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Abstract 

Stochastic resonance system is an effective method to extract weak signal, however, system output is directly influenced by system parameters. 
Aiming to this, a method about weak periodic signal extraction was developed based on adaptive stochastic resonance. Firstly cascaded 
stochastic resonance system was established in order to achieve better low-pass filtering effect. And then, variance of zero point distance was 
chosen as measurement index of cascade system. It's able to overcome the shortage that traditional adaptive stochastic resonance system needs 
to know the signal frequency beforehand. Also, it could obtain optimum system parameters adaptively. Basing on these parameters, input signal 
will be handled, and optimum output could be obtained. Furthermore, different periodic signal have been recognized, and finally the validity of 
the method is verified through simulation experiments.  
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introductioni  

In mechanical, electronic, chemical, communications and 
many other fields, many useful signals are often submerged in 
strong noise. How to extract and recognize these signals is a 
hot spot of industry attention. Currently, the main way to 
improve the signal to noise ratio (SNR) is to suppress the 
noise [1-2]. But when the noise frequency and the signal 
frequency is closed or coincide, with the elimination of the 
noise of the band, useful signal is always damaged. So it is 
not benefit to the weak signal detection. 

Stochastic resonance was first proposed by the Italian 
scholar Bentz [3], et al. Stochastic resonance uses non-linear 
system to produce synergy between input signal and noise, so 
as to achieve the purpose of the detection signal. The synergy 
is similar to the resonant in mechanics. Comparing with 
traditional methods, stochastic resonance does not require 
prior knowledge. It is a non-correlation detection method. 
More specifically, stochastic resonance can take advantage of 
noise to enhance the weak signal. Some noise energy transfers 
to the characteristic signal. Thus effective detection of weak 
signal can be achieved through the stochastic resonance. It is 

often used for the detection of periodic signal. Since the 
emergence of adaptive stochastic resonance, people 
continually search for the way to optimize stochastic 
resonance parameters. Signal to noise ratio and other 
indicators [4-5] are often used as a system measure index. But 
because of the absence of prior knowledge, the problem of 
parameter selection is difficult to solve. 

Firstly, this paper analyzes the cascaded stochastic 
resonance system, selects zero point distant variance as the 
measure index. Then build a periodic signal extraction model 
based on adaptive stochastic resonance. At the same time, 
periodic signal types can be effectively distinguished by using 
the mathematical properties of kurtosis index. So the periodic 
signal recognition is realized. Finally, simulation experiment 
analysis is conducted. 

2. Cascaded Stochastic Resonance  

2.1. Basic theory of stochastic resonance 

Bistable stochastic resonance system is described by 
Langevin equation. The mathematical model [6] is: 
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Where x is the system output, u(t) is the input periodic 
signal, for example sinusoidal signal Asin(2πft+φ), ξ(t) is the 
additional noise, V(x) is nonlinear potential function, 
expressed as: 
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Where a, b are structural parameters of nonlinear bistable 
system, greater than 0. When no input signal is applied, 
potential function takes the minimum in the potential well 
( baxm ), the maximum in the potential barrier(x=0). 

When the periodic signal without noise is input, if the 
input periodic signal system meets the system static triggering 
condition, |A|>A0( baA 274 3

0 ), where A is the 
maximum amplitude of the input signal,  A0 is the static 
triggering threshold for the system. At this time, bistable 
potential function tilts periodically, as shown in Fig. 1, two 
potential wells alternately rise and fall. When periodic and 
noise enter at the same time, periodic changes of system 
potential well is brought by periodic signal, which is effective 
to synchronize the switch caused by noise. Thus noise energy 
in the system output is suppressed. So that the periodic 
component of the system output has been enhanced, the SNR 
of the output is improved. This phenomenon is essentially a 
synergistic effect of signal and noise in nonlinear bistable 
system, which is called stochastic resonance. Of course, if 
input signal and noise do not satisfy the system static 
triggering condition, system structure parameters a, b can be 
changed to adjust the height of the potential barrier. So that 
the mixed signal input to the system has sufficient energy to 
support particle to cross the barrier, then the system can occur 
stochastic resonance phenomenon. 

Tradition stochastic resonance is only applicable to small 
signal detection, with great restriction on the application. 
Leng of Tianjin University puts forward a variable step size 
stochastic resonance. It is a method applicable to large 
parameter signal detection. The theory is that step length h 
does not take the reciprocal of the sampling frequency, and 
make h>1/fs. The experience range of h is 0.1 to 1. By 
changing the system structure parameter a, b and the step h, 
signal with large parameters can be detected. 

 

Fig.1. Moving particle in double-well potential 

2.2.  Bistable stochastic resonance system 

Through the mathematical model of stochastic resonance, 
the corresponding bistable system structure diagram can be 
obtained, shown in Fig. 2.  

Putting two bistable systems shown in Fig. 2 in series 
(input of the previous system corresponds to output of the 
next system) can constitute a bistable stochastic resonance 
system [7] shown in Fig. 3. 

 

Fig.2. Structure of bistable SR system 

Fig.3. Structure of cascaded bistable SR system 

Cascaded stochastic resonance system can improve the 
signal to noise ratio of the output signal. That will help to 
extract the useful signal and reduce noise. The mechanism [8-
9] is that the output signal spectrum distributes by Lorentz 
distribution. That means the output signal energy is 
concentrated in the low frequency region, while reducing the 
energy of high frequency region. Thus, the noise strengthened 
the signal intensity instead of weakening that. By cascade 
stochastic resonance, energy of high-frequency signals shifts 
to low frequency constantly, so the energy of low-frequency 
useful signal increases, that of high-frequency noise 
components decreases. It is equivalent to filter out the high 
frequency ingredients. Therefore, cascaded stochastic 
resonance plays a role of the low-pass filter. However, after 
the traditional filter filtering out signal in useless band, the 
output signal is always becomes small. Even if the output 
signal is amplified, noise is also larger, so it is not conducive 
to the subsequent processing of signal. The cascaded 
stochastic resonance just does not have this defect, which can 
increase the output signal while weaken noise. Fig. 4 shows 
the simulation results of the sinusoidal signal through a 
bistable system processing. Taking a=1, b=1.5, A=0.5, 
f=20Hz, D=0.3, fs=1000Hz during analysis. Runge-Kutta 
algorithm is used to calculate variable step size stochastic 
resonance, where calculated step size h=0.5. As shown in Fig. 
4, output(x2) waveform of two levels stochastic resonance 
system is smoother than output(x1) waveform of one level 
stochastic resonance system. That is because high-frequency 
signal of x1 is almost completely filtered out. In a certain 
sense, the increase of series will help energy of high-
frequency signal transfer to low-frequency signal. The 
resulting result is that the proportion of low-frequency 
characteristic components in the total signal increases 
continuously. So the cascaded stochastic resonance system 
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not only plays the role of a low-pass filter, but also improves 
SNR. But with the number of stages increasing, the system 
operation time becomes longer, two levels or three levels 
stochastic resonance system is typically selected. 

 

Fig.4. Output of two levels cascade SR system 

3. Adaptive periodic signal extraction model 

For adaptive periodic signal extraction, in addition to 
establish variable step cascaded stochastic resonance system 
model, the most critical is to determine a good measurement 
index. Comparing with the measurement index, the optimal 
value of the model parameters (including the structure 
parameters a, b of stochastic resonance system, and the 
calculation step h) is determined.  

3.1. Tectonic of periodic signal measure index 

3.1.1 Zero distance variance 

Zero distance variance refers to the variance of distance 
between two adjacent intersections caused by the signal and 
the horizontal axis. The smaller zero distance variance is, the 
smaller the fluctuation of zero point (intersection of signal 
and the horizontal axis) distant is, the better the signal 
periodicity is. Considering the discrete signal is difficult to 
ensure having the intersections with the horizontal axis, so 
zero crossing point is needed to find. Variable step cascaded 
system output is x(t), zero crossing point is  

11})();({)( 1 NitxtxiO ii                           (3) 
When x(ti)≥0(≤0), there must be x(ti+1)< 0(>0), then x(ti) 

as zero point to handle. 

It could be assumed that total M+2 zero points is obtained. 
But the initial state is taken into account, the particle locates 
in the barrier, so eliminate the interference of the first zero 
point. Then zero distance can be obtained: 

MjttjL jjO ,,2,1)( 12                           (4) 

Zero distance variance is: 
2
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As shown in the definition of variance above, the smaller 
zero distance variance is, the better the signal periodicity is. 
So FL can be used to measure the periodic state of signal. 
When FL is less than the set threshold, it is indicated the 
existence of periodic signal in the mixed input signal. Thus 
the extraction of periodic signal is realized.  

It should be pointed out that when the model parameter is 
unreasonable, the situation like that in Fig. 5(c) may appear. 
In this situation, there are only one or two zero points. That is 
to say, it’s a stochastic resonance system with only one 
potential well, and no transition exists. This happens because 
the barrier is too high, the signal is difficult to jump over the 
barrier, only can fluctuate within a single potential well. 
Better result would be obtained with resonance between wells 
when bistable system is used for periodic signal extraction. 
Hence, if there are only one or two zero points, model 
parameters should be re-selected. 

 

Fig.5. Output of Single-well potential system 

3.1.2 Zero distance variance 

From the analysis above, zero distance variance FL 
presents the state of the periodic signal. When FL is less the 
set threshold, it is indicated the existence of periodic signal in 
the mixed input signal, and the extraction of periodic signal is 
realized. Therefore, zero distance variance is selected as 
measurement index of the adaptive periodic signal extraction 
model. 

As shown in formula (5), the smaller the zero distance 
variance is, the better quality the periodic signal waveform is. 
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So the optimal measurement criteria of the model parameters 
are: 

)),,(min( jbaFL                                                                 (6) 
Through the minimization criterion equation (6), the 

optimal model parameters are determined adaptively. And the 
optimal output is achieved. 

3.2. Process of model 

The study led to the conclusion that a, b, h are the model 
parameters. And FL is selected as the measurement index. 

The realization process is as follows: 
1) Particle swarm initialization. The position of particle i 

is randomly initialized as (ai, bi, hi). And the active 
area of the particles is restricted. 

2) Numerical simulation is taken for the system 
corresponding to each particle by using the Runge-
Kutta algorithm. Then the system output signal 
corresponding to each particle is obtained. 

3) Calculate the index FL. Calculate the fitness of each 
particle, as well as individual extremum and global 
extremum. 

4) Update the position and velocity of each particle, and 
obtained a new model parameters (ai, bi, hi). 

5) Determine whether the particles are within the setting 
region. If the particle is still in the setting area, then 
return to the second step to continue the iterative 
optimization. Stop iterating until the error criterion or 
the maximum generation is met. Finally the optimal 
parameters a, b, h is obtained. And then the best 
output is achieved. 

4. Periodic signal type identification 

Periodic signal can be extracted effectively based on 
adaptive stochastic resonance extraction model, but the types 
of periodic signal cannot be determined. Sine, square wave, 
triangle wave, sawtooth wave, etc are common types of 
periodic signal. Under the background of strong noise, 
according to the type of periodic signal, particularly in the 
field of diagnosis, fault type can be identified effectively. 
Thus it is facilitated for people to diagnose the fault and carry 
out equipment maintenance work.  

Therefore, an index is needed to be selected to distinguish 
types of periodic signal correctly. Kurtosis index K is the 
numerical statistics reflecting signal distribution 
characteristics, defined as the ratio of signal four moments 
and two moments square[10]. 
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Where N is the length of signal. 
Kurtosis index has the special characteristics of mathematical 
statistics. Fig. 6 shows the signal waveform with different 
frequencies and different types. According to the formula (7), 
the corresponding kurtosis value K is calculated. Results are 

shown in Table 1. 

As shown in Table 1, different types of periodic signal 
correspond to different kurtosis value, and kurtosis value does 
not change along with the frequency and the amplitude of the 
signal. 

 

 

Fig.6. Various periodic waveforms of different frequencies 

Table.1. Kurtosis values corresponding to periodic signals  

 square sine triangle sawtooth 

 1 1.5 1.8 1.8 

5. Simulation analysis 

Assume that the signal to be measured is periodic 
sinusoidal signal, as shown in the first line of Fig. 7. Where 
A=1, f=2kHz, fs=100kHz. Image of mixed signal with noise is 
shown in the second line of Fig. 7. According to the periodic 
signal extraction based on adaptive stochastic resonance 
proposed above, three levels stochastic resonance system is 
chosen, and the search region of a, b and h are [0.1, 10], [0.1, 
10], [0.1, 1.0]. The output of one level and three levels system 
are shown in the third and fourth lines of the Fig. 7 
respectively. Under different noise intensity D, the model 
parameters, measurement index, kurtosis values and 
corresponding SNR were shown in Table 2. By comparing 
waveform of output signal under different noise intensity in 
Fig. 7, it shows that the model can extract the high-frequency 
periodic signal when the noise intensity D is less than 8. From 
the foregoing, this model can extract high-frequency 
sinusoidal signal with SNR greater than -10.79dB. 
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(a) D =1                                                 (b) D =3                                                  (c) D =6                                                  (d) D =8 

Fig.7. Input and output of sinusoidal signal extraction model under different noise intensity 

Table.2. Optimal parameters of sinusoidal signal extraction model, measurement indicators, kurtosis values and SNR 

D 1 3 6 8 

a,b,h 0.1,0.1,0.5 0.4,0.1,0.3 0.1,0.2,0.5 0.2,0.1,0.3 

FL 3.3844e-006 7.3033e-006 1.9827e-005 3.7044e-005 

K 

SNR(dB) 

1.3431 

-3.01 

1.3706 

-7.78 

1.3668 

-10.79 

1.4246 

-12.04 

 

Assume that the signal to be measured is periodic square 
wave signal, as shown in the first line of Fig. 8. Where A=1, 
f=10Hz, fs=500Hz. Image of mixed signal with noise is 
shown in the second line of Fig. 8. Like the above, three 
stages stochastic resonance system is chosen. The search 
region of a, b and h are [0.1, 10], [0.1, 10], [0.1, 1.0]. The 
output of one level and three levels system are shown in the 
third and fourth lines of the Fig. 8 respectively. Under 

different noise intensity D, the model parameters, 
measurement index, kurtosis values and corresponding signal 
to noise were shown in Table 3. By comparing waveform of 
output signal under different noise intensity in Fig. 8, it 
shows that the model can extract the periodic signal when the 
noise intensity D is less than 10. From the foregoing, this 
model can extract square wave signal with SNR greater than -
7.78dB. 

 

       
(a) D =1                                                  (b) D =3                                                    (c) D =6                                                (d) D =10 

Fig.8. Input and output of extraction model under different noise intensity 
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Table.3. Optimal parameters of square wave signal extraction model, measurement indicators, kurtosis values and SNR 

D 1 3 6 10 

A,b,h 0.3,0.1,0.5 0.4,0.1,0.3 0.1,0.1,0.5 0.2,0.1,0.3 

FL 0.0516 0.1167 0.3199 1.3388 

K 

SNR dB  

1.1166 

0.00 

1.1150 

-4.77 

1.1312 

-7.78 

1.1544 

-10.00 

 

6. Conclusion 

This paper presents a weak periodic signal extraction 
method based on cascaded stochastic resonance. By using the 
variable step size adaptive stochastic resonance, the weak 
periodic signals extraction under the condition of large 
parameters is realized. Cascaded stochastic resonance system 
has the function of reducing noise and shaping waveform. So 
the smoothness of the output signal is realized. Zero distance 
variance is selected as model measurement index, which 
overcomes the defect that traditional adaptive stochastic 
resonance algorithm needs prior knowledge of frequency. 
Finally, the feasibility of the method is verified by simulation.  
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