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ABSTRACT 

Stationary distribution vectors pm for Markov chains with associated transition 
matrices T are important in the analysis of many models in the mathematical sciences, 
such as queuing networks, input-output economic models, and compartmental tracer 
analysis models. The purpose of this paper is to provide insight into the sensitivity of 
pm to perturbations in the transition probabilities of T and to understand some of the 
difficulties in computing an accurate pm. The group inverse A# of 2 - T is shown to 
be of fundamental importance in understanding sensitivity or conditioning of pm. The 
main result shows that if there is a state that is accessible from every other state and 
the corresponding column of T has no small off-diagonal elements, then pm cannot be 
sensitive to small perturbations in T. Ecological examples are given. A new algorithm 
for calculating A* is described. 

1. INTRODUCTION 

For an n-state finite, homogeneous, ergodic Markov chain with transition 
matrix T = [pii], the stationary distribution is the unique row vector pm 
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satisfying 
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p*T = pm, Cp” = 1. 

Letting A,,, and e,,,r denotethematrices A=Z-T and e=[l,l,...,l]r, 
the stationary distribution p” can be characterized as the unique solution to 
the linear system of equations defined by 

p”A=O and p”“e=l. 

(See [14] for an elementary exposition of finite ergodic chains.) 
The theory of finite Markov chains has long been a fundamental tool in 

the analysis of social and biological phenomena. More recently the ideas 
embodied in Markovchain models along with the analysis of a stationary 
distribution have proven to be useful in applications which do not fall directly 
into the traditional Markov-chain setting. Some of these applications include 
the analysis of queuing networks [13], the analysis of compartmental ecologi- 
cal models [6], and least-squares adjustment of geodetic networks [l]. Re- 
cently, the behavior of the numerical solution of systems of nonlinear 
reaction-diffusion equations has been analyzed by making use of the sta- 
tionary distribution of a finite Markov chain in conjunction with the concept 
of the group inverse [7]. 

An ergodic chain manifests itself in the transition matrix T, which must be 
row stochastic and irreducible. Of central importance is the sensitivity of the 
stationary distribution p”O to perturbation in the transition probabilities of T. 
This area has been addressed by several authors, substantial contributions 
being made by Schweitzer [17], Meyer [16], Golub and Meyer [8], Harrod 
[lo], and Conlisk [3]. Th is work has provided a solid base for the theoretical 
analysis of the sensitivity question, but little has been written concerning the 
practical problem of how one can easily decide a priori whether or not a 
given chain might be sensitive to small perturbations. The tests for sensitivity 
which can be implemented numerically include the computation or estima- 
tion of the “chain condition number” Imaxi, j a:] proposed in Section 2 (see 
Section 2 for the definition and summary of properties concerning A#), 
computation of the eigenvalue of A of second smallest magnitude (proposed 
by Funderlic and Heath [5]), and computation of the second smallest singular 
value of A (proposed by Harrod and Plemmons [ll]). Each of these may be a 
formidable numerical task which can be quite expensive relative to the 
computation of the stationary distribution pm. 

The purpose of this paper is to demonstrate that in many common 
situations it is only necessary to inspect the magnitudes of the transition 
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probabilities in order to be certain that pm is not sensitive to small perturba- 
tions in T. In particular, we will show that if there exists at least one state Sj 
which is directly accessible from every other state, and if pij is not close to 
zero for i # j, then poo cannot be sensitive to small perturbations in T. 

2. BACKGROUND MATERIAL 

The sensitivity of pm is most easily gauged by considering the transition 
probabilities in T to be differentiable functions of a parameter t and by 
examining the derivatives of the stationary probabilities with respect to t. 
This approach has been adopted by Golub and Meyer [8] and Co&k [3]. An 
alternative approach taken by Schweitzer [17] and Funderlic and Heath [5] is 
to examine partial derivatives i3p”/c3pij. In this paper, we will take ad- 
vantage of Golub and Meyer’s results, which are phrased in terms of the 
group inverse A# of A = Z - T. Below is a short summary concerning the 
matrix A#. Proofs and additional background material on A* may be found in 
[2, 15, 161. 

(2.1) 

(2.2) 

(2.3) 

Each finite Markov chain has the property that A = Z - T belongs to 
some multiplicative matrix group. (T is the transition matrix.) Let G 
denote the maximal subgroup containing A. The inverse of A with 

respect to G is denoted by A#, and the identity element in G is denoted 
by E. 

For all finite Markov chains, the limiting matrix is the difference of the 
two identities I and E in the sense that 

T”= lim 
Z+T+T2+ .a. +Tk-l=z_E=z_AAP 

k+cc k 

Of course, if the chain has a limiting matrix in the strong sense, then 

Tm= lim Tk=Z-E. 
k-m 

If the chain is ergodic (i.e., T is irreducible), then 

T=‘=Z-E=Z-AA#=epm, 

where e is a column vector of 1’s. 
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(2.4) The group inverse A# of A can be characterized as the unique matrix 
satisfying the three equations AA#A = A, A%A* = A*, and AA# = A#A. 

The following results of Golub and Meyer [8] make it transparent that the 
matrix A# is a fundamental quantity governing the sensitivity of the sta- 
tionary distribution of an ergodic chain. 

THEOREM 2.1. Let T( t ) be a matrix that on some interval (a, b) bus 
entries pij( t) which are differentiable functions of a parameter t. Further- 
more, suppose that T(t) is row stochastic and irreducible on (a, b), so that 
there is a uniquely defined stationay distribution p”(t) for each t in (a, b). 
The derivatives of the stationuy probabilities are given by 

~ = p’=(t)qA#(t), dp=‘(t) 
dt 

where A”< t ) = [I - T( t )I#. In particular, the derivative of the i th stationa y 
probability is 

W’(t) dT(t) L = p”(t)- 
dt dt A:(t), 

where A:(t) is the ith column of A#(t). 

In loose terms, Theorem 2.1 says that in gauging the sensitivity of pm, 
small perturbations in the transition probabilities are “magnified’ by the 
entries in A#. The sensitivity of the ith stationary probability depends on the 
entries of the ith column of A#. 

The “condition number” for an ergodic chain arises from the following 
result of Meyer [16], which is a discretized version of the previous theorem. 

THEOREM 2.2. Let C and 6 be ergodic chains with transition matrices T 
and f = T - F and stationary distributions pm and grn, respectively. Zf 
A=Z-T, thenZ+FA#isnonsingularforallF=T-fand 

fi” = p”( I + FA#) - ‘. (2.5) 

Use (2.5) to write pm - fim = fPFA* and multiply on the right by ei, the 
ith unit column vector, to obtain 
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where AT denotes the ith column of A#. By the Holder inequality 

IP? - fi?l d lli?l~II~~~IIm G IlFAtfll,. (2.6) 

This gives the following theorem, which again shows the importance of the 
group inverse in the sensitivity of the ith stationary probability. 

THEOREM 2.3. Zf C and (? are ergodic chains with transition matrices T 
and f = T - F and stationary distributions pm and fi”, respectively, then 

IP? - Zl d llFllmm~la~l~ 
i 

(2.7) 

where aFj denotes the (i, j) entry of A*. 

The relation 

motivates the following definition. 

DEFINITION. The number 

K(C) = maxIa 
i,j 

is defined to be the condition number for the chain C. 

In passing, it is worth noting that it is always the case that 

II%, = IIT - fll, G 2. 

Hence (2.7) and (2.8) yield the following bounds which hold for all perturba- 
tions: 

Ip,? - fiml Q 2maxlayjl 
j 

(2.9) 

and 

m~lp,? -fi”jQ 2K(C). (2.10) 
I 
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3. THE INSENSITIVITY OF A CHAIN WITH A STRONGLY 
ACCESSIBLE STATE 

Throughout this section it is assumed that A = Z - T, where T,, x n = [pi j] 
is the transition matrix of an n-state ergodic chain C; i.e., T is an irreducible 
row stochastic matrix. 

DEFINITION. The order of accessibility of state Sj is defined to be that 
number Sj such that mini + ipi j = aj. The state Sj is considered to be a 
strongly accessible state if 6, # 0 and Sj is large relative to 1. 

In other words, a strongly accessible state Sj is one which is directly 
accessible from every state and such that the probability of moving into Sj 
from each other state is large. In terms of A = Z - T, the jth column of A has 
all its off-diagonal elements relatively close to - 1. 

Our major purpose is to demonstrate rigorously that if a chain possesses at 
least one strongly accessible state, then the chain must be well conditioned in 
the sense that the stationary distribution p* must be relatively insensitive to 
small perturbations in the transition probabilities. This will be accomplished 
by showing that chains which possess a strongly accessible state must 
necessarily have a small condition number K(C), as described in the previous 
section. To best facilitate the development, we will always use the I, matrix 
norm, and we will obtain the major result as a sequence of two theorems. 

It is well known that if A,,, is irreducible, then rank(A) = n - 1 and 
hence every subset of n - 1 rows (or columns) of T is linearly independent. 
Hence every (n - 1) X (n - 1) submatrix of A is nonsingular. Our first major 
result relates the magnitudes of the inverses of these submatrices to the 
magnitude of A#. 

THEOREM 3.1. For every (n - l)x(n - 1) submatrix B of A = Z - T, 

llA$1l, Q 4ll~-‘Il,~ 

submatrix of A. There exist Proof. Let I? be any (n-l)X(n-1) 
permutation matrices P and Q such that 

PAQ = 
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It is well known that the condition 

rank = rank(B) 

guarantees 

a=dTB-‘c 

[2, Corollary 6.3.8, p. 1031. Write A as 

A=PT ;T ’ 
[ 1 (y QTp 

and define A - to be the matrix 

A-=Q ‘;’ ; P. 
[ 1 (3.1) 

Because (Y = d TB-l~, it is easy to verify that AA-A = A. Recall from (2.4) 
that A#= A%A*, and use the fact that A = AA -A, where A - is the matrix 
of (3.1), to obtain 

A#= A#@-A)A#= EA-E, (3.2) 

where E is the identity element of the maximal subgroup which contains A. 
From (2.2), E = I - T” and hence 

II% = III - Yl, G Ilk + W’ll, =s 2. 

Since ]]*]lm is invariant under all row and column permutations, taking norms 
in (3.2) produces 

lL@ll, G llEll,llA- llmllEllm = 4lIA- Ilm = 4llB-‘IL n 

Since K(C)= maxij]a$] < llA#ll,, the preceding theorem yields the fol- 
lowing corollary. 

COROLLARY. Zf a chain C is ill conditioned in the sense that K(C) is 
large relative to 1, then the inverse of eve-y (n - 1) X (n - 1) submatrix B of 
A must have some entries of large magnitude. 
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(The converse of this corollary has neither been proven nor disproven.) 

The next theorem is the fundamental result of this paper. It says that if an 
ergodic (irreducible) chain possesses at least one strongly accessible state, 
then the chain must be well conditioned in the sense that the stationary 
distribution pm is relatively insensitive to small perturbations in the transition 
probabilities contained in T. 

THEOREM 3.2. Let ai be the order of state Si of a chain C. Then 

K(C) < 4/aj. 

Proof For each j, Sj = mini, jpij. The proof will hinge on the fact that 

(3.3) 

for each j = 1,2,..., n. This will guarantee that if there is a strongly accessible 
state, then IIATl, must be relatively small in magnitude. Since it is always 
the case that K(C) < llA#11,, it will follow that for each j 

K(C)< f. 
i 

(3.4) 

Hence K(C) will be relatively small whenever there exists a strongly accessible 
state. To prove (3.3), proceed as follows. Suppose the jth state is strongly 
accessible, so that in particular, pij + 0 for i # j. Reorder the states to make 
state j the last state of the chain. That is, execute a symmetric permutation 
on the entries of T to give 

QTTQ= [ ir j, 
where Q is the permutation matrix obtained by interchanging columns j and 
n in I. In a symmetric permutation, diagonals go to diagonals, and thus c has 
no zero entries, i.e., c > 0. This implies that evey row sum of S is strictly less 
than 1 so that IISII, -c 1. Write 



STATIONARY DISTRIBUTION VECTOR 

Since IlSlj, < 1, it follows that U = Z - S is nonsingular and 

u-‘=(I-s)-‘=z+s+P+P+ . . . . 

9 

Hence 

~~w-‘ll,d+ll~ll,+Il~ll:+Ilsll~+ *** = l_;sll * 
cc 

It is easily verified that (Q’AQ)“= Q’A”Q, SO that 

lb% = llQTA”Qllm = Il&?‘AQ)“ll; 

From the previous theorem, we know that 

Therefore, 

llA”ll, G 4V-‘II, 5s 1 _ isll 9 m 

If e denotes the column of l’s, then 

c = (Z - S)e = e - Se. 

This implies that the smallest component of c lies in the position correspond- 
ing to the row of S which has maximal row sum. That is, 

1- [ISI/, = minci = Sj. 
t 

Hence 

and (3.3) is proven. 
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COROLLARY. From the preceding proof, we have that 

K(C) G IIA#ll, G max iin, . i i#j 
ij 

It is worth noting that the converse to Theorem 3.2 is not true. That is, a 
chain with no strongly accessible states need not be badly conditioned. For 
example, the chain with transition matrix 

has no strongly accessible states, but 

and 

A*+ 2 0 -2 2 -2 0 > 
-2 0 2 

1 
so that K(C) = $ is relatively small and hence the chain cannot be sensitive to 
small perturbations. 

4. EXAMPLES 

Transition matrices of the form 

41 0 . . . 0 1 - 91 

0 q2 ... 0 1 - q2 

T= : : 3 

0 6 q,-1 I-b,-, 

qn=l-CPi, (4.1) 

... 

Pl P2 *** Pn-1 l-2pi 
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arise from a compartmental analysis of systems called mammillary systems by 
Sheppard and Householder [18]. Clearly, these are systems in which there is 
one central state (or main processing unit) as depicted in Figure 1 for n = 5. 

If the 9i’s are zero, it follows from the results of the previous section that 
such mammillary systems are very well conditioned because the order of 
accessibility of the “central state” is 1 (the maximum possible) and hence 
K(C) < 4 regardless of how many states are in the chain. The stationary 
probabilities of these chains must therefore be very insensitive to perhuba- 
tions in the transition probabilities. 

For mammillary systems with the 9i = 0, the simple structure allows us to 
extract explicitly the general form of A# and p”O so that we may indepen- 
dently confirm our conclusions. We use Theorems 8.5.2 and 8.5.3 in [2] to 
obtain 

A#,i 41-3eqT -e 
4 

I - 9T I 1 ’ 

FIG. 1. A mammillary system. 
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where $‘= [p,,p, ,..., p,_J and 

The actual value of K(C) is 

K(c)=ma.x{l-$pi, iPi t} <l* 

The upper bound of 4 provided by the corollary to Theorem 3.2 is not overly 
pessimistic. Moreover, the characteristic equation of the matrix T, X n in (4.1) 
is A”-‘( X2 - 1) = 0, so that the eigenvalues of T and A are h, = { l,O, - l} 
and h, = { 0, 1,2}. This observation also tends to corroborate the conclusion 
that the stationary distribution is insensitive to perturbations in T because of 
the fact that there is no other eigenvalue of A close to 0. By continuity, it 
follows that if the 9i’s are each close to 0, then the associated stationary 
distribution cannot be sensitive. 

A similar situation which concerns the analysis of radiophosphorus kinetics 
in an aquarium system is described by Whittaker [20, pp. 182-1841. Placed in 
a Markovchain setting, Whittaker’s analysis leads to a chain whose transition 
matrix is 

T= 

.740 .llO 0 0 0 0 0 .150 
0 .689 0 0 .Oll 0 0 .300 
0 0 0 .400 0 0 0 600 
0 0 0 .669 .Oll 0 0 .320 
0 0 0 0 .912 0 0 .088 * 
0 0 0 0 0 .740 0 .260 
0 0 0 0 0 0 .870 ,130 

_.150 0 947 0 0 .055 .270 .478 _ 

Again, there is a “central state” which is accessible from all other states. In 
this case, we see that S, = 0.088, so that 

K(c) < 4/0.088 = 45.45. 

Hence we expect the chain to be moderately well conditioned. Direct 
computation, using E-digit precision, yields A# as shown below (rounded to 
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3 significant digits): A*= 

3.28 1 - 0.0147 - 0.0585 0.0299 ~ 0.209 - 3.95 -0.074 
- 0.329 2.94 0.00501 - 0.0347 0.275 - 0.121 ~ 3.08 0.344 
~ 0.156 - 0.211 1.02 1.19 0.0343 - 0.0573 - 2.46 0.643 
- 0.299 - 0.262 0.00745 2.99 0.253 - 0.11 - 2.98 0.396 
- 1.39 - 0.648 - 0.0816 - 0.139 11.2 - 0.51 ~ 6.91 - 1.5 
- 0.36 - 0.283 0.00245 - 0.0378 -0.0378 - 0.128 3.71 - 3.2 
- 0.888 - 0.47 - 0.0405 -0.0898 ~ 0.158 - 0.326 2.6 ~ 0.625 

-0.167 - 0.0966 0.0454 0.0141 - 0.0984 0.0613 - 1.3 1.2 

Thus the value for K(C) is 11.2. Of course, computation of A# is generally 
expensive (see the next section), while there is almost no computation 
involved in estimating K(C) < 4/(max j mini + j pi j). This fact should mitigate 
the slightly conservative nature of the estimate. However, if A# is computed, 
then much more than K(C) is available. In particular, the sensitivity of each 
stationary probability can be gauged using (2.7). In this example the entry of 
maximum magnitude in each column of A# is shown in the following table: 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 

3.28 2.94 1.02 2.99 11.2 3.71 6.91 1.5 

Thus p? and pp must be very insensitive to perturbations, while p? may be 
slightly more sensitive. 

5. COMPUTATIONAL ASPECTS 

The purpose of this section is to give a simple method for calculating or 
forming A#. This method generalizes a frequently used method for calculating 
the inverse for general nonsingular matrices and analgous stability comments 
could be made. 

Even in the case of nonsingular matrices, the inverse of a matrix is seldom 
needed. To quote Forsythe and Moler [4, p. 791: 

. we recommend strongly against computing A ’ . almost anything you can do 
with A-’ can be done without it. 

The same is true for A#. However, there are cases when knowledge of A* may 
be desirable. One example concerns computation of the mean first-passage 
times. According to Campbell and Meyer [2, 161, the expected number of 
steps to move from state Si to state Sj for the first time is the (i, j) entry of 
the matrix 

M = (I - A*+ JA:,,)D, 
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where J is the matrix of all l’s, A”dp is the diagonal matrix obtained by setting 
the off-diagonal entries of A* to 0, and D is the diagonal matrix 

D=diag(l/py, l/pr,...,l/pZ). 

The method to be generalized (see Forsythe and Moler [4, pp. 77-791) 
uses the procedure for solving linear equations. The columns of A -’ are 
simply the respective solutions of the 12 different linear systems: 

Ax, = e,, Ax,=e,,..., Ax, = e,,. (5.0) 

Each solution makes use of an LU factorization of A (now permuted for 
stability). 

We give here the analogue of this method for matrices that arise from 
Markov chains. Our method is based on the observation that A# is the only 
matrix that satisfies the equations 

AX=I-~“, p”X = 0. (5.1) 

Suppose that there are two solutions X, and X,, so that A(X, - X,) = 0. 
Since the null space of A is spanned by e, we have 

X,ei - X,ei = a,e, i = 1,2 ,...,n. 

Premultiplication by p” implies every CY~ = 0. Similarly A* is the only matrix 
that satisfies 

XA=Z-#', Xe = 0. (5.2) 

An algorithm analogous to that suggested by (5.0) would be 

(a) A = LU. 
(b) Obtain pm from (a) by backsubstitution. 
(c) Solve successively 

LU., = e, - p,“e. 

(d) Normalize zi: 

A’f= .zi - (p”.z,)e. 

(e) A#= [AT, A$ ,..., A:]. 
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Several comments are in order. The matrix [AT,. . . , A#,] satisfies (5.1) because 
of steps (c) and (d). As suggested by Golub and Van Loan [9, p. 321, a flop is 
defined to be a scalar computation of the form c$ + y. The factorization (a) 
can be carried out in n3/3 flops in a stable way without pivoting (e.g., see 
[ll]), and pm can be obtained by back substitution from UT (see [6]). 

Funderlic and Mankin [6] showed that once either L or U is normalized 
in (a), then the only nonuniqueness is that either l,, or u,, is zero. It is 
convenient to choose 1,” = 1 and u,, = 0. Therefore for Lq, = ei - ppe in 
(b), the last component of qi is zero and the last component of zi may be 
chosen as zero in the back substitution Uz, = oi. 

If (5.0) is carried out for nonsingular matrices and flops of order less than 
n3 are ignored, it takes 4n3/3 flops to invert a matrix. However, if one takes 
advantage of the special structure of the e, vectors, the flops can be reduced 
to n3 (see Issacson and Keller [12, p. 361). Since no such economy exists for 
the calculation of A#, 4n3/3 flops are used. 

A dual algorithm may be based on (5.2). Here steps (c) and (d) would be 

(c’) z:LU = e: - p”, 
(d’) (A~T=~~-(z~e)pm, 

where the row vectors in (d’) are the corresponding rows of A#. 
It is well known that if a symmetric positive definite matrix is poorly 

conditioned, the computation of the Cholesky decomposition may break 
down. An example of this is given by Golub and Van Loan [9, p. 901: 

1.00 0.15 0.01 
0.15 0.023 0.01 1 . 
0.01 0.01 1.00 

On a two-digit decimal computer that rounds, the second diagonal element of 
the factorization is calculated as zero. Wilkinson [22] proved that if a 
symmetric positive definite matrix is not too poorly conditioned, then the 
Cholesky process can be computationally carried out. Wilkinson’s result and 
examples such as that of Golub and Van Loan suggest obvious questions for 
transition matrices. The following example suggested by an idea of G. W. 
Stewart [19] answers some of these questions. Let 

a,+ a,+a, -a1 - a2 - a3 0 

0 1 0 -1 0 
A=I-T= -1 0 1 0 0 . (5.3) 

--s 0 0 S+& -& 
0 0 0 -(S+E) S+& 

1 
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For smalI E, the leading principal submatrix of order 4 is nearly singular and 
ill conditioned with respect to inversion. However, the principal submatrix 
obtained by deleting the first row and column is well conditioned for small E 
(unless s is small). Therefore, by Theorem 3.1, A is well conditioned. 

A stable and efficient method to solve systems ATx = 0 for the stationary 
vector is Gaussian elimination without pivoting, which for these problems is 
equivalent to one step of inverse iteration; see [ll] and [6]. Mathematically, 
Gaussian elimination gives an LU factorization of these matrices such that I_, 
and U are M-matrices with L having a unit diagonal and U having positive 
diagonal elements except for u,, = 0. However, under usual computational 
assumptions, the (Y’S, s and E for the matrix given by (5.3) may be chosen 
such that Gaussian elimination breaks down; i.e., the pivot in the (4,4) 
position can become zero or negative. To illustrate this, we give for simplicity 
an example with the LY’S and s chosen as integers, though these integers could 
be scaled so that A = I - T with T a transition matrix. On a two-digit 
decimal computer that rounds, (or = 2, es = 2, es = 3, s = 4, E = 0.10 will 
cause the fourth pivot to be zero when Gaussian elimination without pivoting 
is carried out on A’, and s = 5 will cause this pivot to be - 0.10. Further- 
more, if the fifth diagonal entry of A is increased, then A is nonsingular and 
the same breakdown occurs. As has been suggested by Wilkinson [21], 
replacement of a zero pivot (the fourth in our case) by a small number will 
allow an accurate calculation of a well-conditioned eigenvector. This example 
shows that Gaussian elimination with finite-precision arithmetic can break 
down for matrices arising from Markov chains even though the associated 
chain is well conditioned. Though the example of (5.3) is illustrated with 
two-digit arithmetic, the example is general enough to illustrate the conclu- 
sions with any finite precision. 
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