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a b s t r a c t

The mixing operation for abstract polytopes gives a natural way to construct a minimal
common cover of two polytopes. In this paper, we apply this construction to the
regular convex polytopes, determining when the mix is again a polytope, and completely
determining the structure of the mix in each case.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Abstract polytopes are combinatorial generalizations of the familiar convex polytopes and tessellations of space-forms.
Many of the classical geometric constructions carry over to the abstract realm. For example, given an abstract polytope P ,
we can construct the ‘‘pyramid’’ having P as a base, and this construction coincides with the usual pyramid construction
whenever P corresponds to a convex polytope. Other constructions on abstract polytopes are new, having no basis in the
classical theory. One such example is the mix of two polytopes, introduced in [5]; an analogous construction for maps and
hypermaps appears in [2]. The mixing operation is an algebraic construction that finds the minimal natural cover of the
automorphism group of two regular polytopes. Since there is a standard way to build a regular abstract polytope from a
group, this construction gives rise to the mix of two polytopes.

By applying the mixing construction to the (abstract versions of the) regular convex polytopes, we can find the minimal
regular polytopes that cover any subset of the regular convex polytopes. Our goal here is to determine their complete
structure; howmany faces do they have in each rank, howmany flags are there, and what do their facets and vertex-figures
look like? Furthermore, we wish to determine which of these new structures are polytopal.

We start by giving some background information on regular abstract polytopes in Section 2. In Section 3, we introduce
themixing operation for directly regular polytopes, andwe find several criteria to determinewhen themix of two polytopes
is again a polytope. Finally, in Section 4, we find the full structure of the mix of any number of regular convex polytopes.

2. Polytopes

General background information on abstract polytopes can be found in [4, Chs. 2, 3]. Here we review the concepts
essential for this paper.
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2.1. Definition of polytopes

Let P be a ranked partially ordered set whose elements will be called faces. The faces of P will range in rank from −1
to n, and a face of rank j is called a j-face. The 0-faces, 1-faces, and (n − 1)-faces are also called vertices, edges, and facets,
respectively. A flag of P is a maximal chain. We say that two flags are adjacent (j-adjacent) if they differ in exactly one face
(their j-face, respectively). If F and G are faces of P such that F ≤ G, then the section G/F consists of those faces H such that
F ≤ H ≤ G.

We say that P is an (abstract) polytope of rank n, also called an n-polytope, if it satisfies the following four properties:

(a) There is a unique greatest face Fn of rank n and a unique least face F−1 of rank −1.
(b) Each flag of P has n + 2 faces.
(c) P is strongly flag-connected, meaning that if Φ and Ψ are two flags of P , then there is a sequence of flags Φ =

Φ0, Φ1, . . . , Φk = Ψ such that for i = 0, . . . , k − 1, the flags Φi and Φi+1 are adjacent, and each Φi contains Φ ∩ Ψ .
(d) (Diamond condition): Whenever F < G, where F is a (j−1)-face and G is a (j+1)-face for some j, then there are exactly

two j-faces H with F < H < G.

Note that due to the diamond condition, any flagΦ has a unique j-adjacent flag (denotedΦ j) for each j = 0, 1, . . . , n−1.
If F is a j-face and G is a k-face of a polytope with F ≤ G, then the section G/F is a (k − j − 1)-polytope itself. We can

identify a face F with the section F/F−1; if F is a j-face, then F/F−1 is a j-polytope. We call the section Fn/F the co-face at F .
The co-face at a vertex is also called a vertex-figure. The section Fn−1/F0 of a facet over a vertex is called amedial section. Note
that the medial section Fn−1/F0 is both a facet of the vertex-figure Fn/F0 as well as a vertex-figure of the facet Fn−1/F−1.

We sometimes need to work with pre-polytopes, which are ranked partially ordered sets that satisfy the first, second,
and fourth properties above, but not necessarily the third. In this paper, all of the pre-polytopes we encounter will be flag-
connected, meaning that if Φ and Ψ are two flags, there is a sequence of flags Φ = Φ0, Φ1, . . . , Φk = Ψ such that for
i = 0, . . . , k− 1, the flags Φi and Φi+1 are adjacent (but we do not require each flag to contain Φ ∩ Ψ ). When working with
pre-polytopes, we apply all the same terminology as with polytopes.

2.2. Regularity

For polytopes P and Q, an isomorphism from P to Q is an incidence- and rank-preserving bijection on the set of faces.
An isomorphism from P to itself is an automorphism of P . We denote the group of all automorphisms of P by Γ (P ). There
is a natural action of Γ (P ) on the flags of P , and we say that P is regular if this action is transitive. For convex polytopes,
this definition is equivalent to any of the usual definitions of regularity.

Given a regular polytopeP , fix a base flag Φ . Then the automorphism group Γ (P ) is generated by the abstract reflections
ρ0, . . . , ρn−1, where ρi maps Φ to the unique flag Φ i that is i-adjacent to Φ . These generators satisfy ρ2

i = ϵ for all i, and
(ρiρj)

2
= ϵ for all i and j such that |i− j| ≥ 2. We say that P has (Schläfli) type {p1, . . . , pn−1} if for each i = 1, . . . , n−1 the

order of ρi−1ρi is pi (with 2 ≤ pi ≤ ∞). We also use {p1, . . . , pn−1} to represent the universal regular polytope of this type,
which has an automorphism group with no defining relations other than those mentioned above. Thus Γ ({p1, . . . , pn−1})
is a Coxeter group, which we denote by [p1, . . . , pn−1]. Whenever this universal polytope corresponds to a regular convex
polytope, then the name used here is the same as the usual Schläfli symbol for that polytope (see [3]).

For I ⊆ {0, 1, . . . , n − 1} and a group Γ = ⟨ρ0, . . . , ρn−1⟩, we define ΓI := ⟨ρi | i ∈ I⟩. The strong flag-connectivity of
polytopes induces the following intersection property in its automorphism group Γ :

ΓI ∩ ΓJ = ΓI∩J for I, J ⊆ {0, . . . , n − 1}. (1)

In general, if Γ = ⟨ρ0, . . . , ρn−1⟩ is a group such that each ρi has order 2 and such that (ρiρj)
2

= ϵ whenever |i− j| ≥ 2,
thenwe say thatΓ is a string group generated by involutions (or sggi). IfΓ also satisfies the intersection property given above,
then we call Γ a string C-group. There is a natural way of building a regular polytope P (Γ ) from a string C-group Γ such
that Γ (P (Γ )) = Γ (see [4, Ch. 2E]). Therefore, we get a one-to-one correspondence between (isomorphism classes of)
regular n-polytopes and string C-groups on n specified generators.

Given a regular polytope P with automorphism group Γ (P ) = ⟨ρ0, . . . , ρn−1⟩, we define the abstract rotations
σi := ρi−1ρi for i = 1, . . . , n − 1. These elements generate the rotation subgroup Γ +(P ) of Γ (P ), which has index at
most 2. We say that P is directly regular if this index is 2. Note that the regular convex polytopes are all directly regular, and
that any section of a directly regular polytope is directly regular.

The rotation subgroup of a directly regular polytope satisfies the relations

(σi · · · σj)
2

= ϵ for i < j. (2)

It also satisfies an intersection property analogous to that for the automorphism groups of regular polytopes. For 1 ≤ i <
j ≤ n − 1, define τi,j := σi · · · σj. By convention, we also define τi,i = σi, and for 0 ≤ i ≤ n, we define τ0,i = τi,n = ϵ. For
I ⊆ {0, . . . , n − 1} and Γ +

:= Γ +(P ), set

Γ +

I := ⟨τi,j | i ≤ j and i − 1, j ∈ I⟩.
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Then the intersection property for Γ + is given by:

Γ +

I ∩ Γ +

J = Γ +

I∩J for I, J ⊆ {0, . . . , n − 1}. (3)

Let P and Q be two polytopes (or flag-connected pre-polytopes) of the same rank, not necessarily regular. A function
γ : P → Q is called a covering if it preserves incidence of faces, ranks of faces, and adjacency of flags; then γ is necessarily
surjective, by the flag-connectedness of Q. We say that P covers Q if there exists a covering γ : P → Q.

If P and Q are directly regular n-polytopes, then their rotation groups are both quotients of

W+
:= ⟨σ1, . . . , σn−1 | (σi · · · σj)

2
= ϵ for 1 ≤ i < j ≤ n − 1⟩,

the rotation subgroup of the Coxeter groupW := [∞, . . . ,∞] with n generators. Therefore there are normal subgroupsM
and K ofW+ such that Γ +(P ) = W+/M and Γ +(Q) = W+/K . Then P covers Q if and only ifM ≤ K .

3. Mixing polytopes

In this section, we will define the mix of two groups (with specified generators), which naturally gives rise to a way to
mix polytopes. The mixing operation is analogous to the join of hypermaps [2] and the parallel product of maps [8].

Let Γ = ⟨x1, . . . , xn⟩ and Γ ′
= ⟨x′

1, . . . , x
′
n⟩ be groups with n specified generators. Then the elements zi = (xi, x′

i) ∈

Γ ×Γ ′ (for i = 1, . . . , n) generate a subgroup ofΓ ×Γ ′ whichwe call themix ofΓ andΓ ′ and denoteΓ �Γ ′ (see [4, Ch.7A]).

Proposition 3.1. Let Γ , Γ ′, and Γ ′′ be groups with n specified generators. Then

(a) Γ � Γ ≃ Γ

(b) Γ � Γ ′
≃ Γ ′

� Γ

(c) (Γ � Γ ′) � Γ ′′
≃ Γ � (Γ ′

� Γ ′′).

Proof. In each case, the function that sends the n generators of the group on the left to the n generators of the group on the
right (while preserving the order) is an isomorphism. �

If P and Q are directly regular n-polytopes, we can mix their automorphism groups or their rotation groups. The theory
is essentially the same in either case, but it ends up being easier to use their rotation groups. Let Γ +(P ) = ⟨σ1, . . . , σn−1⟩

and Γ +(Q) = ⟨σ ′

1, . . . , σ
′

n−1⟩. Let βi = (σi, σ
′

i ) for i = 1, . . . , n − 1. Then Γ +(P ) � Γ +(Q) = ⟨β1, . . . , βn−1⟩. Note that
for i < j, we have (βi · · · βj)

2
= ϵ, so that the group Γ +(P ) � Γ +(Q) satisfies Eq. (2). In general, however, it will not have

the intersection property (Eq. (3)) with respect to its generators β1, . . . , βn−1. Nevertheless, it is possible to build a directly
regular poset fromΓ +(P )�Γ +(Q) using themethod outlined in [6], andwe denote that posetP �Q and call it themix ofP
andQ. (In fact, this poset is always a flag-connected pre-polytope.) ThusΓ +(P �Q) = Γ +(P )�Γ +(Q). IfΓ +(P )�Γ +(Q)
satisfies the intersection property, then P � Q is in fact a polytope.

If the type of P is {p1, . . . , pn−1} and the type of Q is {q1, . . . , qn−1}, then the type of P � Q is {ℓ1, . . . , ℓn−1}, where ℓi
is the least common multiple of pi and qi. If the facets of P are K and the facets of Q are K ′, then the facets of P � Q are
K � K ′. The vertex-figures of P � Q are obtained similarly.

The following proposition is proved in [1]:

Proposition 3.2. Let P andQ be directly regular polytopes with Γ +(P ) = W+/M and Γ +(Q) = W+/K . Then Γ +(P �Q) ≃

W+/(M ∩ K).

In most of the cases we encounter in this paper, Γ +(P ) � Γ +(Q) is in fact equal to Γ +(P ) × Γ +(Q). In order to
determine when the mix is the entire direct product, it is useful to introduce the comix of two groups. If Γ has presentation
⟨x1, . . . , xn | R⟩ and Γ ′ has presentation ⟨x′

1, . . . , x
′
n | S⟩, then we define the comix of Γ and Γ ′, denoted by Γ �Γ ′, to be the

group with presentation

⟨x1, x′

1, . . . , xn, x
′

n | R, S, x−1
1 x′

1, . . . , x
−1
n x′

n⟩.

Informally speaking, we can just add the relations from Γ ′ to those of Γ , rewriting them to use xi in place of x′

i .
Just as the mix of two rotation groups has a simple description in terms of quotients of W+, so does the comix of two

rotation groups.

Proposition 3.3. Let P and Q be directly regular polytopes with Γ +(P ) = W+/M and Γ +(Q) = W+/K . Then
Γ +(P )�Γ +(Q) ≃ W+/MK.

Proof. LetΓ +(P ) = ⟨σ1, . . . , σn−1 | R⟩, and letΓ +(Q) = ⟨σ1, . . . , σn−1 | S⟩, where R and S are sets of relators inW+. Then
M is the normal closure of R inW+ and K is the normal closure of S inW+. We can write Γ +(P )�Γ +(Q) = ⟨σ1, . . . , σn−1 |

R∪S⟩, so wewant to show thatMK is the normal closure of R∪S inW+. It is clear thatMK contains R∪S, and sinceM and K
are normal,MK is normal, and so it contains the normal closure of R∪ S. To show thatMK is contained in the normal closure
of R ∪ S, it suffices to show that if N is a normal subgroup of W+ that contains R ∪ S, then it must also contain MK . Clearly,
such an N must contain the normal closureM of R and the normal closure K of S. Therefore, N containsMK , as desired. �
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3.1. Size of the mix

Now we can determine how the size of Γ +(P ) � Γ +(Q) is related to the size of Γ +(P )�Γ +(Q).

Proposition 3.4. Let P and Q be finite directly regular n-polytopes. Then

|Γ +(P ) � Γ +(Q)| · |Γ +(P )�Γ +(Q)| = |Γ +(P )| · |Γ +(Q)|.

Proof. Let Γ +(P ) = W+/M and Γ +(Q) = W+/K . Then by Proposition 3.2, Γ +(P ) � Γ +(Q) = W+/(M ∩ K), and by
Proposition 3.3, Γ +(P )�Γ +(Q) = W+/MK . Let π1 : Γ +(P ) � Γ +(Q) → Γ +(P ) and π2 : Γ +(Q) → Γ +(P )�Γ +(Q) be
the natural epimorphisms. Then kerπ1 ≃ M/(M ∩ K) and kerπ2 ≃ MK/K ≃ M/(M ∩ K). Therefore, we have that

|Γ +(P ) � Γ +(Q)| = |Γ +(P )|| kerπ1| = |Γ +(P )|| kerπ2| = |Γ +(P )||Γ +(Q)|/|Γ +(P )�Γ +(Q)|,

and the result follows. �

The following corollary is immediate.

Corollary 3.5. Let P and Q be finite directly regular n-polytopes such that Γ +(P )�Γ +(Q) is trivial. Then Γ +(P )�Γ +(Q) =

Γ +(P )×Γ +(Q). Furthermore, if P has g flags andQ has h flags, thenP �Q has gh/2 flags (assuming that P �Q is a polytope).

We conclude this section by determining some cases for which Γ +(P )�Γ +(Q) is indeed trivial.

Proposition 3.6. Let P and Q be directly regular n-polytopes. Let Γ +(P )�Γ +(Q) = ⟨σ1, . . . , σn−1⟩. Suppose σi is trivial for
some i. If i ≥ 2, then σi−1 has order 1 or 2, and if i ≤ n − 2, then σi+1 has order 1 or 2.

Proof. If σi = ϵ for i ≥ 2, then the relation (σi−1σi)
2

= ϵ reduces to σ 2
i−1 = ϵ, and thus σi−1 has order 1 or 2. The proof for

σi+1 is the same. �

Corollary 3.7. Let P be a directly regular polytope of type {p1, . . . , pn} and let Q be a directly regular polytope of type
{q1, . . . , qn}. Suppose that gcd(pi, qi) is odd for all i, and that it is 1 for at least one i. Then Γ +(P )�Γ +(Q) is trivial, and thus
Γ +(P ) � Γ +(Q) = Γ +(P ) × Γ +(Q).

Proof. Fix a k such that gcd(pk, qk) = 1. Then σk is trivial in Γ +(P )�Γ +(Q). Now, by Proposition 3.6, if k ≥ 2, then σk−1
has order 1 or 2. On the other hand, σk−1 also has order dividing gcd(pk−1, qk−1), which is odd. Therefore, σk−1 is trivial.
Proceeding in this manner, we conclude that all of the generators σi for i < k are trivial. Similarly, if k ≤ n − 2, then σk+1
must be trivial by the same reasoning, and we find that all the generators are trivial. �

3.2. Polytopality of the mix

In order for the mix of P and Q to be a polytope, the group Γ +(P ) � Γ +(Q) must satisfy the intersection property
(Eq. (3)). We naturally would like to have simple conditions that determine when this is the case. Here is one broadly
applicable result:

Proposition 3.8. Let P be a directly regular n-polytope with facets isomorphic to K . Let Q be a directly regular flag-connected
n-pre-polytope with facets isomorphic to K ′. If K covers K ′, then P � Q is polytopal.

Proof. Since K covers K ′, the facets of P � Q are isomorphic to K . Therefore, the canonical projection from Γ +(P ) �

Γ +(Q) → Γ +(P ) is one-to-one on the subgroup of the facets, and by [1, Lemma 3.2], the group Γ +(P ) � Γ +(Q) has the
intersection property. Therefore, P � Q is a polytope. �

Another useful result is Theorem 9.1 from [1]; we reproduce it below.

Proposition 3.9. Let P be a directly regular n-polytope of type {p1, . . . , pn−1}, and let Q be a directly regular n-polytope of type
{q1, . . . , qn−1}. If pi and qi are relatively prime for each i = 1, . . . , n − 1, then P � Q is a directly regular n-polytope of type
{p1q1, . . . , pn−1qn−1}, and Γ +(P � Q) = Γ +(P ) × Γ +(Q).

In general, when we mix P and Q, we have to verify the full intersection property. But as we shall see, some parts of the
intersection property are automatic. Recall that for a subset I of {0, . . . , n − 1} and a rotation group Γ +

= ⟨σ1, . . . , σn−1⟩,
we define

Γ +

I = ⟨τi,j | i ≤ j and i − 1, j ∈ I⟩,

where τi,j = σi · · · σj.

Proposition 3.10. Let P and Q be directly regular n-polytopes, and let I, J ⊆ {0, . . . , n − 1}. Let Λ = Γ +(P ), ∆ = Γ +(Q),
andΓ +

= Λ�∆. ThenΓ +

I ∩Γ +

J ≤ ΛI∩J×∆I∩J . Furthermore, if Γ +

I = ΛI×∆I andΓ +

J = ΛJ×∆J , thenΓ +

I ∩Γ +

J = ΛI∩J×∆I∩J .
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Proof. Since Γ +

I ≤ ΛI × ∆I and Γ +

J ≤ ΛJ × ∆J , we have

Γ +

I ∩ Γ +

J ≤ (ΛI × ∆I) ∩ (ΛJ × ∆J)

= (ΛI ∩ ΛJ) × (∆I ∩ ∆J)

= ΛI∩J × ∆I∩J ,

where the last line follows from the polytopality of P and Q. This proves the first part. For the second part, we note that if
Γ +

I = ΛI × ∆I and Γ +

J = ΛJ × ∆J , then we get equality in the first line. �

Corollary 3.11. Let P and Q be directly regular n-polytopes, and let Γ +(P ) � Γ +(Q) = ⟨β1, . . . , βn−1⟩. Let 1 ≤ i, j ≤ n− 1.
Then

⟨β1, . . . , βi⟩ ∩ ⟨βj, . . . , βn−1⟩ ≤ ⟨βj, . . . , βi⟩.

In particular, if j > i then the given intersection is trivial.

Proof. The claim follows directly from Proposition 3.10 by taking I = {0, . . . , i} and J = {j − 1, . . . , n − 1}. �

Corollary 3.12. Let P and Q be directly regular polyhedra. Then P � Q is a directly regular polyhedron.

Proof. In order for P � Q to be a polyhedron (and not just a pre-polyhedron), it must satisfy the intersection property. For
polyhedra, the only requirement is that ⟨β1⟩ ∩ ⟨β2⟩ = ⟨ϵ⟩, which holds by Corollary 3.11. �

Corollary 3.12 is extremely useful. In addition to telling us that the mix of any two polyhedra is a polyhedron, it makes
it simpler to verify the polytopality of the mix of 4-polytopes, since the facets and vertex-figures of the mix are guaranteed
to be polytopal.

We now prove some general results that work for polytopes in any rank. We start with a refinement of [6, Lemma 10].

Proposition 3.13. Let n ≥ 4, and let Γ = ⟨σ1, . . . , σn−1⟩ be a group satisfying Eq. (2). Suppose that both Γ0 := ⟨σ2, . . . , σn−1⟩

and Γn−1 := ⟨σ1, . . . , σn−2⟩ satisfy the intersection property, and that

⟨σ1, . . . , σn−2⟩ ∩ ⟨σ2, . . . , σn−1⟩ = ⟨σ2, . . . , σn−2⟩.

Then Γ satisfies the intersection property.

Proof. By [6, Lemma 10], it suffices to show that for 2 ≤ i ≤ n − 1 we have

⟨σ1, . . . , σn−2⟩ ∩ ⟨σi, . . . , σn−1⟩ = ⟨σi, . . . , σn−2⟩.

Now, we have

⟨σ1, . . . , σn−2⟩ ∩ ⟨σi, . . . , σn−1⟩ = ⟨σ1, . . . , σn−2⟩ ∩ (⟨σ2, . . . , σn−1⟩ ∩ ⟨σi, . . . , σn−1⟩)

= (⟨σ1, . . . , σn−2⟩ ∩ ⟨σ2, . . . , σn−1⟩) ∩ ⟨σi, . . . , σn−1⟩

= ⟨σ2, . . . , σn−2⟩ ∩ ⟨σi, . . . , σn−1⟩

= ⟨σi, . . . , σn−2⟩,

where the last equality follows from the fact that Γ0 satisfies the intersection property. �

In the following results, we shall say that P has type {K, L} if all facets of P are isomorphic to K and all vertex-figures
of P are isomorphic to L.

Proposition 3.14. Let P be a directly regular n-polytope of type {K, L} with medial sections M, and let Q be a directly regular
n-polytope of type {K ′, L′

} with medial sections M′. Suppose that K � K ′ and L � L′ are polytopal. If Γ +(M � M′) =

Γ +(M) × Γ +(M′), then P � Q is polytopal.

Proof. Let Γ +(P ) = ⟨σ1, . . . , σn−1⟩ and let Γ +(Q) = ⟨σ ′

1, . . . , σ
′

n−1⟩. Let βi = (σi, σ
′

i ), so that Γ +(P � Q) =

⟨β1, . . . , βn−1⟩. The facets of P � Q are K � K ′, and the vertex figures are L � L′, both of which are polytopal. Thus,
Proposition 3.13 tells us thatP �Q is a polytope if ⟨β1, . . . , βn−2⟩∩⟨β2, . . . , βn−1⟩ = ⟨β2, . . . , βn−2⟩. From Proposition 3.10
we get that

⟨β1, . . . , βn−2⟩ ∩ ⟨β2, . . . , βn−1⟩ ≤ ⟨σ2, . . . , σn−2⟩ × ⟨σ ′

2, . . . , σ
′

n−2⟩.

The right hand side is justΓ +(M)×Γ +(M′), and since this is equal toΓ +(M�M′) = ⟨β2, . . . , βn−2⟩, the result follows. �

Theorem 3.15. Let P be a directly regular n-polytope of type {K, L} with medial sections M, and let Q be a directly regular
n-polytope of type {K ′, L′

} with medial sections M′. Suppose that K � K ′ and L � L′ are polytopal, and suppose that
Γ +(K � K ′) = Γ +(K) × Γ +(K ′) and that Γ +(L � L′) = Γ +(L) × Γ +(L′). Then P � Q is polytopal if and only if
Γ +(M � M′) = Γ +(M) × Γ +(M′).
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Table 1
The mix of regular convex polyhedra.

Polyhedron f0 f1 f2 g

{3, 3} � {3, 4} 24 144 96 576
{3, 3} � {3, 5} 48 360 240 1440
{3, 3} � {4, 3} 96 144 24 576
{3, 3} � {5, 3} 240 360 48 1440
{3, 4} � {3, 5} 72 720 480 2880
{3, 4} � {4, 3} 48 288 48 1152
{3, 4} � {5, 3} 120 720 96 2880
{3, 5} � {4, 3} 96 720 120 2880
{3, 5} � {5, 3} 240 1800 240 7200
{4, 3} � {5, 3} 480 720 72 2880
{3, 3} � {3, 4} � {3, 5} 288 8640 5760 34560
{3, 3} � {3, 4} � {4, 3} 576 3456 576 13824
{3, 3} � {3, 4} � {5, 3} 1440 8640 1152 34560
{3, 3} � {3, 5} � {4, 3} 1152 8640 1440 34560
{3, 3} � {3, 5} � {5, 3} 2880 21600 2880 86400
{3, 3} � {4, 3} � {5, 3} 5760 8640 288 34560
{3, 4} � {3, 5} � {4, 3} 576 17280 2880 69120
{3, 4} � {3, 5} � {5, 3} 1440 43200 5760 172800
{3, 4} � {4, 3} � {5, 3} 2880 17280 576 69120
{3, 5} � {4, 3} � {5, 3} 5760 43200 1440 172800
{3, 3} � {3, 4} � {3, 5} � {4, 3} 6912 207360 34560 829440
{3, 3} � {3, 4} � {3, 5} � {5, 3} 17280 518400 69120 2073600
{3, 3} � {3, 4} � {4, 3} � {5, 3} 34560 207360 6912 829440
{3, 3} � {3, 5} � {4, 3} � {5, 3} 69120 518400 17280 2073600
{3, 4} � {3, 5} � {4, 3} � {5, 3} 34560 1036800 34560 4147200
{3, 3}�{3, 4}�{3, 5}�{4, 3}�{5, 3} 414720 12441600 414720 49766400

Proof. Let Γ +(P ) = ⟨σ1, . . . , σn−1⟩ and let Γ +(Q) = ⟨σ ′

1, . . . , σ
′

n−1⟩. Let βi = (σi, σ
′

i ), so that Γ +(P � Q) =

⟨β1, . . . , βn−1⟩. Proposition 3.14 proves that if Γ +(M � M′) = Γ +(M) × Γ +(M′), then P � Q is polytopal. Conversely,
suppose P � Q is polytopal. Since P � Q is polytopal, we have that

⟨β2, . . . , βn−2⟩ = ⟨β1, . . . , βn−2⟩ ∩ ⟨β2, . . . , βn−1⟩.

Now, the right-hand side is Γ +(K � K ′) ∩ Γ +(L � L′). Since Γ +(K � K ′) = Γ +(K) × Γ +(K ′) and Γ +(L � L′) =

Γ +(L) × Γ +(L′), we can apply Proposition 3.10 to see that the right hand side is equal to ⟨σ2, . . . , σn−2⟩ × ⟨σ ′

2, . . . σ
′

n−2⟩,
which isΓ +(M)×Γ +(M′). Since the left-hand side is equal toΓ +(M�M′), we get thatΓ +(M�M′) = Γ +(M)×Γ +(M′),
as desired. �

4. The mix of the regular convex polytopes

Nowwewill actually mix the regular convex polytopes. In each case, we will determine the number of flags, the number
of faces of each rank, and whether the mix is polytopal. The Schläfli type of the mix is easily obtained by taking the least
common multiple of the corresponding entries in all the component polytopes. In most cases, the results have been found
in two ways: by judicious use of the preceding results, and by direct calculation using GAP [7].

4.1. Rank 3

The five regular convexpolyhedra are the tetrahedron {3, 3}, the octahedron {3, 4}, the icosahedron {3, 5}, the cube {4, 3},
and the dodecahedron {5, 3}. By Corollary 3.12, themix of any number of these is a polyhedron (i.e., polytopal). For themix of
two regular convex polyhedraP andQ, Corollary 3.7 shows that in every case, we getΓ +(P )�Γ +(Q) = Γ +(P )×Γ +(Q).
By carefully grouping polytopes, we can use Corollary 3.7 for the mix of three or more regular convex polyhedra as well. For
example, since {3, 3} � {3, 4} is of type {3, 12}, we can apply Corollary 3.7 to ({3, 3} � {3, 4}) � {3, 5}.

Due to the above considerations, we can always apply Corollary 3.5 to find the number of flags in the mix. To find the
remaining information, we note that if P is a regular polyhedron of type {p, q} with g flags, then P has g/(2q) vertices, g/4
edges, and g/(2p) facets.

Information about the mix of the regular convex polyhedra is summarized in Table 1, where f0 is the number of vertices,
f1 is the number of edges, f2 is the number of 2-faces, and g is the size of the automorphism group (which is also the number
of flags). Since P � P = P for any polytope P , there are only finitely many mixes of the regular convex polyhedra. Note
that whenever one of the mixes has the same number of vertices and facets, the polytope is in fact self-dual.
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4.2. Rank 4

Next we present themix of the regular convex 4-polytopes. There are six regular convex polytopes:P1 = {3, 3, 3}, P2 =

{3, 3, 4}, P3 = {3, 3, 5}, P4 = {3, 4, 3}, P5 = {4, 3, 3}, and P6 = {5, 3, 3}. For I = {i1, . . . , ik} ⊆ {1, 2, . . . , 6} we define
PI = Pi1 � · · · � Pik . As was the case in rank 3, the mix of the rotation groups always turns out to be the direct product of
the components. Finding the number of flags of the mix is then simple. To find the number f3 of cells (i.e. facets) of the mix,
we divide the number of flags by the number of flags in the facet, which we find by using Table 1. Similar calculations give
the number of vertices, edges, and 2-faces.

Now we address the concern of polytopality. Unlike the mix of regular convex polyhedra, there are mixes of regular
convex 4-polytopes that are not polytopal. The smallest such example (by group order) is {4, 3, 3} � {3, 3, 4}. For the mix of
any two regular convex 4-polytopes, we can appeal directly to Proposition 3.8 or Theorem 3.15 to determine polytopality,
and this settles every case. For the mix of three or more regular convex 4-polytopes, we can always group them in such a
way as to again apply one of these results. For example, the vertex-figures of {3, 3, 3} � {3, 3, 4} are {3, 3} � {3, 4}, and so
they cover {3, 3}. Therefore, the mix {3, 3, 3} � {3, 3, 4} � {4, 3, 3} is polytopal by Proposition 3.8. Table 2 summarize our
results.

4.3. Ranks 5 and higher

In ranks 5 and higher, the only regular convex polytopes are the n-simplex T n
:= {3n−1

}, the n-cube Bn
:= {4, 3n−2

}, and
the n-cross-polytope Cn

:= {3n−2, 4}. We will determine the group of their mix and which of the mixes are polytopal, as
well as the number of faces in each rank.

Theorem 4.1. For n ≥ 3, we have

Γ +(T n
� Bn) = Γ +(T n) × Γ +(Bn)

Γ +(T n
� Cn) = Γ +(T n) × Γ +(Cn)

Γ +(Bn
� Cn) = Γ +(Bn) × Γ +(Cn)

Γ +(T n
� Bn

� Cn) = Γ +(T n) × Γ +(Bn) × Γ +(Cn).

Proof. The first three follow immediately from Corollary 3.7. For the last one, we note that T n
�Bn is of type {12, 3n−2

}while
Cn is of type {3n−2, 4}, so Corollary 3.7 applies again. �

Theorem 4.2. For n ≥ 4, T n
� Bn, T n

� Cn, and T n
� Bn

� Cn are all polytopal, and Bn
� Cn is not.

Proof. Since T n has the same vertex-figures as Bn, and the same facets as Cn, then the mix with either of these polytopes
is polytopal by Proposition 3.8. Now, consider the facets of T n

� Bn. These facets are of type T n−1
� Bn−1; in particular, they

cover T n−1. Therefore, the facets of T n
�Bn cover the facets of Cn, and thus themix T n

�Bn
�Cn is polytopal. For the final case,

we note that the facets of Bn
� Cn are Bn−1

� T n−1 and that the vertex-figures are T n−1
� Cn−1. By Theorem 4.1, we see that

the facets and the vertex-figures are both direct products of their components. Then by Theorem 3.15, we see that Bn
� Cn

is polytopal if and only if the medial sections also mix as the direct product. But the medial sections of Bn and of Cn are both
T n−2, and thus the mix of the medial sections is also T n−2. Therefore, Bn

� Cn is not polytopal. �

Now we calculate the number g of flags and the numbers fk of k-faces of each of the mixes. Table 3 summarizes this
information for T n, Bn, and Cn.

Let us calculate the number of flags in each mix. For n = 1, all of the mixes are just segments, with 2 flags. For n = 2, we
get that T n

�Bn
= T n

�Cn
= T n

�Bn
�Cn

= {12}, with 24 flags, while Bn
�Cn

= Bn, with 8 flags. Now, for n ≥ 3, Theorem 4.1
tells us that the mixes are all full direct products of the component groups. Then by Corollary 3.5, we see that T n

� Bn and
T n

� Cn both have 2n−1n!(n + 1)! flags, that Bn
� Cn has 22n−1(n!)2 flags, and that T n

� Bn
� Cn has 22n−2(n!)2(n + 1)! flags.

For any polytope P , let g(P ) be the number of flags of P , and let fk(P ) be the number of k-faces of P . Then

g(P ) = fk(P )g(Fk/F−1)g(Fn/Fk).

We can use this to calculate fk(P ). First, in the case T n
� Bn, we see that the k-faces are T k

� Bk, and the co-k-faces are
T n−1−k

� T n−1−k
= T n−1−k. Thus we have

fk(T n
� Bn) =

2n−1n!(n + 1)!
g(T k � Bk)g(T n−1−k)

.

Now, for k = 0, the mix T k
� Bk has a single flag; for k ≥ 1, it has 2k−1k!(k + 1)! flags. So we see that the number of vertices

of T n
� Bn is

f0(T n
� Bn) =

2n−1n!(n + 1)!
(1)(n!)

= 2n−1(n + 1)!,
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Table 2
The mix of regular convex 4-polytopes.

I f0 f1 f2 f3 g Polytopal?

{1, 2} 40 480 1920 960 23040 Y
{1, 3} 600 14400 72000 36000 864000 Y
{1, 4} 120 5760 5760 120 69120 Y
{1, 5} 960 1920 480 40 23040 Y
{1, 6} 36000 72000 14400 600 864000 Y
{2, 3} 960 34560 230400 115200 2764800 Y
{2, 4} 192 4608 18432 384 221184 Y
{2, 5} 128 1536 1536 128 73728 N
{2, 6} 4800 57600 46080 1920 2764800 N
{3, 4} 2880 138240 691200 14400 8294400 Y
{3, 5} 1920 46080 57600 4800 2764800 N
{3, 6} 72000 1728000 1728000 72000 103680000 N
{4, 5} 384 18432 4608 192 221184 Y
{4, 6} 14400 691200 138240 2880 8294400 Y
{5, 6} 115200 230400 34560 960 2764800 Y
{1, 2, 3} 4800 691200 13824000 6912000 165888000 Y
{1, 2, 4} 960 276480 1105920 23040 13271040 Y
{1, 2, 5} 7680 92160 92160 7680 4423680 Y
{1, 2, 6} 288000 3456000 2764800 115200 165888000 Y
{1, 3, 4} 14400 8294400 41472000 864000 497664000 Y
{1, 3, 5} 115200 2764800 3456000 288000 165888000 Y
{1, 3, 6} 4320000 103680000 103680000 4320000 6220800000 Y
{1, 4, 5} 23040 1105920 276480 960 13271040 Y
{1, 4, 6} 864000 41472000 8294400 14400 497664000 Y
{1, 5, 6} 6912000 13824000 691200 4800 165888000 Y
{2, 3, 4} 23040 6635520 132710400 2764800 1592524800 Y
{2, 3, 5} 15360 2211840 11059200 921600 530841600 N
{2, 3, 6} 576000 82944000 331776000 13824000 19906560000 N
{2, 4, 5} 3072 884736 884736 3072 42467328 N
{2, 4, 6} 115200 33177600 26542080 46080 1592524800 N
{2, 5, 6} 921600 11059200 2211840 15360 530841600 N
{3, 4, 5} 46080 26542080 33177600 115200 1592524800 N
{3, 4, 6} 1728000 995328000 995328000 1728000 59719680000 N
{3, 5, 6} 13824000 331776000 82944000 576000 19906560000 N
{4, 5, 6} 2764800 132710400 6635520 23040 1592524800 Y
{1, 2, 3, 4} 115200 398131200 7962624000 165888000 95551488000 Y
{1, 2, 3, 5} 921600 132710400 663552000 55296000 31850496000 Y
{1, 2, 3, 6} 34560000 4976640000 19906560000 829440000 1194393600000 Y
{1, 2, 4, 5} 184320 53084160 53084160 184320 2548039680 Y
{1, 2, 4, 6} 6912000 1990656000 1592524800 27648000 95551488000 Y
{1, 2, 5, 6} 55296000 663552000 132710400 921600 31850496000 Y
{1, 3, 4, 5} 2764800 1592524800 1990656000 6912000 95551488000 Y
{1, 3, 4, 6} 103680000 59719680000 59719680000 103680000 3583180800000 Y
{1, 3, 5, 6} 829440000 19906560000 4976640000 34560000 1194393600000 Y
{1, 4, 5, 6} 165888000 7962624000 398131200 115200 95551488000 Y
{2, 3, 4, 5} 368640 1274019840 6370099200 22118400 305764761600 N
{2, 3, 4, 6} 13824000 47775744000 191102976000 331776000 11466178560000 N
{2, 3, 5, 6} 110592000 15925248000 15925248000 110592000 3822059520000 N
{2, 4, 5, 6} 22118400 6370099200 1274019840 368640 305764761600 N
{3, 4, 5, 6} 331776000 191102976000 47775744000 13824000 11466178560000 N
{1, 2, 3, 4, 5} 22118400 76441190400 382205952000 1327104000 18345885696000 Y
{1, 2, 3, 4, 6} 829440000 2866544640000 11466178560000 19906560000 687970713600000 Y
{1, 2, 3, 5, 6} 6635520000 955514880000 955514880000 6635520000 229323571200000 Y
{1, 2, 4, 5, 6} 1327104000 382205952000 76441190400 22118400 18345885696000 Y
{1, 3, 4, 5, 6} 19906560000 11466178560000 2866544640000 829440000 687970713600000 Y
{2, 3, 4, 5, 6} 2654208000 9172942848000 9172942848000 2654208000 2201506283520000 N
{1, 2, 3, 4, 5, 6} 159252480000 550376570880000 550376570880000 159252480000 132090377011200000 Y

Table 3
The regular convex n-polytopes for n ≥ 5.

P fk g

T n


n+1
k+1


(n + 1)!

Bn 2n−k
 n
k


2nn!

Cn 2k+1
 n
k+1


2nn!
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Table 4
The mix of the regular convex n-polytopes for n ≥ 5.

Mix f0 fn−1 fk(1 ≤ k ≤ n − 2) g

T n
� Bn 2n−1(n + 1)! 2n(n + 1) 2n−k(n − k)!


n+1
k+1

  n
k


2n−1n!(n + 1)!

T n
� Cn 2n(n + 1) 2n−1(n + 1)! 2k+1(k + 1)!


n+1
k+1

  n
k+1


2n−1n!(n + 1)!

Bn
� Cn 2n+1n 2n+1n 2n+2

 n
k

  n
k+1


22n−1(n!)2

T n
� Bn

� Cn 2nn(n + 1)! 2nn(n + 1)! 2n+1(n + 1)!
 n
k

  n
k+1


22n−2(n!)2(n+1)!

and that the number of k-faces for k ≥ 1 is

fk(T n
� Bn) =

2n−1n!(n + 1)!
2k−1k!(k + 1)!(n − k)!

= 2n−k(n − k)!

n + 1
k + 1

 n
k


.

Since T n
� Cn is dual to this, we get that the number of facets is 2n−1(n + 1)!, and the number of k-faces for k ≤ n − 2 is

2k+1(k + 1)!


n+1
k+1

  n
k+1


.

Moving on to Bn
�Cn, we have that the k-faces are Bk

� T k, and the co-k-faces are T n−1−k
�Cn−1−k. The number of vertices

is equal to the number of facets, which is equal to

22n−1(n!)2

(1)2n−2(n − 1)!n!
= 2n+1n.

The number of k-faces for 1 ≤ k ≤ n − 2 is

22n−1(n!)2

2k−1k!(k + 1)!2n−k−2(n − k − 1)!(n − k)!
= 2n+2

n
k

 
n

k + 1


.

Finally, we consider the mix T n
� Bn

� Cn. The k-faces are T k
� Bk and the co-k-faces are T n−k−1

� Cn−k−1. The number of
vertices is equal to the number of facets, which is equal to

22n−2(n!)2(n + 1)!
(1)2n−2(n − 1)!n!

= 2nn(n + 1)!.

The number of k-faces for 1 ≤ k ≤ n − 2 is

22n−2(n!)2(n + 1)!
2k−1k!(k + 1)!2n−k−2(n − k − 1)!(n − k)!

= 2n+1(n + 1)!
n
k

 
n

k + 1


.

We summarize these results in Table 4.
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