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1. Introduction 

Two n.m.r, spectroscopic approaches to the study 
of protein binding of anions can be distinguished. In 
the first binding is monitored by observing the changes 
in the positions and/or linewidths of the signals in the 
~H or ~3C n.m.r, spectra as a result of anion binding. 
For example when the anion is paramagnetic like 
Cr(CN)~- the site of binding to lysozyme, carbonic 
anhydrase, and cytochrome c have been inferred from 
the 1H n.m.r, spectra [1-4] .  

The second approach is based upon the fact that 
many simple and complex anions have nuclei with 
magnetic moments and are more or less suitable for 
direct n.m.r, studies. Binding influences the relaxation 
rate of the nuclei of the bound ions. Under conditions 
of fast exchange the interaction with the protein can 
be conveniently followed by studying the n.m.r, signal 
from the anion in the bulk solution. The interpretation 
of the relaxation changes is particularly simple for 
magnetic nuclei with electric quadrupole moments, 
such as chloride and bromide [5]. This type of 
technique has been employed for the study of chloride 
binding to human hemoglobin. The picture which has 
emerged so far is that high affinity binding occurs at 
specific regions of the protein [6,7]. In these studies 
the experiments performed were of two kinds: (i) 
competition experiments with other anions with 
known binding sites, notably organic phosphates, and 
(ii) comparison of the chloride binding pattern of 
Hb A with those of mutant or chemically modified 
hemoglobins. It appears that chloride is bound with 

high affinity not only at the organic phosphate binding 
region (involving the N-terminal of the beta chains, 
I-Iis/3-2, Lys/3-82 and HN3-143), but also at (or near) 
the C-terminal residues of both types of chains 
(His/3-146-Asp/3-94 and Valc~-l-Arga-141). Direct 
evidence has also been obtained for the linkage of 
the binding of chloride with that of oxygen and 
protons [7]. 

This note reports on the chloride binding proper- 
ties of various human hemoglobins with structural 
modifications in the proposed chloride binding 
regions: Hb A1C, where the N-terminal of the beta 
chains is blocked by a Schiff base, Hb F, where the 
position corresponding to His/3-143 is occupied by 
a serine, and Hb F1, where in addition the N-terminal 
of both gamma chains is acetylated. The results 
obtained confirm the previous assignments of the 
high affinity binding sites and thus substantiate the 
idea that the chloride binding properties of HbA 
result from high affinity binding to a few specific, 
localized binding sites. 

2. Materials and methods 

The hemoglobins A, A1C , F and F 1 were prepared 
as described by Mansouri and Winterhalter [8]. 

The n.m.r, measurements were performed as 
described by Chiancone et al. [6,7]. The hemoglobin 
samples were equilibrated with the appropriate NaC1 
solutions, containing 10 -4 M EDTA, by passage 
through a Sephadex G-25 column. 
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3. Results and discussion 

The binding of C1- to hemoglobins HbAIc. HbF 
and HbF 1 could be conveniently followed through 
measurements of the 3sC1 n.m.r, linewidth on a few 
tenths molar sodium chloride solution in the 
presence of small amounts of the protein. Since 
chemical exchange is rapid, binding results in an 
increase in linewidth in excess of that of the free ion. 
The excess broadening depends on the number (ni) 
of ions bound and on the linewidth (Avi) characteristic 
of each binding site (for a recent review see [5] ). 

The strong dependence of the linewidth on chloride 
concentration observed for all hemoglobins indicates 
the presence of high affinity binding sites like in the 
case of HbA. The decrease in linewidth upon deoxygena- 
tion is also similar to that observed for HbA and is 
similarly indicative of a stronger interaction of the 
ion with the deoxygenated derivative (table 1). The 
latter results, implying the presence of a chloride- 
oxygen linkage, parallel the effect of organic 
phosphates on the oxygen equilibrium [8,9]. 

The effect of pH was analysed in view of the 
information it may provide on the nature of the 
chloride binding sites. Fig. 1 shows the results obtained 
on 1% solutions of HbAIc in 0.5 M NaC1. The excess 

Table 1 
Dependence of  the 35C1 excess linewidth on NaCI 

concentrat ion and on the presence of  a heine 
ligand for HbA1c, t tbF and HbF 1 

NaC1 conc. Derivative Av e (1%) 
(M) 

HbAIc 0.50 oxy 6.5 
0.50 CO 7.0 
0.50 deoxy 3.8 
0.35 oxy 7.2 
0.35 deoxy 6.0 
0.30 CO 10.2 
0.30 deoxy 6.6 
0.2 oxy 13.9 
0.2 deoxy 6.2 

HbF 0.50 oxy 13.4 
0.50 deoxy 5.2 
0.30 oxy 19,5 
0.20 oxy 22,2 
0.20 deoxy 6,8 

HbF 1 0.2 oxy 18,1 
0.2 deoxy 7,5 

Protein concentrat ion 1%; pH 6 .8 -7 .3 ,  
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Fig.1. Excess l inewidth as a funct ion  o f  pH in the presence o f  HbA1c.  Solvent: 0.5 M NaC1, hemoglobin concentra t ion 
1%, hemoglobin  derivative: (o) oxy,  (e) ca rbonmonoxy .  Dashed line refers to the CO derivative of  HbA under  the  same 
exper imental  condit ions ( f rom [6 ] ). 
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Fig.2. Excess linewidth as a function of pH in the presence of HbF. Solvent: 0.5 M NaCI, hemoglobin concentration 1%, 
hemoglobin derivative: oxy. Dashed lines refer to the CO derivatives of HbA ( . . . . .  ) and Hb Abruzzo (-. -.  -.  -) 
respectively (from [ 11 ] ). 

l inewidth observed in the solutions of  HbA1c is 
markedly reduced at all pH values in comparison with 
HbA. In addit ion the pH profile of HbA1c lacks the 
inflection point  at slightly alkaline pH values. In 
HbA this has been at t r ibuted to the neutralization of  
amino groups; in particular, given the compet i t ion 
between chloride and organic phosphates, the 
N-terminal groups of  the beta chains appeared as 
good candidates also for chloride binding. Thus the 
significant reduction in l inewidth in this pH region 
can be explained as resulting directly from the 
blocking of the N-terminal residues of the beta chains. 
The flatness of  the excess linewidth at acid pH values 
can be accounted for on the same basis. In HbA the 
strong pH dependence of the l inewidth in this pH 
region has been ascribed to amino groups which are 
rendered accessible for chloride binding by the pro- 
gressive neutralization of  neighboring carboxyl  groups 
[7].  In HbAIc the blocking of  the N-terminal amino 
groups simply prevents chloride binding in this region; 
therefore the neutralization of  neighboring carboxyl 
groups should have no effect on the chloride linewidth. 

Fig.2 shows the pH dependence of  the excess 
l inewidth of  a 1% solution of  HbF in 0.5 M NaC1. With 
respect to HbA the l inewidth is somewhat lower and 
is characterized by the lack of  the inflection point  at 
slightly acid pH values and by a second inflection point 

at about pH 10. Both these features can be interpreted 
on the basis of  the structure of HbF and HbA. The 
ti tration point  at about pH 10 can be at t r ibuted to the 
ionization of  the e-amino group of  a lysine residue; 
the most likely one be{ng that of  LysT-82, which is 
involved in organic phosphate binding. In HbA, which 
is no ta lka l i  resistant, this t i tration point could not  be 
reached. The constancy of the linewidth in the acid 
region can be due to the substitution of  His/3-143 with 
a serine, a neutral amino acid. The close similarity 
between the pH profile of HbF and that o f  Hb 

Table 2 
Dependence of the asC1 excess linewidth on 

pH for HbF 1 and HbF. 

Derivative pH ,av e (1%) 

HbF 1 oxy 6.80 18.1 
CO 7.39 18.4 
CO 8.04 7.7 

HbF a oxy 6.80 22.6 
oxy 7.39 20.8 
oxy 8.04 16.0 

Protein concentration 1% in 0.2 M NaC1 
aData recalculated from table 1 and Fig.2. 
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Abbruzzo (His/3-143 -+ Asp/3-143) (cf. fig.2) strengthens 
this in te rpre ta t ion  [11].  

The results obta ined with HbF 1 are somewhat  
l imited in view of  the difficulty of  obta in ing  big 
quant i t ies  of  the material,  which required l inewidth  
measurements  at a very low chloride concen t ra t ion  

(0.2 M). Assuming the same type of dependence on 
NaC1 concen t ra t ion  as for HbF, then HbF l has a 
lower l inewidth  at all pH values (cf. table 2). This 
f inding is consis tent  with the blocking of the N- 
terminal  residues of the gamma chains. 

In conclusion the results obta ined  conf i rm a 

c o m m o n  chloride b inding  pat tern  arising from the 
con t r ibu t ion  of  a few well localized high aff ini ty 
binding sites; of  these some also b ind organic 

phosphates. 
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