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Abstract We describe a multifunctional inositol polyphosphate
kinase/phosphotransferase from Solanum tuberosum, StITPKa
(GenBank accession: EF362784), hereafter called StITPK1.
StITPK1 displays inositol 3,4,5,6-tetrakisphosphate 1-kinase
activity: Km = 27 lM, and Vmax = 19 nmol min�1 mg�1. The en-
zyme displays inositol 1,3,4,5,6-pentakisphosphate 1-phospha-
tase activity in the absence of a nucleotide acceptor and
inositol 1,3,4,5,6-pentakisphosphate–ADP phosphotransferase
activity in the presence of physiological concentrations of
ADP. Additionally, StITPK1 shows inositol phosphate-inositol
phosphate phosphotransferase activity. Homology modelling
provides a structural rationale of the catalytic abilities of StIT-
PK1. Inter-substrate transfer of phosphate groups between inosi-
tol phosphates is an evolutionarily conserved function of enzymes
of this class.
� 2008 Federation of European Biochemical Societies. All rights
reserved.
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1. Introduction

Recent characterization of human inositol tris/tetrakisphos-

phate kinase, hITPK1, an ATP-grasp fold protein, revealed an

inositol phosphate–ADP phosphotransferase activity and an

ADP-dependent inter-substrate inositol phosphate phospho-

transferase activity that has been proposed [1,2] to represent

an evolutionary point of distinction between animal enzymes

and their plant [3–6] and protozoan counterparts [7].

While the physiological substrates and the catalytic mecha-

nisms of hITPK [1] and a protozoan homolog [7,8] have been

extensively studied, and for hITPK are well placed in an exten-

sive biochemical literature [9–11], comparatively little is known

of the plant enzymes. We have undertaken an in vitro analysis

of the catalytic flexibility of a homolog from Solanum tubero-
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sum (StITPK1), affording description of a range of phospho-

transferase activities not previously elaborated for plant

enzymes.
2. Materials and methods

2.1. Reagents
A potato tuber cDNA kZAP-based phagemid library (Stratagene)

was supplied by Dr. J. Lloyd (Max Planck Institute for Molecular
Plant Physiology, Gölm, Germany). Oligonucleotide primers were ob-
tained from Sigma-Genosys (Haverhill, UK) and restriction enzymes
from Invitrogen (Paisley, UK), Roche (Sussex, UK), New England
Biolabs (Hitchin, UK) or Promega (Southampton, UK). Bacterial
strains were obtained from Novagen (Nottingham, UK). Unlabelled
inositol phosphates were obtained from Sigma–Aldrich and SiChem
(Germany). [32P]ATP was obtained from Amersham.
2.2. Cloning
A fragment of StITPK1 was cloned from a tuber cDNA library by

PCR using primers (5 0- TCCTCCAAAACCCTAACCCT-3 0 and 5 0-
TTTGTGCGACTTTGCACTTC-3 0) designed from an EST sequence
(SGN-E405384) identified in the Solanum Genomic Network�s EST
database (http://www.sgn.cornell.edu) by homology to AtITPK1 [3].
A labelled StITPK1 PCR fragment, labelled using an Amersham
Ready-to-go DNA Labelling Kit and 32P dCTP, was used to screen
the library in competent XL1-Blue Escherichia coli cells. Plaque lifts
were performed (according to the Amersham Hy-Bond protocol).
Positive plaques were confirmed by PCR using the original primers.
A full length StITPK1 cDNA was obtained with some sequence
upstream of the predicted start codon, and a poly-A tail.

The cDNA was sub-cloned into the vector pET28a using mutagenic
primers to add Nco1 and Xho1 restriction sites (5 0-GAC-
TCCATGGATGG-AAATGGCGGAGCCGA-3 0 and 5 0-CTGACTC-
GAGCACGTGAATAGGGTTCTC-3 0), to yield a construct in which
StITPK1 is fused to a C-terminal six histidine tag.
2.3. Expression of protein
Expression of StITPK1-His in E. coli rosetta cells was induced over-

night at 25 �C with 1 mM IPTG. Protein was purified by batch-elution
from Ni-NTA affinity resin, and analysed by SDS–PAGE gel and Wes-
tern Blot using an anti-His antibody after [12].

2.4. Enzyme assays
Kinase assays were conducted after [12], with ATP at either 0.4 lM

or 0.4 mM concentration. For phosphatase assays, reactions con-
tained: 20 mM HEPES, pH 7.5, 6 mM MgCl2, 0.4 mM ADP, 1 mM
DTT, approximately 10000 dpm of Ins(1[32P],3,4,5,6)P5 (prepared
using recombinant StITPK1-His), 100 lM unlabelled Ins(1,3,4,5,6)P5
l rights reserved.
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Fig. 1. Alignment (CLUSTAL W) of full length sequence of Solanum tuberosum protein accession EF362784, StITPK1; Medicago truncatula protein
accession ABE89774, MtITPK1; Arabidopsis thaliana, protein accession AAC28859, AtITPK1; Zea mays protein accession AAO17299, ZmIPK;
Oryza sativa protein accession AM410634, OsIPK; Homo sapiens protein accession NP_055031, HsITPK1, commonly referred to as hITPK1;
Entamoeba histolytica protein accession AAD22969, EhITPK1. Extreme C-terminal sequences are not shown. Residues coordinating individual
phosphates of substrates are numbered according to the phosphate coordinated, or lettered, M, A or H, to indicate magnesium-, ATP-binding or
hydrophobic interactions with ATP. Conservation of residues at 100% is indicated in black, and at 80% in grey.
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and recombinant StITPK1-His protein. Reactions were performed for
1 h at 30 �C and stopped by heating to 95 �C for 5 min. We estimate
that the purity of our protein is >98% estimated by SDS–PAGE. We
have found that E. coli extracts display trivial phosphatase activity
against inositol phosphates and nucleotides, but we have found no evi-
dence of phosphotransfer from inositol phosphate to inositol phos-
phate, from inositol phosphate to ADP, or from ATP to inositol
phosphate.

2.5. Preparation of inositol phosphate standards
[3H]inositol-labeled substrates were prepared according to Sweet-

man et al. [6].

2.6. HPLC
Separations were performed on Partisphere and Adsorbosphere

SAX columns [6,12]. Reverse phase (RP-HPLC) separations were per-
formed on a 25 cm · 4.6 mm Phenomenex Synergi 4 l Hydro-RP col-
umn (Phenomenex, Macclesfield, UK). The column was eluted at a
flow rate of 1 mL min�1 with a solvent mixture derived from buffer res-
ervoirs containing: A (50 mM NaH2PO4, 5 mM tetrabutyl ammonium
hydroxide) and B (ACN/MeOH/H2O [40/50/10 v/v/v] containing 5 mM
tetrabutyl ammonium hydroxide) mixed as follows: 70% A, 30% B.

2.7. Kinetic analysis of StITPK1
Approximately 2.8 lg of StITPK1 was incubated with 15 lM,

10 lM, 5 lM and 2 lM Ins(3,4,5,6)P4 in the presence of 37 kBq
[c-32P]ATP and 0.4 mM ATP. Reactions were allowed to proceed for
20 min at 30 �C and stopped by heating to 95 �C for 5 min. The reac-
tion time and enzyme concentration were chosen to limit ATP con-
sumption to <10%. Reactions were performed in triplicate.

2.8. Homology modelling
An alignment of Entamoeba histolytica inositol 1,3,4-triphosphate 5/

6-kinase (EhITPK1) with StITPK1 for homology modelling utilised
the structural information available in the PDB entry 1Z2P [8] which
contains coordinates for EhITPK1 in complex with 1,3,4-triphospho-
myo-inositol, Mg2+ and the ATP mimic, 5 0-adenosyl-methylene-tri-
phosphate (AMPPCP). A model was generated by threading using
FUGUE [13] employing default parameters. MODELLER (version
8.2) [14] was employed to generate homology models of StITPK1 plus
magnesium ions and ADP or ATP cofactors. The models were sub-
jected to stereochemical validation using appropriate routines in
MODELLER. Models for the complexes of inositol polyphosphate
substrates with the StITPK1 used the 1,3,4-triphospho-myo-inositol
complex with EhITPK1 as a starting point.

To investigate the structural basis for the observed phosphotransfer-
ase activity of StITPK1, PDB entry 1Z2O [8], containing coordinates
for the complex of EhITPK1 in complex with Mg2+, ADP and myo-
inositol 1,3,4,6-tetrakisphosphate, was employed as a template to-
gether with MODELLER to generate models for StITPK1 plus
ADP in complex with myo-inositol 1,3,4,5,6-pentakisphosphate. All
figures were prepared using PyMOL [15].
3. Results

3.1. Cloning and expression of StITPK1

Solanum tuberosum inositol polyphosphate kinase-1 (StIT-

PK1, GenBank accession: EF362784, originally called StIT-

PKa) was cloned from a potato tuber cDNA library.

StITPK1 is aligned with other plant, human and protozoan se-

quences in Fig. 1. StITPK1 shares 54% identity with AtIPK

from Arabidopsis [3], also known as AtITPK1 [6]; 52% iden-

tity with ZmIPK from maize [4] and 21% with EhITPK1 [8].

All of the sequences aligned in Fig. 1 contain the conserved do-

main: pfam05770.3, Ins134_P3_kin; an IPK domain identified

in the Protein Families database (http://www.sanger.ac.uk/cgi-

bin/Pfam/getacc?PF05770).

We have identified residues that occupy positions equivalent

to a number of amino acids that coordinate the inositol phos-
phate substrates of EhITPK1 [8]. These include a conserved ly-

sine, K20 of StITPK1, K17 of EhITPK1, that coordinates the

3-phosphate of Ins(1,3,4)P3 and Ins(1,3,4,6)P4 substrates. A

histidine, H60, conserved between plant and human enzymes,

replaces K57 of EhITPK1 that coordinates both the 3- and 4-

phosphates of inositol phosphate substrates. A number of res-

idues identical in StITPK1 and EhITPK1 include (StITPK1)

K146, G152, H157, Q178, K189, R202 and L205; the EhITPK1

equivalents of which respectively bind ATP, the 4-phosphate of

substrates, the 4-phosphate again, ATP, the 6- and 1-phos-

phates, the 1-phosphate, and contribute to hydrophobic inter-

actions with ATP. D274, D289, and N291 are conserved

metal-binding residues. Similarly, a number of hydrophobic

residues including F273, instead of I274, and I288 are highly

conserved residues that line a hydrophobic pocket that binds

the adenine ring of the nucleotide co-substrate.

3.2. StITPK1 catalytic activity

Of the substrates tested, which included Ins1P, Ins(1,4)P2,

Ins(4,5)P2, Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4; only

Ins(3,4)P2, Ins(1,3,4)P3, Ins(1,4,6)P3, Ins(3,4,5)P3, Ins(3,4,6)P3

and Ins(3,4,5,6)P4 generated products. Inositol tetrakisphos-

phate products were identified by coelution with 3H-labelled

standards and by lack of coelution with other potential prod-

ucts on Adsorbosphere SAX columns [3,6–10].

At low ATP (0.4 lM), conditions favouring catalysis with

poor substrates [16], and 20 lM inositol phosphate substrate

(InsP4:ATP ratio of �50:1); the enzyme displays Ins(3,4,6)P3

1-kinase activity (Fig. 2A). In contrast, at 0.4 mM ATP (In-

sP4:ATP ratio of �1:20) �phosphomutase� activity was evident

generating Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 (Fig. 2F). Similar

observation were made with Ins(1,3,4)P3 (data not shown).

Threading of StITPK1 onto the EhITPK1 structure con-

firms the conservation of the structural elements of the ATP-

grasp fold in StITPK1 (Fig. 6A). A number of substitutions

of residues that interact with inositol phosphate substrates

are identified in Figs. 1 and 6B: including (StITPK1/EhITPK1)

N272G; D151Q, the aspartate replacing Q141 of EhITPK1

that forms a hydrogen bond with the 4-phosphate of

Ins(1,3,4,6)P4; and G295S, the glycine replaces the serine,

S295, of EhITPK1 that hydrogen bonds to the 1-phosphate

of Ins(1,3,4)P3 in the enzyme–substrate–AMPPCP complex.

S295 contributes to the Ins(1,4,5)P3 3-kinase activity of

EhITPK1, an activity lacking in StITPK1. Other active site

residues are indicated in Fig. 6B–D: H157 corresponds to

H147; K61 corresponds to R58; and Y191 corresponds to

F181. Binding of Ins(3,4,6)P3 to StITPK1 in a mode consistent

with phosphorylation at the 1-position is indicated in Fig. 6B.

The model reveals the close approach (less than 3 Å) of the

oxygen atom of the 1-OH of Ins(3,4,6)P3 and the phosphorus

atom of the c-phosphate of ATP. StITPK1 displays

Ins(1,4,6)P3 3-kinase activity (Fig. 2B). The enantiomeric nat-

ure of Ins(1,4,6)P3 and Ins(3,4,6)P3 requires the binding (Fig.

6B and C) of enantiomers in different modes to effect phos-

phorylation on enantiotopic positions.

Ins(1,3,4,5)P4 was obtained as product from Ins(1,3,4)P3

(Fig. 2C), and Ins(3,4,5,6)P4 was obtained from Ins(3,4,5)P3

(Fig. 2D). Ins(1,3,4,6)P4 was obtained from Ins(3,4)P2 (Fig.

2E).

Given the importance of Ins(1,3,4)P3 to InsP6 synthesis in

animals, we sought to establish whether StITPK1 has a greater

affinity for either Ins(1,3,4)P3 or Ins(3,4,5,6)P4 as substrate.

http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF05770
http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF05770


Fig. 2. Products of reactions catalyzed by StITPK1-His. Adsorbosphere SAX HPLC of 32P products (�), left Y-axis; mixed with standards (�) of
[3H]Ins(1,3,4,5)P4 and [3H]Ins(3,4,5,6)P4, right Y-axis of panels A–E, and additionally containing a [3H]Ins(1,3,4,6)P4 standard, panel F. The
substrates used were: (A) Ins(3,4,6)P3; (B) Ins(1,4,6)P3; (C) Ins(1,3,4)P3; (D) Ins(3,4,5)P3 and (E) Ins(3,4)P2; all at 0.4 lM ATP; and (F) Ins(3,4,6)P3

at 0.4 mM ATP. For panels A, C–E, the units are dpm · 10�3; for panels B and F, the units are dpm · 10�4. Confirmation of the identity of products
was performed on more than three occasions with different preparations of protein in assays of typically 15–60 min duration.
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Recombinant StITPK1-His generated more InsP5 product

from Ins(3,4,5,6)P4, than it did InsP4 product from

Ins(1,3,4)P3 (Fig. 3A). The substrate preference of the enzyme

was: Ins(3,4,5,6)P4 � Ins(1,4,6)P3 � Ins(3,4,6)P3� Ins(1,3,4)

P3 > Ins(3,4,5)P3 (data not shown).

StITPK1-His displays apparent Michaelis–Menten kinetics

(Fig. 3B) with Ins(3,4,5,6)P4: Km = 27 lM, and Vmax =

19 nmol min�1 mg�1. The product coeluted with [3H]Ins(1,3,

4,5,6)P5 (Fig. 4C), but not DD/LL-[3H]Ins(1,2,4,5,6)P5, DD/LL-[3H]-

Ins(1,2,3,5,6)P4 nor Ins(1,2,3,4,6)P5. The result of molecular

modeling of Ins(3,4,5,6)P4 substrate is shown in Fig. 6D, with

Ins(3,4,5,6)P4 bound in the same mode as Ins(3,4,6)P3, that is

with the 2-OH projecting into the active site.

3.3. InsP5/ADP phosphotransferase activity of StITPK1

With Ins(1[32P],3,4,5,6)P5 (20 lM Ins(1,3,4,5,6)P5) substrate

and 0.1 mM ADP, Ins(1[32P],3,4,5,6)P5 was consumed in a

time-dependent manner yielding [32P]ATP (Fig. 4A): sup-

ported by a coeluting UV absorbance at 258 nm (Fig. 4C

and D) that was not present in samples lacking ADP and/or

enzyme. Little inorganic phosphate is visible in Fig. 4C and

D; thus, the predominant activity of StITPK1 at physiological

ADP and Ins(1,3,4,5,6)P5 is that of an InsP5-ADP phospho-

transferase.
Remarkably, inclusion of 5 lM Ins(1,3,4)P3 in assays with

StITPK1-His, ADP, and Ins(1[32P],3,4,5,6)P5 also generated

a [32P]InsP4 (Fig. 4E) that was absent from assays lacking

Ins(1,3,4)P3 (Fig. 4C and D) and increased Ins(1[32P],3,4,

5,6)P5 dephosphorylation (Fig. 4E). Confirmation that the

[32P]InsP4 was the product of phosphotransfer to Ins(1,3,4)P3

was provided in other assays by the inclusion of

[3H]Ins(1,3,4)P3 acceptor, yielding [3H32P]InsP4 (data not

shown). We conclude that inter-substrate phosphotransfer is

evolutionarily conserved between plants and animals. In the

absence of ADP, dephosphorylation of [3H]Ins(1,3,4,5,6)P5

yielded a [3H]InsP4 which eluted in the position of

Ins(3,4,5,6)P4 (compare Fig. 5 with standards shown in Fig.

2F). Dephosphorylation of [3H]Ins(1,3,4,5,6)P5 was increased

by the inclusion of 0.4 mM ADP (data not shown).

Comparison of binding of Ins(1,3,4,5,6)P5, in the presence of

ADP or ATP, reveal that the active site cannot accommodate

Ins(1,3,4,5,6)P5 and ATP. Modelling of Ins(1,3,4,5,6)P5 in two

modes, with the 2-OH projecting into (Fig. 6E) or out (Fig. 6F)

of the active site, reveals the juxtaposition of the c-phosphate

of ATP and the 1- and 3-phosphates of Ins(1,3,4,5,6)P5,

respectively. The model predicts that the 1-phosphate of

Ins(1,3,4,5,6)P5 is lost on phosphotransfer to ADP (Fig. 6E),

consistent with data of Figs. 4 and 5.



Fig. 3. StITPK1 substrate preference and kinetics. (A) StITPK1-HIS was incubated with inositol phosphate, 40 lM ATP and [c-32P]ATP at 30 �C.
Products were resolved by RP-HPLC; peak area expressed as a percentage of the total radioactivity recovered, Ins(1,3,4)P3 (�), Ins(3,4,5,6)P4 (�). (B)
Lineweaver–Burk plot for Ins(3,4,5,6)P4 substrate.

Fig. 4. Phosphotransferase activities of StITPK1. (A) RP-HPLC of the products of a 40 min reaction with Ins(1[32P],3,4,5,6)P5 and ADP: Left Y-
axis, 32P; Right Y-axis, UV 258 nm. (B) products of a 0 min reaction. (C–E) Partisphere SAX HPLC of 32P products of (C) 20 min reaction with an
internal standard (inset) of [3H]Ins(1,3,4,5,6)P5, 32P (�) 3H (�); (D) 120 min reaction, Left Y-axis, 32P; right Y-axis, UV 258 nm. (E) 20 min reaction
with Ins(1[32P],3,4,5,6)P5, ADP and Ins(1,3,4)P3.
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Fig. 5. Phosphatase activity of StITPK1. Adsorbosphere SAX
HPLC of products of assay with [3H]Ins(1,3,4,5,6)P5 resolved with
Ins(1[32P],3,4,6)P4 and Ins(1[32P],3,4,5)P4 standards, [3H]; (s); [32P],
(�). The elution of inositol phosphates can be directly compared with
that of 3H and 32P standards in Fig. 2F.

Fig. 6. Homology modelling of StITPK1 and its complexes with inositol pol
with bound Mg2+, AMPPCP and Ins(1,3,4)P3; and the threaded structure of t
ATP and magnesium ions: (B) Ins(3,4,6)P3; (C) Ins(1,4,6)P3; (D) Ins(3,4,5
predicted position of the c-phosphate of ATP is superimposed in grayscale.
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4. Discussion

StITPK1, like hITPK1, possesses phosphatase and inter-

substrate phosphotransferase activity. Phosphotransfer to

ADP affords a potential point of control for InsP6 synthesis

in plants where massive accumulation of InsP6 in storage tis-

sues is the developmental norm. The accumulation of InsP6

is a hugely energetic process and it is plausible that this process

is governed in part not just by ATP supply, but by ADP/ATP

balance. The corollary of this is that phosphotransfer to ADP

may be physiologically relevant.

Our data begin to provide a molecular explanation of a

number of reports of inositol polyphosphate-nucleotide phos-

photransferase activities from plants. Activities transferring

phosphate from InsP6 to nucleotide have been described in

mung bean [17] and soybean [18]. We note that ADP-phospho-

transferase activities can be attributed to a diverse family of

inositol phosphate kinases, including, in addition to ITPKs,

InsP6 kinase [19], and IPK1-like activities [17,18].
yphosphate substrates (A) overlay of the crystal structure of EhITPK1
he StITPK1. (B–F) docking of substrates to StITPK1 in the presence of
,6)P4; (E) Ins(1,3,4,5,6)P5; and (F) Ins(1,3,4,5,6)P5. In E and F, the



S.E.K. Caddick et al. / FEBS Letters 582 (2008) 1731–1737 1737
Our demonstration of phosphotransfer to ADP also affords

potential insight into the reaction mechanism of plant ITPKs.

While H162 is important for phosphotransfer reactions of hIT-

PK1 [1], it is not critical for enzymes of this class because StIT-

PK1, with an aspartate, D151, in the equivalent position,

displays all the phosphotransfer reactions reported for hITPK1.

Enzymes of both ITPK and inositol phosphate multikinase

(IPMK) classes have been shown to contribute to InsP6 syn-

thesis in plants: mutation of ZmIPK reduced kernel phyate

in maize [4], while mutation of AtIPK2b, an IPMK, reduced

seed phyate in Arabidopsis [20]. While the in vivo substrates

of these enzymes have not been formally identified, it has been

suggested that AtIPK2b contributes to a pathway downstream

of Ins(1,4,5)P3 [20] as has been established in yeast. It is less

clear what physiological substrate ZmIPK, as an exemplar of

plant ITPKs, might access; but the substrate is not

Ins(1,4,5)P3. Most reasonably, in the direction of phytic acid

synthesis the substrate is likely to be Ins(3,4,5,6)P4. For the

moment, we do not consider that the demonstration of phos-

photransfer to Ins(1,3,4)P3 is physiologically relevant to

plants, given the absence in this kingdom, and in yeast, of

the Ins(1,4,5)P3 3-kinases of the animal kingdom that generate

the Ins(1,3,4,5)P4 precursor of Ins(1,3,4)P3. Nevertheless, it

seems plausible that other inositide – inositide transferase

activities may be physiologically relevant. In summary, given

the range of activities displayed by ITPKs it is possible that

ITPKs afford higher eukaryotes a level of control of InsP6 syn-

thesis that is not evident in yeast; but which is superimposed

upon the activity of IPMKs which are common to plants, yeast

and animals. Such considerations may not be well answered

until we have a more complete understanding of the biochem-

istry of ITPKs and IPMKs in other lower eukaryotes.
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