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Abstract

Whist tournaments on players are known to exist for all= 0, 1 (mod 4. A whist design is said
to beZ-cyclic if the players are elements i), U .o/ wherem = v, ./ = ) whenv = 1 (mod 4 and
m=v—1,.o/ ={oco} whenv = 0 (mod 4 and the rounds of the tournament are arranged so that each
round is obtained from the previous round by addingnddm). Despite the fact that the problem
of constructingZ-cyclic whist designs has received considerable attention over the past 10-12 years
there are many open questions concerning the existence of such designs. A particularly challenging
situation is the case wherein 3 dividesAs far back as 1896, E.H. Moore, in his seminal work on whist
tournaments, provided a construction that yieldsyclic whist designs on 3+ 1 players for every
primep of the formp =4n + 1. In 1992, nearly a century after the appearance of Moore’s paper, the
first new results in this challenging problem were obtained by the present authors. These new results
were in the form of a generalization of Moore’s construction to the casg®f31 players. Since
1992 there have been a few additional advances. Two, in particular, are of considerable interest to the
present study. Ge and Zhu (Bull. Inst. Combin. Appl. 32 (2001) 53-62) obt&kogdlic solutions for
v=23s+1 for a class of values af=4k + 1 and Finizio (Discrete Math. 279 (2004) 203-213) obtained
Z-cyclic solutions fon =335 41 for the same class sf/alues. A complete generalization of these latter
results is established here in tfatyclic designs are obtained for=32"*1; + 1 foralln >0 and a
class of =4k +1 valuesthatincludes the classoflues of Ge and Zhu. Itis also established that there
exists aZ-cyclic solution whern = 321+1y, for all n >0 and for a class ab = 4k + 3 values. Several
other new infinite classes @Fcyclic whist tournaments are also obtained. Of these, two particular
results are the existence Dicyclic whist designs fopr = 32+l 1 1 foralln >0, and forv = 32 for

E-mail addressfinizio@uriacc.uri.edyN.J. Finizio).

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.08.019


https://core.ac.uk/display/82749132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:finizio@uriacc.uri.edu

20 I. Anderson, N.J. Finizio / Discrete Mathematics 293 (2005) 19-28

all n > 2. Furthermore, in the former case the designs are triplewhist tournaments. Our results, as are
those of the above-mentioned studies, are constructive in nature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A whist tournament onv players is a(v, 4, 3) (near) resolvable BIBD. Each block,
(a, b, c,d), of the BIBD is called a whist game and represents the fact that the partnership
{a, ¢} opposes the partnership, d}. The design is subject to the (whist) conditions that
every player partners every other player exactly once and opposes every other player exactly
twice. A whist tournament on players is denoted by Wh). Each (near) resolution class
of the design is called a round of the tournament. It has been known since the 1970s that
Wh(v) exist for allv = 0, 1 (mod 4.

Theorem 1.1(Andersor{4]). If v = 0or 1(mod 4, then there exists Wh(v).

Although considerable progress has been made in the last decade or so, much less is
known about the existence gfcyclic whist tournaments. A whist design is said tobe
cyclic if the players are elements i), U .« wherem = v, &/ = ) whenv = 1(mod 4
andm = v — 1, o/ = {oc0} whenv = 0(mod 4, and where the rounds can be labeled, say,
R1, Ry, ... insuch away thaR ;1 is obtained by adding-1 (modm) to every element in
R;. Whenoo is present, one has the property that+- 1 = co. Thus an attractive feature
of Z-cyclic whist tournaments, both from a theoretical and practical point of view, is that
the entire tournament can be described by a single (near) resolution class which is typically
called the initial round of the tournament. In the pursuiZedyclic whist tournaments a
particularly troublesome case occurs whraris divisible by 3. In 1896, in a paper now
considered to be the seminal work on whist tournaments, Mf@Eobtained, among
other resultsZ-cyclic triplewhist tournaments (defined below) op 3 1 players for all
primesp of the formp = 4n + 1. After the appearance of Moore’s paper nearly 100 years
passed before additional infinite families Bicyclic whist tournaments were obtained in
this troublesome case. The first such new result was obtained by the present @jtimors
1992. In the years sindé] appeared, there have been some additional success¢35kee
for pertinent references). For the most part the results contained in these latter works can
be shown to be included in the results of Ge and J]. It is to be emphasized, however,
that these works, including that of Ge and Zhu, rely heavily on Moore’s materials. In this
study we provide several new infinite families of solutions in this troublesome case. In some
instances the solutions obtained are for all permissable valuesfad particular form.

In a whist gamda, b, ¢, d) the opponent pair:, b}, {c, d} are called opponents of the
first kind and the opponent paifs, d}, {b, ¢} are called opponents of the second kind. A
triplewhist tournament on players, TWhiv), is a whist tournament with the property that
every player opposes every other player exactly once as an opponent of the first kind and
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exactly once as an opponent of the second kind. One also refers to left hand opponents and
right hand opponents in a whist game. These relationships are the obvious ones associated
with the players seated at a table wétht the North positionh at the East positiorg at the
South position and at the West position. A whist tournament is said to be a directed whist
tournament o players, DWHv), if every player has every other player exactly once as a
left-hand opponent and exactly once as a right hand opponent.

We list now some materials that support the constructions and theorems of this paper.

Definition 1.1. A homogeneousv, 4, 1)-DM (i.e. difference matrix) is a 4« v array such
that each row is a copy ¢, and the set of differences of any two rows equals

It is easy to see that if g€d, 6) = 1 then there exists a homogenedqus4, 1)-DM.
Simply take Rowi to bei timesZ,, i =1, 2, 3, 4. The homogeneous difference matrices
of interest for whist tournaments happen to be those for whishodd. Thus the only odd
numbers for which the existence of a homogengoud, 1)-DM is in doubt are those that
are divisible by 3. The next two results are often helpful.

Theorem 1.2(Anderson et al[7]). Letv =4n + 1.If there exists a Zyclic TWh(v) then
there exists a homogeneo(s 4, 1)-DM.

Proof. Define a 4x v array(a;;) wherea;; = j —1,4;1=0,i =2, 3, 4,a; = ay;'s initial
round partneras; = ay;’s initial round opponent of the first kind ang,; = ay;’s initial
round opponent of the second kindJ

Theorem 1.3(Finizio [8]). Letv = 4n + 1. If there exists a Z£yclic DWh(v) then there
exists a homogeneoys, 4, 1)-DM.

Proof. Repeat the construction in the proof of Theorem 1.2 except replace opponent of the
first (alt. second) kind by left- (alt. right-) hand opponent]

Theorem 1.4 (Finizio [8]). For eachn >1 there exists a Zyclic TWh(3*') and hence
there exists a homogeneo(®", 4, 1)-DM for all n >1.

Theorem 1.4 is also true if one replaces TWh by DiWh Homogeneousv, 4, 1)-DM
are known to exist foo =15, 27, 39, 51. The case =27 is a very recent result due to Abel
and G€2]. The others have been known for some time.

Theorem 1.5(Anderson et al[7]). If there exist Zcyclic Wh(P;),i = 1,2 whereP; =
1(mod 4, and if there exists a homogeneoUy, 4, 1)-DM, then there exists a-gyclic
Wh( Py P2). ThisWh(P1Py) is directed(triplewhis) if both Wh(P;) are.

Theorem 1.6(Anderson et al[7]). Let 9 >3, Q0 = 3(mod4, P = 1(mod 4, where
Z-cyclicWh(Q + 1) andWh(P) and a homogeneou$, 4, 1)-DM exist. Then a £yclic
Wh(Q P + 1) exists. Furtherif the Wh(Q + 1) and theWh(P) are both triplewhist then
so istheWh(QP +1).
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Definition 1.2. A frame is a group divisible design, GDDX, ¢, %) such that (1) the size
of each block is the same, sty(2) the block set can be partitioned into a fam#y of
partial resolution classes and (3) edGhe .# can be associated with a groty € ¢ so
that F; contains every point itX\ G ; exactly once.

An excellent source of information regarding frames is the book by Furino §]al.
When referring to the group type of a frame the exponential notation will be used. For our
purposes, if a frame has blocks of skze4 then each block is considered to be a whist game.

If the collection of blocks has the property that every pair of elements (players) from distinct
groups appear together in exactly three blocks and within these three blocks they appear
exactly once as partners then the frame is called a whist frame and is denoted by WhFrame.
Each partial resolution class is then called a round of the WhFrame. If the blocks of a Wh-
Frame satisfy any additional conditions such as every pair of players from distinct groups
meet exactly once as opponents of the first kind (and, hence, exactly once as opponents of
the second kind) then the notation for the frame will reflect this property. Thus one speaks
of TWhFrames, DWhFrames, etc. It is also possible to defiieyclic WhFrame12].

Definition 1.3. Supposes = Z,,, m = hw andZ,, has a subgroupl of orderh. Suppose

a WhFraméz") has a special rounft1, called the initial round, whose elements form a
partition of S\ H and is such that it, together with all the other rounds can be arranged in a
cyclic order, sayR;, Ry, ... so thatR; 1 can be obtained by addingl modulomto every
element ink; then the frame is said to l#&cyclic.

Theorem 1.7. Suppose — 1 = hw, h = 4s + 3 and there exists a-gyclic Wh(v) whose
initial round contains +1gamesa;, b;, ¢i, d;),i=1,2,...,s+1suchthafa;, b;, ¢, d; :
i=1,...,5+1}={0, w, 2w, ..., (h—)w}U{oco} thenthere exists agyclicWhFrame&hn™).

Proof. In the initial round of theZz-cyclic Wh(v) remove thes + 1 gameda;, b;, ¢;, d;).
The remaining games form the initial round foZacyclic WhFramé&h™) having groups
O,w,2w,...,(h—DHw}+0,1,2,...,w—-1. O

Remark 1.8. It is to be noted that the statements in the next five theorems are modified
versions of the corresponding theorems founflitil2]. In each of these latter references,
TWhFrame appears where we have WhFrame and TWh appears where we have Wh. Careful
scrutiny of the proofs of these theorems indicates that the final design inherits any property
that is common to all of the input designs. Consequently not only can one obtain triplewhist
results from these theorems but also directed whist results, etc. The format chosen here is
intended to take advantage of this flexibility.

Theorem 1.9(Ge and Zhy12]). Suppose there exists ac¥clic WhFrameh/") and a
Z-cyclic WhFrameu”/*) then there exists a-2yclic WhFrameu/*).

Theorem 1.10(Ge and Zhy12]). If there exists a Z£yclic WhFramé&h™) and if there
exists a homogeneoys, 4, 1)-DM then there exists a-Zyclic WhFramé(hg)™).

In Theorem 1.10 the process is known as an inflatiog.by
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Theorem 1.11(Ge and Zhy12]). Suppose there exists acgclic WhFramé&h™) and a

Z-cyclicWh(h), h = 1(mod 4. Then there exists a-Zyclic Wh(hw).

Theorem 1.12(Ge and Zhy12]). Suppose there exists acgclic WhFramé&h™) and a
Z-cyclicWh(h + 1), h = 3(mod 4. Then there exists a-ZyclicWh(hw + 1).

Corollary 1.13. Suppose = 4r + 1is such that there exists a&clic WhFrameof type
3, then there exists a-ZyclicWh(3s + 1).

Theorem 1.14(Ge and Ling11]). Suppose there exists acclic K-GDD of group type
g". If there exists a Zyclic WhFrameh*) for eachk € K, then there exists a-Eyclic

WhFramé(hg)").

Two frames that are important for our constructions are presented below in Examples 1.1
and 1.2. The TWhFrame of group typ&3vas built using the construction associated with

Theorem 1.1411].

Example 1.1. A Z-cyclic WhFrame3®). Groups ard0, 9,18} + 0, 1, 2, ..., 8. The initial
round is given by the six gamed, 12, 2, 24), (8, 21, 19, 4), (13, 23, 16, 15), (3, 6, 5, 10),

(25,17,11, 22), (20, 7, 26, 14).

Example 1.2. The initial round of aZ-cyclic TWhFrame3®l) is given by the 60 games
listed below. The groups afé, 81,162 + 0, 1, ..., 80.

(1, 86, 93, 26),
(4,92, 106, 242),
(7,102 76, 239,
(10, 40, 164, 226),
(14, 69, 70, 236),
(17,108 57, 100,
(20, 33, 42, 227,
(23,120, 140, 234),
(29, 116 63, 2289,
(32,48, 171 230,
(38, 62, 170, 160),
(51, 122 105, 124),
(55, 141 67, 137),
(65,114, 101, 123),
(73,216,111 152,
(78, 206, 96, 212,
(82,174, 107, 167),
(90, 210, 149, 194),
(109, 156 193 208),
(136, 148 218, 222,

(2,91, 121 64),
(5,12, 163 189,
(8,119 143 241),
(11, 25, 166, 161),
(15, 125, 131, 240),
(18, 47, 165, 215),
(21, 238 169, 159,
(24, 41, 43,213,
(30, 135, 71, 235),
(35,225,191 147),
(39,59, 185, 153),
(52,115 87, 118),
(56, 217, 229, 60),
(66,197, 110, 144),
(74, 150, 95, 151),
(79, 200, 89, 224),
(83,202 145, 172),
(94, 142 184, 207),
(132 186, 205, 203),
(146, 182 204, 195),

(3,99, 128 53),
(6,34, 37, 214),
(9,113 129, 68),
(13,126 61, 103,
(16, 117, 49, 220),
(19, 179 219, 27),
(22,175,223, 45),
(28,127, 75,112,
(31, 190, 237, 46),
(36,211 178 139),
(44,50, 177, 159),
(54,233 192 154),
(58,198 97, 130),
(72,201, 104, 221),
(77,183 88, 157),
(80, 173 85, 187),
(84, 209 134, 180),
(98,138 181, 189,
(133 168 199 196),
(155, 176,232, 231).

Example 1.3. As an application of Theorem 1.12, the initial round @ayclic TWh(244)
can be constructed by adjoining the gafoe, 81, 0, 162) to the initial round games of the
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TWhFrame38l) of Example 1.2. Since=3 the required TWth +1) is the classic TW¥)
whose initial round is given by the single whist gatwe, 1, 0, 2).

We quote now the results of Ge and Zhu and those of Finizio. The sethe union of
three setst1) the set of all primes of the formr4- 1, (2) the set of;? such thatyis a prime
with 3 < ¢ <500 andq of the formg = 4r + 3 and(3) the set{21, 77, 133 161, 781}.

Theorem 1.15(Ge and Zhy12]). Letv be an arbitrary product of elements in R. Then
there exists a £yclic TWh(3v + 1).

Theorem 1.16(Finizio [8]). Letv be an arbitrary product of elements in R. Then there
exists a Zcyclic Wh(3%v + 1).

2. NewZ-cyclic designs

For ease of reference the following sets are defined.

DM = {s : there exists a homogeneois4, 1)-DM},

A = {s = 4k + 3 : there exists Z-cyclic Wh(s + 1)},

P = {s =4k + 1: there exists &-cyclic Wh(s)}.

L = {s = 4k + 3 : there exists &-cyclic Wh(s?)},

GZ = {s =4k + 1 : there exists &-cyclic Wh(3s + 1)},
FM = {s = 4k + 3: there exists &-cyclic Wh(3s)},
4% =DM NGZ,

F M =DM N FM.

Theorem 2.1. There exists a £yclic TWhFrameg334") foralln>1.

Proof. The proof is by induction on. Forn = 1 there is the&Z-cyclic TWhFrame38Y) of
Example 1.2. Assume the theorem truedferk and consider the cage=k+ 1,k > 1. Begin

with theZ-cyclic TWhFramQ3(81)k) of the induction hypothesis and inflate this frame by 81

(see Theorem 1.4) to obtain, via Theorem 1.18cgclic TWhFrame(3.81)(81)k). Consider
this latter frame to have group typ&’" and consider th&-cyclic TWhFramg32?) to have

group typex"/*. An application of Theorem 1.9 produce&ayclic TWhFrame3®d“ ).
O

Corollary 2.2. There exists a€yclic TWh(3*+1 1 1) for all n >0.

Proof. Forn=0there is the classic TWH) (see Example 1.3). Far>1 combine Remark
1.8, Theorem 2.1 and Corollary 1.130]

Corollary 2.3. There exists a Zyclic Wh(3*t1s 4 1) for all s € 42 and for alln >0.
The solution is a triplewhist design if there exists-aylic TWh(3s + 1).

Proof. Inflate the frame of Theorem 2.1 Isyand invoke Theorem 1.12.01
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Corollary 2.4. There exists a £yclic Wh(3**+1w) for all w € Z.# and for all n >0.
The solution is a triplewhist design if there existS\Wh(3w).

Proof. Inflate the frame of Theorem 2.1 by and apply Theorem 1.11.]

Theorem 2.5. There exists a £yclic WhFrame3®**?) for all n>0.

Proof. The proof is by induction om. Forn = 0 there is theZ-cyclic WhFrame3®) of
Example 1.1. Assume the theorem true fio= k and considen = k + 1, k>0. Begin

with the Z-cyclic WhFrame39<81)k) of the induction hypothesis and inflate by 81 to obtain

aZ-cyclic WhFrame(3.81)%®"). Consider this latter frame to have group tygé" and
consider theZ-cyclic WhFrame381) to have group type”/“. An application of Theorem

1.9 yields aZ-cyclic WhFrame3®&Y“™Yy. O

Corollary 2.6. There exists a€yclic Wh(3*'*3 4 1) for all n>0.

Proof. Combine Theorem 2.5 with Theorem 1.124]

Corollary 2.7. There exists a€yclic Wh(3**3s 4 1) for all s € 4% and for alln >0.
Proof. Inflate the frame of Theorem 2.5 Isyand apply Theorem 1.12.[]

Corollary 2.8. There exists a £yclic Wh(3*'*3w) for all w € # .4 and for alln >0.
Proof. Inflate the frame of Theorem 2.5 yand apply Theorem 1.11.01

Theorem 2.9. There exists aZyclicWh(32*+1 4 1) for all » >0. The solution is a triple-
whist design when n is even

Proof. Combine Corollaries 2.2 and 2.6
Theorem 2.10. (a) There exists a €yclic Wh(3%*t1s + 1) for all s € 4% and for all
n>0.
(b) There exists a€yclic Wh(32'*1w) for all w € % .4 and for alln >0.
Proof. (a) Combine Corollaries 2.3 and 2.7. (b) Combine Corollaries 2.4 and 218.
Theorem 2.9 can be improved in the following manner. There is a knéwyclic
TWh(28) [3],i.e.the case=1 of Theorem 2.9. Thus, using the homogen&@is4, 1)-DM
[2] and settingD = 33, P = 3*' in Theorem 1.6 one obtains the following theorem.

Theorem 2.11. There exists a £yclic TWh(3% 1 + 1) for all odd values of s

As a consequence, Corollary 2.2 combined with Theorem 2.11 provides a proof of the
following theorem.
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Theorem 2.12. There exists a €yclic TWh(3%'+1 4+ 1) for all n >0.

The homogeneou&7, 4, 1)-DMis also helpful in the construction ofacyclic Wh(729),
a previously unknown design.

Example 2.1. To obtain the initial round of Z-cyclic Wh(3°®) inflate the frame of Example
1.1 by 27 and apply Theorem 1.11.

TheZ-cyclic Wh(3%) of Example 2.1 combined with Theorem 1.5 enable us to prove the
existence ofZ-cyclic Wh(3%") for all n >2.

Theorem 2.13. There exists aZyclic Wh(3%") for all n > 2.

Proof. Theorem 1.4 asserts the existence @feyclic TWh(3*") for all m > 1. Hence the
theorem is true for all even. Since these latter designs are triplewhist designs it follows
that there exists a homogened4”, 4, 1)-DM for all m > 1. An application of Theorem
1.5 with P; = 3*" and P, = 38 yields aZ-cyclic Wh(3*"+6), for all m > 1. This establishes
the theorem for all odd >3. O

3. Extending the solution set of Ge and Zhu

The setR of Theorem 1.15 represents the class ef 4k + 1 for which Ge and Zhu
[12] obtainedz-cyclic triplewhist designs. In their paper Ge and 4h2] demonstrate that
the existence of a (group) cyclic ordered whist tournament [(Eefor the definition) on
v =4¢ + 1 players (with the players being elements in an Abelian group G of e)deads
to a TWhFrame of type'3 The construction is ovefs x G. Hence the resulting TWhFrame
is notZ-cyclic unlessG = Z,, and gcd3, v) = 1. The theorem of Ge and Lifg@1], Theorem
1.14, combined with the materials of Section 2 and difference families foufid enable
us to extend the solution set of Ge and ZhA].

Theorem 3.1. Lets = 4r + 1 be such tha(l) s € DM and (2) there exists a £yclic
(T)WhFrameof type3*. Then there exists a-Zyclic (T)Wh(3**+1s + 1), for all n>0.

Proof. Apply Corollaries 1.13 and 2.3.[J
The following theorem is found ifi].

Theorem 3.2. Letv=20r+1withr <50thenthere exists@, 5, 1)-DF overZ, exceptpos-
sibly, for v € {321, 501, 621, 681, 901}. Additionally there is g1141 5, 1)-DF overZi141.

Theorem 3.3. LetS = 51 U S, whereS; = {77, 161, 301, 581, 721, 961, 1141} and S =
{141, 201, 261, 381, 441, 861, 921, 981}, then eachy € S satisfies the hypotheses of Theo-
rem3.1.

Proof. Foreach e S the existence of the homogenears4, 1)-DM follows from the fact
that aZ-cyclic DWh(s) exists[1]. For eachs € S, s # 77 there is &-cyclic TWhFrame of
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type 3 via Theorem 1.14 noting that the required CGDD is generated fror tBe1)-DF

of Theorem 3.2. Far=77 the TWhFrame of type*3ollows from the Ge—Zhu construction
mentioned above and the fact that there exigsgclic ordered whist design on 77 players
[1]. O

Corollary 3.4. Let S be the set introduced in Theor8thenS Cc ¥%.
Corollary 3.5. Letv denote an arbitrary product of elements in S thea 4% .

Proof. The proofis much the same as the corresponding construction foi@]iet s,

so denote any two elements frd&{it is not required thad; be distinct frony,). Inflate thez-
cyclic TWhFrame of type 3 by s». Considering this inflated frame to have group typé"

and the uninflated frame to have group tydé" an application of Theorem 1.9 produces
aZ-cyclic TWhFrame of type 3*2. Consequently, there exist&Zecyclic TWh(3s1s2 + 1).
The existence of a homogeneaussz, 4, 1)-DM follows from the fact that there exists a
Z-cyclic DWh(s1s2) via Theorem 1.5. The theorem now follows by recursively applying
this result. O

4. Additional results

The materials of Sections 1 and 2 can be utilized to obtain som&smwlic results for
cases in whicly |m whereq is a prime of the formy = 4¢ + 3,7 > 1.

Theorem 4.1. Letg =4t + 3,7 > 1 be a prime. There exists a(iyclicWhFrameéqqZ") for
alge LNnAandforalln>1.

Proof. Forn = 1 one can apply Theorem 1.6 with = ¢, P = ¢? to obtain aZ-cyclic
Wh(g® + 1) whose initial round has a structure that allows for an application of Theorem
1.7, withiz = g, and consequently the desired frame. Assume the theorem true-foand
consider the case=k + 1,k > 1. Inflate theqqZk frame of the induction hypothesis iy

to obtain a frame with group type’/ with 1 = ¢3, v = ¢%*3. Considering the frame of
the case: = 1, to have group type"/* with u = ¢, an application of Theorem 1.9 produces

a frame with group typqqzm. The proof is now complete by induction[]

Corollary 4.2. Letg = 4t + 3,1>1 be a prime. There exists a&clic Wh(g?'*1s + 1)
forallg e LN A, foralls € PN DM and for alln >0.

Proof. Inflate the frame of Theorem 4.1 lsyand incorporating Theorem 1.6, apply The-
orem 1.12. [J

Corollary 4.3. Letg =4t + 3,r>1be aprime. Lety € L N A and lets = 4k + 3 be such
thats € DM andgs € P then there exists a-Zyclic Wh(¢?'*1s) for all n>0.

Proof. Inflate the frame of Theorem 4.1 Isyand apply Theorem 1.11.07
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