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Abstract

Whist tournaments onv players are known to exist for allv ≡ 0,1(mod 4). A whist design is said
to beZ-cyclic if the players are elements inZm ∪ A wherem = v,A = ∅ whenv ≡ 1(mod 4) and
m= v−1,A={∞} whenv ≡ 0(mod 4) and the rounds of the tournament are arranged so that each
round is obtained from the previous round by adding 1(modm). Despite the fact that the problem
of constructingZ-cyclic whist designs has received considerable attention over the past 10–12 years
there are many open questions concerning the existence of such designs. A particularly challenging
situation is the casewherein 3 dividesm.As far back as 1896,E.H.Moore, in his seminalwork onwhist
tournaments, provided a construction that yieldsZ-cyclic whist designs on 3p + 1 players for every
primep of the formp = 4n+ 1. In 1992, nearly a century after the appearance of Moore’s paper, the
first new results in this challenging problem were obtained by the present authors. These new results
were in the form of a generalization of Moore’s construction to the case of 3pn + 1 players. Since
1992 there have been a few additional advances. Two, in particular, are of considerable interest to the
present study. Ge and Zhu (Bull. Inst. Combin.Appl. 32 (2001) 53–62) obtainedZ-cyclic solutions for
v=3s+1 for a class of values ofs=4k+1 and Finizio (DiscreteMath. 279 (2004) 203–213) obtained
Z-cyclic solutions forv=33s+1 for the sameclassofsvalues.A complete generalizationof these latter
results is established here in thatZ-cyclic designs are obtained forv = 32n+1t + 1 for all n�0 and a
class oft=4k+1 values that includes the class ofsvalues ofGeandZhu. It is also established that there
exists aZ-cyclic solution whenv=32n+1w for all n�0 and for a class ofw=4k+3 values. Several
other new infinite classes ofZ-cyclic whist tournaments are also obtained. Of these, two particular
results are the existence ofZ-cyclic whist designs forv = 32n+1+ 1 for all n�0, and forv = 32n for
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all n�2. Furthermore, in the former case the designs are triplewhist tournaments. Our results, as are
those of the above-mentioned studies, are constructive in nature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A whist tournament onv players is a(v,4,3) (near) resolvable BIBD. Each block,
(a, b, c, d), of the BIBD is called a whist game and represents the fact that the partnership
{a, c} opposes the partnership{b, d}. The design is subject to the (whist) conditions that
every player partners every other player exactly once and opposes every other player exactly
twice. A whist tournament onv players is denoted by Wh(v). Each (near) resolution class
of the design is called a round of the tournament. It has been known since the 1970s that
Wh(v) exist for allv ≡ 0,1(mod 4).

Theorem 1.1(Anderson[4] ). If v ≡ 0 or 1(mod 4), then there exists aWh(v).

Although considerable progress has been made in the last decade or so, much less is
known about the existence ofZ-cyclic whist tournaments. A whist design is said to beZ-
cyclic if the players are elements inZm ∪ A wherem = v, A = ∅ whenv ≡ 1(mod 4)
andm = v − 1,A = {∞} whenv ≡ 0(mod 4), and where the rounds can be labeled, say,
R1, R2, . . . in such a way thatRj+1 is obtained by adding+1(modm) to every element in
Rj . When∞ is present, one has the property that∞ + 1= ∞. Thus an attractive feature
of Z-cyclic whist tournaments, both from a theoretical and practical point of view, is that
the entire tournament can be described by a single (near) resolution class which is typically
called the initial round of the tournament. In the pursuit ofZ-cyclic whist tournaments a
particularly troublesome case occurs whenm is divisible by 3. In 1896, in a paper now
considered to be the seminal work on whist tournaments, Moore[13] obtained, among
other results,Z-cyclic triplewhist tournaments (defined below) on 3p + 1 players for all
primesp of the formp = 4n + 1. After the appearance of Moore’s paper nearly 100 years
passed before additional infinite families ofZ-cyclic whist tournaments were obtained in
this troublesome case. The first such new result was obtained by the present authors[6] in
1992. In the years since[6] appeared, there have been some additional successes (see[35]
for pertinent references). For the most part the results contained in these latter works can
be shown to be included in the results of Ge and Zhu[12]. It is to be emphasized, however,
that these works, including that of Ge and Zhu, rely heavily on Moore’s materials. In this
study we provide several new infinite families of solutions in this troublesome case. In some
instances the solutions obtained are for all permissable values ofv of a particular form.
In a whist game(a, b, c, d) the opponent pairs{a, b}, {c, d} are called opponents of the

first kind and the opponent pairs{a, d}, {b, c} are called opponents of the second kind. A
triplewhist tournament onv players, TWh(v), is a whist tournament with the property that
every player opposes every other player exactly once as an opponent of the first kind and
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exactly once as an opponent of the second kind. One also refers to left hand opponents and
right hand opponents in a whist game. These relationships are the obvious ones associated
with the players seated at a table withaat the North position,bat the East position,cat the
South position andd at theWest position. A whist tournament is said to be a directed whist
tournament onv players, DWh(v), if every player has every other player exactly once as a
left-hand opponent and exactly once as a right hand opponent.
We list now some materials that support the constructions and theorems of this paper.

Definition 1.1. A homogeneous(v,4,1)-DM (i.e. difference matrix) is a 4× v array such
that each row is a copy ofZv and the set of differences of any two rows equalsZv.

It is easy to see that if gcd(v,6) = 1 then there exists a homogeneous(v,4,1)-DM.
Simply take Rowi to be i timesZv, i = 1,2,3,4. The homogeneous difference matrices
of interest for whist tournaments happen to be those for whichv is odd. Thus the only odd
numbers for which the existence of a homogeneous(v,4,1)-DM is in doubt are those that
are divisible by 3. The next two results are often helpful.

Theorem 1.2(Anderson et al.[7] ). Letv= 4n+ 1. If there exists a Z-cyclicTWh(v) then
there exists a homogeneous(v,4,1)-DM.

Proof. Define a 4× v array(aij ) wherea1j = j − 1,ai1= 0, i = 2,3,4,a2j = a1j ’s initial
round partner,a3j = a1j ’s initial round opponent of the first kind anda4j = a1j ’s initial
round opponent of the second kind.�

Theorem 1.3(Finizio [8] ). Let v = 4n + 1. If there exists a Z-cyclicDWh(v) then there
exists a homogeneous(v,4,1)-DM.

Proof. Repeat the construction in the proof of Theorem 1.2 except replace opponent of the
first (alt. second) kind by left- (alt. right-) hand opponent.�

Theorem 1.4(Finizio [8] ). For eachn�1 there exists a Z-cyclic TWh(34n) and hence
there exists a homogeneous(34n,4,1)-DM for all n�1.

Theorem 1.4 is also true if one replaces TWh by DWh[1]. Homogeneous(v,4,1)-DM
are known to exist forv=15,27,39,51. The casev=27 is a very recent result due toAbel
and Ge[2]. The others have been known for some time.

Theorem 1.5(Anderson et al.[7] ). If there exist Z-cyclicWh(Pi), i = 1,2 wherePi ≡
1(mod 4), and if there exists a homogeneous(P1,4,1)-DM, then there exists a Z-cyclic
Wh(P1P2). ThisWh(P1P2) is directed(triplewhist) if bothWh(Pi) are.

Theorem 1.6(Anderson et al.[7] ). LetQ>3,Q ≡ 3(mod 4), P ≡ 1(mod 4), where
Z-cyclicWh(Q + 1) andWh(P ) and a homogeneous(Q,4,1)-DM exist. Then a Z-cyclic
Wh(QP + 1) exists. Further, if theWh(Q + 1) and theWh(P ) are both triplewhist then
so is theWh(QP + 1).
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Definition 1.2. A frame is a group divisible design, GDD�(X,G,B) such that (1) the size
of each block is the same, sayk, (2) the block set can be partitioned into a familyF of
partial resolution classes and (3) eachFi ∈ F can be associated with a groupGj ∈ G so
thatFi contains every point inX\Gj exactly once.

An excellent source of information regarding frames is the book by Furino et al.[9].
When referring to the group type of a frame the exponential notation will be used. For our
purposes, if a framehas blocks of sizek=4 then each block is considered to be awhist game.
If the collection of blocks has the property that every pair of elements (players) from distinct
groups appear together in exactly three blocks and within these three blocks they appear
exactly once as partners then the frame is called a whist frame and is denoted byWhFrame.
Each partial resolution class is then called a round of theWhFrame. If the blocks of a Wh-
Frame satisfy any additional conditions such as every pair of players from distinct groups
meet exactly once as opponents of the first kind (and, hence, exactly once as opponents of
the second kind) then the notation for the frame will reflect this property. Thus one speaks
of TWhFrames, DWhFrames, etc. It is also possible to define aZ-cyclic WhFrame[12].

Definition 1.3. SupposeS = Zm,m = hw andZm has a subgroupH of orderh. Suppose
a WhFrame(hw) has a special roundR1, called the initial round, whose elements form a
partition ofS\H and is such that it, together with all the other rounds can be arranged in a
cyclic order, sayR1, R2, . . . so thatRj+1 can be obtained by adding+1 modulom to every
element inRj then the frame is said to beZ-cyclic.

Theorem 1.7. Supposev − 1= hw, h = 4s + 3 and there exists a Z-cyclicWh(v) whose
initial round containss+1games(ai, bi, ci, di), i=1,2, . . . , s+1such that{ai, bi, ci, di :
i=1, . . . , s+1}={0, w,2w, . . . , (h−1)w}∪{∞} then thereexistsaZ-cyclicWhFrame(hw).

Proof. In the initial round of theZ-cyclic Wh(v) remove thes + 1 games(ai, bi, ci, di).
The remaining games form the initial round for aZ-cyclic WhFrame(hw) having groups
{0, w,2w, . . . , (h − 1)w} + 0,1,2, . . . , w − 1. �

Remark 1.8. It is to be noted that the statements in the next five theorems are modified
versions of the corresponding theorems found in[1112]. In each of these latter references,
TWhFrameappearswherewe haveWhFrameandTWhappearswherewe haveWh.Careful
scrutiny of the proofs of these theorems indicates that the final design inherits any property
that is common to all of the input designs. Consequently not only can one obtain triplewhist
results from these theorems but also directed whist results, etc. The format chosen here is
intended to take advantage of this flexibility.

Theorem 1.9(Ge and Zhu[12]). Suppose there exists a Z-cyclicWhFrame(hv/h) and a
Z-cyclicWhFrame(uh/u) then there exists a Z-cyclicWhFrame(uv/u).

Theorem 1.10(Ge and Zhu[12]). If there exists a Z-cyclicWhFrame(hw) and if there
exists a homogeneous(g,4,1)-DM then there exists a Z-cyclicWhFrame((hg)w).

In Theorem 1.10 the process is known as an inflation byg.
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Theorem 1.11(Ge and Zhu[12]). Suppose there exists a Z-cyclicWhFrame(hw) and a
Z-cyclicWh(h), h ≡ 1(mod 4). Then there exists a Z-cyclicWh(hw).

Theorem 1.12(Ge and Zhu[12]). Suppose there exists a Z-cyclicWhFrame(hw) and a
Z-cyclicWh(h + 1), h ≡ 3(mod 4). Then there exists a Z-cyclicWh(hw + 1).

Corollary 1.13. Supposes = 4t + 1 is such that there exists a Z-cyclicWhFrameof type
3s , then there exists a Z-cyclicWh(3s + 1).

Theorem 1.14(Ge and Ling[11]). Suppose there exists a Z-cyclic K-GDD of group type
gn. If there exists a Z-cyclicWhFrame(hk) for eachk ∈ K, then there exists a Z-cyclic
WhFrame((hg)n).

Two frames that are important for our constructions are presented below in Examples 1.1
and 1.2. The TWhFrame of group type 381 was built using the construction associated with
Theorem 1.14[11].

Example 1.1.A Z-cyclic WhFrame(39). Groups are{0,9,18} + 0,1,2, . . . ,8. The initial
round is given by the six games:(1,12,2,24), (8,21,19,4), (13,23,16,15), (3,6,5,10),
(25,17,11,22), (20,7,26,14).

Example 1.2. The initial round of aZ-cyclic TWhFrame(381) is given by the 60 games
listed below. The groups are{0,81,162} + 0,1, . . . ,80.

(1,86,93,26), (2,91,121,64), (3,99,128,53),
(4,92,106,242), (5,12,163,188), (6,34,37,214),
(7,102,76,239), (8,119,143,241), (9,113,129,68),
(10,40,164,226), (11,25,166,161), (13,126,61,103),
(14,69,70,236), (15,125,131,240), (16,117,49,220),
(17,108,57,100), (18,47,165,215), (19,179,219,27),
(20,33,42,227), (21,238,169,158), (22,175,223,45),
(23,120,140,234), (24,41,43,213), (28,127,75,112),
(29,116,63,228), (30,135,71,235), (31,190,237,46),
(32,48,171,230), (35,225,191,147), (36,211,178,139),
(38,62,170,160), (39,59,185,153), (44,50,177,159),
(51,122,105,124), (52,115,87,118), (54,233,192,154),
(55,141,67,137), (56,217,229,60), (58,198,97,130),
(65,114,101,123), (66,197,110,144), (72,201,104,221),
(73,216,111,152), (74,150,95,151), (77,183,88,157),
(78,206,96,212), (79,200,89,224), (80,173,85,187),
(82,174,107,167), (83,202,145,172), (84,209,134,180),
(90,210,149,194), (94,142,184,207), (98,138,181,189),
(109,156,193,208), (132,186,205,203), (133,168,199,196),
(136,148,218,222), (146,182,204,195), (155,176,232,231).

Example 1.3.As an application of Theorem 1.12, the initial round of aZ-cyclic TWh(244)
can be constructed by adjoining the game(∞,81,0,162) to the initial round games of the
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TWhFrame(381) of Example 1.2. Sinceh=3 the required TWh(h+1) is the classic TWh(4)
whose initial round is given by the single whist game(∞,1,0,2).

We quote now the results of Ge and Zhu and those of Finizio. The setR is the union of
three sets:(1) the set of all primes of the form 4t +1, (2) the set ofq2 such thatq is a prime
with 3<q <500 andq of the formq = 4t + 3 and(3) the set{21,77,133,161,781}.
Theorem 1.15(Ge and Zhu[12]). Let v be an arbitrary product of elements in R. Then
there exists a Z-cyclicTWh(3v + 1).

Theorem 1.16(Finizio [8] ). Let v be an arbitrary product of elements in R. Then there
exists a Z-cyclicWh(33v + 1).

2. NewZ-cyclic designs

For ease of reference the following sets are defined.

DM = {s : there exists a homogeneous(s,4,1)-DM},
A = {s = 4k + 3 : there exists aZ-cyclic Wh(s + 1)},
P = {s = 4k + 1 : there exists aZ-cyclic Wh(s)}.
L = {s = 4k + 3 : there exists aZ-cyclic Wh(s2)},
GZ= {s = 4k + 1 : there exists aZ-cyclic Wh(3s + 1)},
FM = {s = 4k + 3 : there exists aZ-cyclic Wh(3s)},
GZ = DM ∩ GZ,
FM = DM ∩ FM.

Theorem 2.1. There exists a Z-cyclicTWhFrame(33
4n
) for all n�1.

Proof. The proof is by induction onn. Forn = 1 there is theZ-cyclic TWhFrame(381) of
Example 1.2.Assume the theorem true forn=k and consider the casen=k+1,k�1. Begin
with theZ-cyclic TWhFrame(3(81)

k
) of the induction hypothesis and inflate this frame by 81

(seeTheorem1.4) to obtain, viaTheorem1.10, aZ-cyclic TWhFrame((3.81)(81)
k

). Consider
this latter frame to have group typehv/h and consider theZ-cyclic TWhFrame(381) to have
group typeuh/u. An application of Theorem 1.9 produces aZ-cyclic TWhFrame(3(81)

k+1
).
�

Corollary 2.2. There exists a Z-cyclicTWh(34n+1 + 1) for all n�0.

Proof. Forn=0 there is the classic TWh(4) (see Example 1.3). Forn�1 combine Remark
1.8, Theorem 2.1 and Corollary 1.13.�

Corollary 2.3. There exists a Z-cyclicWh(34n+1s + 1) for all s ∈ GZ and for alln�0.
The solution is a triplewhist design if there exists a Z-cyclicTWh(3s + 1).

Proof. Inflate the frame of Theorem 2.1 bysand invoke Theorem 1.12.�
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Corollary 2.4. There exists a Z-cyclicWh(34n+1w) for all w ∈ FM and for all n�0.
The solution is a triplewhist design if there exists aTWh(3w).

Proof. Inflate the frame of Theorem 2.1 byw and apply Theorem 1.11.�

Theorem 2.5. There exists a Z-cyclicWhFrame(33
4n+2

) for all n�0.

Proof. The proof is by induction onn. For n = 0 there is theZ-cyclic WhFrame(39) of
Example 1.1. Assume the theorem true forn = k and considern = k + 1, k�0. Begin
with theZ-cyclic WhFrame(39(81)

k
) of the induction hypothesis and inflate by 81 to obtain

aZ-cyclic WhFrame((3.81)9(81)
k

). Consider this latter frame to have group typehv/h and
consider theZ-cyclic WhFrame(381) to have group typeuh/u. An application of Theorem
1.9 yields aZ-cyclic WhFrame(39(81)

k+1
). �

Corollary 2.6. There exists a Z-cyclicWh(34n+3 + 1) for all n�0.

Proof. Combine Theorem 2.5 with Theorem 1.12.�

Corollary 2.7. There exists a Z-cyclicWh(34n+3s + 1) for all s ∈ GZ and for alln�0.

Proof. Inflate the frame of Theorem 2.5 bysand apply Theorem 1.12.�

Corollary 2.8. There exists a Z-cyclicWh(34n+3w) for all w ∈ FM and for alln�0.

Proof. Inflate the frame of Theorem 2.5 byw and apply Theorem 1.11.�

Theorem 2.9. There exists a Z-cyclicWh(32n+1+1) for all n�0.The solution is a triple-
whist design when n is even.

Proof. Combine Corollaries 2.2 and 2.6.�

Theorem 2.10. (a) There exists a Z-cyclicWh(32n+1s + 1) for all s ∈ GZ and for all
n�0.
(b)There exists a Z-cyclicWh(32n+1w) for all w ∈ FM and for alln�0.

Proof. (a) Combine Corollaries 2.3 and 2.7. (b) Combine Corollaries 2.4 and 2.8.�

Theorem 2.9 can be improved in the following manner. There is a knownZ-cyclic
TWh(28) [3], i.e. the casen=1ofTheorem2.9.Thus, using thehomogeneous(27,4,1)-DM
[2] and settingQ = 33, P = 34n in Theorem 1.6 one obtains the following theorem.

Theorem 2.11.There exists a Z-cyclicTWh(32s+1 + 1) for all odd values of s.

As a consequence, Corollary 2.2 combined with Theorem 2.11 provides a proof of the
following theorem.



26 I. Anderson, N.J. Finizio / Discrete Mathematics 293 (2005) 19–28

Theorem 2.12.There exists a Z-cyclicTWh(32n+1 + 1) for all n�0.

Thehomogeneous(27,4,1)-DM isalsohelpful in theconstructionofaZ-cyclicWh(729),
a previously unknown design.

Example 2.1. To obtain the initial round of aZ-cyclicWh(36) inflate the frame of Example
1.1 by 27 and apply Theorem 1.11.

TheZ-cyclic Wh(36) of Example 2.1 combined with Theorem 1.5 enable us to prove the
existence ofZ-cyclic Wh(32n) for all n�2.

Theorem 2.13.There exists a Z-cyclicWh(32n) for all n�2.

Proof. Theorem 1.4 asserts the existence of aZ-cyclic TWh(34m) for all m�1. Hence the
theorem is true for all evenn. Since these latter designs are triplewhist designs it follows
that there exists a homogeneous(34m,4,1)-DM for all m�1. An application of Theorem
1.5 withP1=34m andP2=36 yields aZ-cyclic Wh(34m+6), for allm�1. This establishes
the theorem for all oddn�3. �

3. Extending the solution set of Ge and Zhu

The setR of Theorem 1.15 represents the class ofs = 4k + 1 for which Ge and Zhu
[12] obtainedZ-cyclic triplewhist designs. In their paper Ge and Zhu[12] demonstrate that
the existence of a (group) cyclic ordered whist tournament (see[1] for the definition) on
v=4t +1 players (with the players being elements in anAbelian group G of orderv) leads
to aTWhFrame of type 3v. The construction is overZ3×G. Hence the resultingTWhFrame
is notZ-cyclic unlessG=Zv and gcd(3, v)=1. The theorem of Ge and Ling[11], Theorem
1.14, combined with the materials of Section 2 and difference families found in[1] enable
us to extend the solution set of Ge and Zhu[12].

Theorem 3.1. Let s = 4t + 1 be such that(1) s ∈ DM and (2) there exists a Z-cyclic
(T)WhFrameof type3s . Then there exists a Z-cyclic (T )Wh(34n+1s + 1), for all n�0.

Proof. Apply Corollaries 1.13 and 2.3.�

The following theorem is found in[1].

Theorem 3.2. Letv=20t+1with t�50then thereexistsa(v,5,1)-DFoverZv except,pos-
sibly, for v ∈ {321,501,621,681,901}.Additionally there is a(1141,5,1)-DFoverZ1141.

Theorem 3.3. LetS = S1 ∪ S2, whereS1 = {77,161,301,581,721,961,1141} andS2 =
{141,201,261,381,441,861,921,981}, then eachs ∈ S satisfies the hypotheses of Theo-
rem3.1.

Proof. For eachs ∈ S the existence of the homogeneous(s,4,1)-DM follows from the fact
that aZ-cyclic DWh(s) exists[1]. For eachs ∈ S, s �= 77 there is aZ-cyclic TWhFrame of
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type 3s via Theorem 1.14 noting that the required CGDD is generated from the(s,5,1)-DF
of Theorem 3.2. Fors=77 the TWhFrame of type 3s follows from theGe–Zhu construction
mentioned above and the fact that there exists aZ-cyclic ordered whist design on 77 players
[1]. �

Corollary 3.4. Let S be the set introduced in Theorem3.3 thenS ⊂ GZ.

Corollary 3.5. Letv denote an arbitrary product of elements in S thenv ∈ GZ.

Proof. The proof is much the same as the corresponding construction found in[12]. Let s1,
s2 denote any two elements fromS(it is not required thats1 be distinct froms2). Inflate theZ-
cyclic TWhFrame of type 3s1 by s2. Considering this inflated frame to have group typehv/h

and the uninflated frame to have group typeuh/u an application of Theorem 1.9 produces
aZ-cyclic TWhFrame of type 3s1s2. Consequently, there exists aZ-cyclic TWh(3s1s2 + 1).
The existence of a homogeneous(s1s2,4,1)-DM follows from the fact that there exists a
Z-cyclic DWh(s1s2) via Theorem 1.5. The theorem now follows by recursively applying
this result. �

4. Additional results

The materials of Sections 1 and 2 can be utilized to obtain some newZ-cyclic results for
cases in whichq|m whereq is a prime of the formq = 4t + 3, t�1.

Theorem 4.1. Letq =4t +3, t�1be a prime. There exists a Z-cyclicWhFrame(qq
2n
) for

all q ∈ L ∩ A and for alln�1.

Proof. For n = 1 one can apply Theorem 1.6 withQ = q, P = q2 to obtain aZ-cyclic
Wh(q3 + 1) whose initial round has a structure that allows for an application of Theorem
1.7, withh=q, and consequently the desired frame.Assume the theorem true forn= k and
consider the casen= k + 1, k�1. Inflate theqq

2k
frame of the induction hypothesis byq2

to obtain a frame with group typehv/h with h = q3, v = q2k+3. Considering the frame of
the casen=1, to have group typeuh/u with u= q, an application of Theorem 1.9 produces
a frame with group typeqq

2k+2
. The proof is now complete by induction.�

Corollary 4.2. Let q = 4t + 3, t�1 be a prime. There exists a Z-cyclicWh(q2n+1s + 1)
for all q ∈ L ∩ A, for all s ∈ P ∩ DM and for alln�0.

Proof. Inflate the frame of Theorem 4.1 bys, and incorporating Theorem 1.6, apply The-
orem 1.12. �

Corollary 4.3. Letq = 4t + 3, t�1 be a prime. Letq ∈ L∩A and lets = 4k + 3 be such
that s ∈ DM andqs ∈ P then there exists a Z-cyclicWh(q2n+1s) for all n�0.

Proof. Inflate the frame of Theorem 4.1 bysand apply Theorem 1.11.�
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