M., El-Asmy, A.A., Bekheit, M.M., Mostafa, M.M., 1985. Transition Met. Chem. 10, 175.
- Ibrahim, K.M., Bekheit, M.M., Abu El-Reash, G.M., 1991. Trans. Met. Chem. 16, 189.
- Ibrahim, S.A., Ebeid, Y.H., Boraei, A.A.A., Ahmed, I.T., Ali, F.M., 2007. Ass. Univ. Bull. Environ. Res. 10, 2.
- Irving, H., Rossetti, H.S., 1953. J. Chem. Soc. 3397, 2904 (1954).
- Karabocek, N., Karabocek, S., Mazlum, H., De grmencoglu, I., Serbest, K., 2004. Turk. J. Chem. 28, 87–94.
- Moez, A., Abu El-Wafa, S., Seleem, H.S., El-Shetary, B.A., 1989. Thermochim. Acta 149, 317.
- Preti, C., Tosi, G., 1976. Aust. J. Chem. 29, 543.
- Ramadan, A.T., El-Maraghy, S.B., Abdel-Moez, M.S., Taha, M.A., 1986. J. Chin. Chem. Soc. 33, 201.
- Ramadan, A.A., Abdel-Rahman, R.M., A El-Behairy, M., Ismail, A.I., Mohmoud, M.M., 1993. Thermochim. Acta 222, 291.
- Sadhu, S.S., Kumaria, J.N., Sandhu, R.S.J., 1976. J. Indian Chem. Soc. 53, 435.
- Said, F.F., Tuck, D.G., 1981. Can. J. Chem. 59, 62.
- Sasaki, Y., 1986. Inst. Res., Kyoto Univ. 64, 140.
- Scott, W., Furman, H., 1962. Standard Methods of Chemical Analysis, sixth ed. Van Nostrand, New York.
- Seleem, H.S., 2003. J. Indian Chem. Soc. 80, 622.
- Seleem, H.S., El-Shetary, B.A., Khalil, S.M.E., Shebl, M., 2003. J. Serb. Chem. Soc. 68, 729.
- Seleem, H.S., El-Inany, G.A., Eid, M.F., Mousa, M., Hanafy, F.I., 2006. J. Braz. Chem. Soc. 4, 723.
- Shukla, P., Sharma, R.S., 1994. Monstschefte fur Chemie 125, 247.
- Silverstein, R.M., Bassler, C.G., Morrill, T.C., 1981. Spectrometric Identification of Organic Compounds;. Wiley and Sons, New York.
- Speca, A.N., Karayanis, N.M., Pytlewski, L.L., 1974. Inorg. Chim. Acta 9, 87.
- Vogel, A.L., 1978. A Text Book of Quantitative Inorganic Analysis, forth ed. (Low-Priced ed.).