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Judicious partitioning problems on graphs and hypergraphs ask for
partitions that optimize several quantities simultaneously. Let G be
a hypergraph with mi edges of size i for i = 1,2. We show that
for any integer k � 1, V (G) admits a partition into k sets each
containing at most m1/k + m2/k2 + o(m2) edges, establishing a
conjecture of Bollobás and Scott. We also prove that V (G) admits
a partition into k � 3 sets, each meeting at least m1/k + m2/(k −
1) + o(m2) edges, which, for large graphs, implies a conjecture of
Bollobás and Scott (the conjecture is for all graphs). For k = 2, we
prove that V (G) admits a partition into two sets each meeting at
least m1/2 + 3m2/4 + o(m2) edges, which solves a special case of a
more general problem of Bollobás and Scott.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Classical graph partitioning problems often ask for partitions of a graph that optimize a single
quantity. For example, the well-known Max-Cut Problem asks for a partition V 1, V 2 of V (G), where G
is a weighted graph, that maximizes the total weight of edges with an end in each V i . This problem
is NP-hard, see [13]. The unweighted version is often called the Maximum Bipartite Subgraph Problem:
Given a graph G find a partition V 1, V 2 of V (G) that maximizes e(V 1, V 2), the number of edges
between V 1 and V 2. This is also NP-hard. However, it is easy to prove that any graph with m edges
has a partition V 1, V 2 with e(V 1, V 2) � m/2. Edwards [10,11] improved this lower bound to m/2 +
1
4 (

√
2m + 1/4 − 1/2). This is best possible, as K2n+1 are extremal graphs.

In practice one often needs to find a partition of a given graph to optimize several quantities
simultaneously. Such problems are called Judicious Partitioning Problems by Bollobás and Scott [4].
One such example is the problem of finding a partition V 1, V 2 of the vertex set of a graph G that
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minimizes max{e(V 1), e(V 2)}, where e(V i) denotes the number of edges of G with both ends in V i .
This problem is also known as the Bottleneck Bipartition Problem, raised by Entringer (see, for example,
[14,15]). Shahrokhi and Székely [17] showed that this problem is NP-hard. Porter [14] proved that any
graph with m edges has a partition into V 1, V 2 with e(V i) � m/4 + O (

√
m ). Bollobás and Scott [6]

improved this to e(V i) � m/4 + 1
8 (

√
2m + 1/4 − 1/2), and showed that K2n+1 are the only extremal

graphs.
In fact, Bollobás and Scott [6] proved that any graph with m edges has a partition V 1, V 2 such

that e(V 1, V 2) � m/2 + 1
4 (

√
2m + 1/4 − 1/2) and for i = 1,2, e(V i) � m/4 + 1

8 (
√

2m + 1/4 − 1/2).
Alon et al. [1] showed that there is a connection between the Maximum Bipartite Subgraph Problem
and the Bottleneck Bipartition Problem. More precisely, they proved the following: Let G be a graph
with m edges and largest cut of size m/2 + δ. If δ � m/30 then V (G) admits a partition V 1, V 2 such
that e(V i) � m/4 − δ/2 + 10δ2/m + 3

√
m; and if δ � m/30 then V (G) admits a partition V 1, V 2 such

that e(V i) � m/4 − m/100. It would be interesting to know whether this result can be generalized to
k-partitions.

One of the early problems about judicious partitions is the conjecture of Bollobás and Thomason
(see [3,5,7,8]) that if G is an r-uniform hypergraph with m edges then V (G) has a partition into
V 1, . . . , Vr such that d(V i) � rm/(2r − 1) for i = 1, . . . , r, where d(V i) denotes the number of edges of
G meeting V i (i.e., containing at least one vertex of V i). A natural approach to this problem is to find
a reasonable partition, and to remove vertices of one set and partition the remaining vertices into
r − 1 parts in a better way. This approach is used in [7] by Bollobás and Scott to partition 3-uniform
hypergraphs. For more results and problems we refer the reader to [8,9,16].

In this paper, we study several judicious partitioning problems about graphs with requirement
on edges as well as on vertices, and such problems are called mixed partition problems. We follow
Bollobás and Scott [8] to use the term “hypergraphs with edges of size at most 2”.

We show in Section 2 that if G is a hypergraph with mi edges of size i, i = 1,2, then V (G) admits
a partition V 1, V 2 such that d(V i) � m1/2 + 3m2/4 + o(m2) for i = 1,2. This settles a problem of
Bollobás and Scott [8] for large graphs, where they suggest the lower bound (m1 − 1)/2 + 2m2/3 as
a starting point for a more general problem. Note that if we take a random partition V 1, V 2, then
E(d(V i)) = m1/2 + 3m2/4.

In Section 3 we attempt to generalize the results in Section 2 to k-partitions. In particular, we
prove that if k � 3 and G is a hypergraph with mi edges of size i, i = 1,2, then V (G) admits a
partition V 1, . . . , Vk such that d(V i) � m1/k + m2/(k − 1) + o(m2) for i = 1, . . . ,k. Again, if we take a
random partition V 1, . . . , Vk , then E(d(V i)) = m1/k+(2k−1)m2/k2. Bollobás and Scott [7] conjectured
that every graph with m edges has a partition into k sets, each meeting at least 2m/(2k − 1) edges.
Our result implies this conjecture for large graphs.

In Section 4 we consider a generalization of the Bottleneck Bipartition Problem. We show that if
k � 1 and G is a hypergraph with mi edges of size i, i = 1,2, then V (G) admits a partition V 1, . . . , Vk

such that e(V i) � m1/k + m2/k2 + o(m2) for i = 1, . . . ,k, establishing a conjecture of Bollobás and
Scott [8]. Note that for a random partition V 1, . . . , Vk , we have E(e(V i)) = m1/k + m2/k2. Also when
m1 = o(m2) this follows from Eq. (2) in [8].

The approach we take is similar to that of Bollobás and Scott [5]. We first partition a set of large
degree vertices, then establish a random process to partition the remaining vertices, and finally apply
a concentration inequality to bound the deviations. The key is to pick the probabilities appropriately
so that the expectation of the process will be in a range that we want. This will be achieved by
extremal techniques.

Some notation is in order. Let G be a hypergraph and S ⊆ V (G). We use G[S] to denote the
subgraph of G consisting of S and all edges of G contained in S . Letting A, B be subsets of V (G) or
subgraphs of G , we use (A, B) to denote the set of edges of G that are contained in A ∪ B and intersect
both A and B . For a set X ⊆ V (G) we use d(X) to denote the number of edges of G meeting X , i.e.,
containing at least one member of X .

We will actually prove partition results for weighted graphs. Let G be a graph and let w : V (G) ∪
E(G) → R+ , where R+ is the set of nonnegative reals. For X ⊆ V (G) we write
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wG(X) =
∑
ui∈X

w(ui) +
∑

{e∈E(G): e⊆X}
w(e)

and

τG(X) =
∑
ui∈X

w(ui) +
∑

{e∈E(G): e∩X �=∅}
w(e).

If G is understood, we use τ (X), w(X) instead of τG(X), wG(X), respectively. We point out that if H
is an induced subgraph of G , then for any X ⊆ V (H), we have w H (X) = wG(X). Also, note that when
w(e) = 1 for all e ∈ E(G) and w(v) = 0 for all v ∈ V (G), we have τ (X) = d(X).

2. Bipartitions

In this section we consider the following problem of Bollobás and Scott [8]: Given a hypergraph G
with mi edges of size i, 1 � i � 2, does there exist a partition of V (G) into sets V 1 and V 2 such that
d(V i) � m1−1

2 + 2
3 m2 for i = 1,2? This problem was motivated by the Bollobás–Thomason conjecture

on r-uniform hypergraphs. Bollobás and Scott [8] proved that if G is a hypergraph with mi edges of
size i, i = 1, . . . ,k, then V (G) admits a partition V 1, V 2 such that for i = 1,2,

d(V i) � m1 − 1

3
+ 2m2

3
+ · · · + kmk

k + 1
.

Then they used this to show that every 3-uniform hypergraph with m edges can be partitioned into
3-sets each of which meets at least 5m/9 edges.

In [7], Bollobás and Scott suggest that the following might hold: Given a hypergraph G with mi
edges of size i, 1 � i � k, there exists a partition of V (G) into sets V 1, V 2 such that for i = 1,2,

d(V i) � m1 − 1

2
+ 2m2

3
+ · · · + kmk

k + 1
.

In fact, they suggest in [8] that asymptotically the bound may be much larger:

d(V i) � m1

2
+ 3

4
m2 + · · · +

(
1 − 1

2k

)
mk + o(m1 + · · · + mk).

In this section we confirm this for k = 2 (see Theorem 2.4). Note that by taking a random partition
V 1, V 2, we have E(d(V i)) = m1

2 + 3
4 m2 + · · · + (1 − 1

2k )mk .
As mentioned in the previous section, we need a concentration inequality, the Azuma–Hoeffding

inequality [2,12], to bound deviations. We use the version given in [5].

Lemma 2.1. Let Z1, . . . , Zn be independent random variables taking values in {1, . . . ,k}, let Z := (Z1, . . . , Zn),
and let f : {1, . . . ,k}n → N such that | f (Y ) − f (Y ′)| � ci for any Y , Y ′ ∈ {1, . . . ,k}n which differ only in the
ith coordinate. Then for any z > 0,

P
(

f (Z) � E
(

f (Z)
) + z

)
� exp

( −z2

2
∑k

i=1 c2
i

)
,

P
(

f (Z) � E
(

f (Z)
) − z

)
� exp

( −z2

2
∑k

i=1 c2
i

)
.

We also need a simple lemma to be used to choose probabilities in a random process.

Lemma 2.2. Let a,b,n ∈ R+ with a + b > 0, and let p = n+b
2n+a+b . Then p ∈ [0,1] and

min
{
(n + b)p + a, (n + a)(1 − p) + b

}
� n

2
+ 3

4
(a + b).
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Proof. Clearly, p ∈ [0,1]. It is easy to check that

(n + b)p + a = (n + b)2

2n + a + b
+ a.

It is straightforward to show that

(n + b)2

2n + a + b
+ a −

(
n

2
+ 3

4
(a + b)

)
= (a − b)2

4(2n + a + b)
� 0.

Hence, the assertion of the lemma holds. �
We now prove the main result in this section. This is a partition result on weighted graphs. Recall

the notation τ (X) defined in the previous section.

Theorem 2.3. Let G be a graph with n vertices and m edges and let w : V (G)∪ E(G) → R+ such that w(e) > 0
for all e ∈ E(G). Let λ = max{w(x): x ∈ V (G)∪ E(G)}, w1 = ∑

v∈V (G) w(v), and w2 = ∑
e∈E(G) w(e). Then

there is a partition V (G) = X ∪ Y such that

min
{
τ (X), τ (Y )

}
� 1

2
w1 + 3

4
w2 + λ · O

(
m4/5).

Proof. We may assume that G is connected, since otherwise we may simply consider the individual
components. Let V (G) = {v1, v2, . . . , vn} such that d(v1) � d(v2) � · · · � d(vn).

First, we find an appropriate t so that d(vt+1) is small enough for the application of the Azuma–
Hoeffding inequality in Lemma 2.1. Since G is connected, n − 1 � m < 1

2 n2. Fix 0 < α < 1
2 (to be

optimized later), and let V 1 = {v1, . . . , vt} such that t = �mα�. (Note that, since α < 1/2 and m <
1
2 n2, we have t < n − 1.) Then e(V 1) �

(t
2

)
< 1

2 t2 � 1
2 m2α . Since

∑t+1
i=1 d(vi) < 2m, d(vt+1) < 2m

t+1 �
2m1−α . Let V 2 = V (G) \ V 1, and rename the vertices in V 2 as {u1, u2, . . . , un−t} such that e({ui}, V 1 ∪
{u1, . . . , ui−1}) > 0 for i = 1, . . . ,n − t; which can be done since we assume that G is connected.

We now partition the vertices of G . First, fix an arbitrary partition V 1 = X0 ∪ Y0, and assign color
1 to all vertices in X0 and color 2 to all vertices in Y0. The vertices ui ∈ V 2 are independently col-
ored 1 with probability pi , and 2 with probability 1 − pi . (The pi ’s are constants to be determined
recursively.) Let Zi denote the indicator random variable of the event of coloring ui . Hence Zi = j,
j ∈ {1,2}, iff ui is assigned the color j. When this process stops we obtain a bipartition of V (G) into
two sets X , Y , where X consists of all vertices with color 1 and Y consists of all vertices of color 2
(and hence X0 ⊆ X and Y0 ⊆ Y ).

We need additional notation to facilitate the choices of pi (1 � i � n − t), the computations
of expectations of τ (X) and τ (Y ), and the estimations of concentration bounds. Let Gi = G[V 1 ∪
{u1, u2, . . . , ui}] for i = 1, . . . ,n − t , let G0 = G[V 1], and let the elements of V (Gi) ∪ E(Gi) inherit
their weights from G . Let x0 = τG0(X0) and y0 = τG0 (Y0), and define, for i = 1, . . . ,n − t ,

Xi = {vertices of Gi with color 1},
Yi = {vertices of Gi with color 2},
xi = τGi (Xi),

yi = τGi (Yi),

�xi = xi − xi−1,

�yi = yi − yi−1,

ai =
∑

e∈(ui ,Xi−1)

w(e),

bi =
∑

e∈(u ,Y )

w(e).
i i−1



J. Ma et al. / Journal of Combinatorial Theory, Series B 100 (2010) 631–649 635
Note that xi and yi are random variables determined by (Z1, Z2, . . . , Zi); and ai and bi are random
variables determined by (Z1, Z2, . . . , Zi−1). Thus,

E(�xi |Z1, . . . , Zi−1) = pi
(

w(ui) + bi
) + ai,

E(�yi |Z1, . . . , Zi−1) = (1 − pi)
(

w(ui) + ai
) + bi .

Hence,

E(�xi) = E
(
E(�xi |Z1, . . . , Zi−1)

)
=

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)
(

pi
(

w(ui) + bi
) + ai

)

= pi

(
w(ui) +

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi

)
+

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai .

Similarly,

E(�yi) = (1 − pi)

(
w(ui) +

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai

)
+

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi .

Let

αi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai,

βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi .

Then

E(�xi) = pi
(

w(ui) + βi
) + αi,

E(�yi) = (1 − pi)
(

w(ui) + αi
) + βi .

Note that αi , βi are determined by p1, . . . , pi−1, since ai and bi are determined by Z1, . . . , Zi−1. Also
note that ei := ai + bi = ∑

e∈(ui , Gi−1) w(e) is the total weight of edges in (ui, V (Gi−1)), which is
independent of Z1, . . . , Zi−1 and is the same in both G and Gi . Further, ei > 0 by our choice of ui and
the assumption that w(e) > 0 for all e ∈ E(G). Hence,

αi + βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)(ai + bi)

=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

= ei

> 0.

Let pi = w(ui)+βi
2w(ui)+αi+βi

. Note that pi is recursively defined (by p1, . . . , pi−1), since αi and βi are deter-
mined by p1, . . . , pi−1. It follows from Lemma 2.2 that pi ∈ [0,1] and

min
{
E(�xi),E(�yi)

}
� 1

w(ui) + 3
(αi + βi) = 1

w(ui) + 3
ei .
2 4 2 4
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We can now bound the expectations of xn−t and yn−t :

E(xn−t) = x0 +
n−t∑
i=1

E(�xi) � x0 + 1

2

n−t∑
i=1

w(ui) + 3

4

n−t∑
i=1

ei,

E(yn−t) = y0 +
n−t∑
i=1

E(�yi) � y0 + 1

2

n−t∑
i=1

w(ui) + 3

4

n−t∑
i=1

ei .

Let X = Xn−t and Y = Yn−t . Then X ∪Y = V (G) and X ∩Y = ∅. Note that τ (X) = xn−t , τ (Y ) = yn−t ,
τG0 (X0) = x0, and τG0(Y0) = y0. Also note that w2 = ∑

e⊆V 1
w(e) + ∑n−t

i=1 ei . Hence

E
(
τ (X)

)
� 1

2

(
w1 −

t∑
i=1

w(vi)

)
+ 3

4

(
w2 −

∑
e⊆V 1

w(e)

)
+ τ (X0)

� 1

2
w1 + 3

4
w2 −

(
1

2

t∑
i=1

w(vi) + 3

4

∑
e⊆V 1

w(e)

)

� 1

2
w1 + 3

4
w2 − λ

(
1

2
t + 3

4
e(V 1)

)

� 1

2
w1 + 3

4
w2 − λ

(
1

2
mα + 3

8
m2α

)
.

Similarly,

E
(
τ (Y )

)
� 1

2
w1 + 3

4
w2 − λ

(
1

2
mα + 3

8
m2α

)
.

Next we show that τ (X) and τ (Y ) are concentrated around their respective means. Note that
changing the color of some ui would affect τ (X) and τ (Y ) by at most d(ui)λ + w(ui) � (d(ui) + 1)λ.
Hence by applying Lemma 2.1 (and recalling that d(vt+1) < 2m1−α ), we have

P
(
τ (X) < E

(
τ (X)

) − z
)
� exp

(
− z2

2λ2
∑n−t

i=1(d(ui) + 1)2

)

� exp

(
− z2

2λ2
∑n−t

i=1(d(ui) + 1) · (d(vt+1) + 1)

)

< exp

(
− z2

2λ2(1 + 2m1−α) · (2m + n − 1)

)

< exp

(
− z2

4λ22m1−α · (2m + m)

)

= exp

(
− z2

24λ2m2−α

)
.

Let z = λ
√

24 ln 2m1− α
2 . Then

P
(
τ (X) < E

(
τ (X)

) − z
)
<

1

2

and

P
(
τ (Y ) < E

(
τ (Y )

) − z
)
<

1
.

2
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So there exists a partition V (G) = X ∪ Y such that

τ (X) � E
(
τ (X)

) − z � 1

2
w1 + 3

4
w2 + λ · o(m)

and

τ (Y ) � E
(
τ (Y )

) − z � 1

2
w1 + 3

4
w2 + λ · o(m).

The o(m) term in the above expressions is

−
(

1

2
mα + 3

8
m2α + √

24 ln 2m1− α
2

)
.

So picking α = 2/5 to minimize max{2α,1 − α
2 }, we have

min
{
τ (X), τ (Y )

}
� 1

2
w1 + 3

4
w2 + λ · O

(
m4/5). �

When G is a hypergraph with edges of size 1 or 2, we may view G as a weighted graph with
weight function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all v ∈ V (G) with
{v} ∈ E(G), and w(v) = 0 for all v ∈ V (G) with {v} /∈ E(G). Theorem 2.3 then gives the following
result.

Theorem 2.4. Let G be a hypergraph with mi edges of size i, i = 1,2. Then there is a partition V 1 , V 2 of V (G)

such that for i = 1,2,

d(V i) � 1

2
m1 + 3

4
m2 + O

(
m4/5

2

)
.

As mentioned before a random bipartition shows that the expected value of d(V i) is m1/2+3m2/4.

3. k-Partitions – bounding the number of edges meeting each set

In [7], Bollobás and Scott conjecture that every graph with m edges has a partition into k sets each
of which meets at least 2m/(2k − 1) edges. Note that in any k-partition of K2k−1, one set consists of
just one vertex, which meets 2m/(2k − 1) edges; so the conjectured bound is best possible. For large
graphs, it is likely that the bound is much better: A random k-partition V 1, . . . , Vk of a graph with m
edges shows that E(d(V i)) = (2k − 1)m/k2.

For k = 2, the above conjecture is the r = 2 case of the Bollobás–Thomason conjecture on r-
uniform hypergraphs; and it follows from the fact that every graph with m edges has a bipartition
V 1, V 2 such that for i ∈ {1,2}, each vertex in V i has at least as many neighbors in V 3−i as in V i . In
this section, we prove this Bollobás–Scott conjecture for graphs when m is sufficiently large.

We use a similar approach as in the previous section, namely: First, partition an appropriate set of
vertices of large degree, then establish a martingale process to bound expectations, and finally apply
the Azuma–Hoeffding inequality to bound deviations. As before, we need to pick probabilities for that
process. To this end we need several lemmas. Our first lemma will be used to take care of critical
points when applying the method of Lagrange multipliers to optimize a function.

Lemma 3.1. Let ai = a > 0 for i = 1, . . . , l, and let a j = 0 for j = l + 1, . . . ,k, where k � l � 2. Let δ � 0 and

αi = (
∑k

j=1 a j) + δ − ai . Then

1 +
k∑

i=1

ai

αi
�

(
δ

k
+ 2k − 1

k2

k∑
i=1

ai

)
k∑

i=1

1

αi
.
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Proof. By the assumptions of the lemma, we have αi = (l−1)a+δ > 0 for 1 � i � l, and αi = la+δ > 0
for l + 1 � i � k. Let

f := 1 +
k∑

i=1

ai

αi
−

(
δ

k
+ 2k − 1

k2

k∑
i=1

ai

)
k∑

i=1

1

αi
.

We need to prove f � 0. For convenience, let δ = aε. Then ε � 0 and

f = 1 + l

l − 1 + ε
−

(
ε

k
+ 2k − 1

k2
l

)(
l

l − 1 + ε
+ k − l

l + ε

)
.

A straightforward calculation shows that

(l − 1 + ε)(l + ε) f = l

k2
(k − 1)(k − l) � 0.

Hence the assertion of the lemma holds. �
Note that in the lemma below we are unable to guarantee pi � 0 for all i = 1, . . . ,k; and hence

these pi cannot serve as probabilities in a random process. However, this lemma is needed in order
to prove the next lemma.

Lemma 3.2. Let δ � 0 and, for i = 1, . . . ,k, let ai � 0 and αi = (
∑k

j=1 a j) + δ − ai . Then there exist pi ,

i = 1, . . . ,k, such that
∑k

i=1 pi = 1 and, for 1 � i � k,

αi pi + ai � δ

k
+ 2k − 1

k2

k∑
i=1

ai .

Proof. For convenience let f i(p1, . . . , pk) := αi pi + ai , i = 1, . . . ,k. If ai = 0 for i = 1, . . . ,k, then the
assertion of the lemma holds by picking pi = 1/k for i = 1, . . . ,k. So without loss of generality we
may assume a1 > 0.

Now assume ai = 0 for i = 2, . . . ,k. Then f1 = δp1 + a1 and f i = (a1 + δ)pi for 2 � i � k. Setting
f i = f1 for i = 2, . . . ,k, we get pi = δp1+a1

a1+δ
. Setting

∑k
i=1 pi = 1, we have p1 = (2−k)a1+δ

a1+kδ
. Hence for

i = 1, . . . ,k,

f i = δp1 + a1 = (δ + a1)
2

a1 + kδ
,

and so,

f i −
(

δ

k
+ 2k − 1

k2

k∑
i=1

ai

)
= (k − 1)2a2

1

(a1 + kδ)k2
� 0.

Therefore, we may further assume that a2 > 0. Hence αi > 0 for all i = 1, . . . ,k. Setting f i = f1 for
i = 2, . . . ,k, we get pi = α1 p1+a1−ai

αi
for i = 1, . . . ,k. Requiring

∑k
i=1 pi = 1 and noting that ai − a1 =

α1 − αi for 1 � i � k, we have

p1 = 1 + ∑k
i=1

ai−a1
αi

α1
∑k

i=1
1
αi

= 1 + ∑k
i=1

α1−αi
αi

α1
∑k

i=1
1
αi

= 1 − k − 1

α1
∑k

i=1
1
αi

.

Indeed, for j = 1, . . . ,k,

p j = 1 − k − 1

α j
∑k

i=1
1

.

αi
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Note that α j + a j = αi + ai for any 1 � i, j � k. Hence for j = 1,2, . . . ,k, we have

f j = α j p j + a j

=
∑k

i=1
α j+a j

αi
− (k − 1)∑k

i=1
1
αi

=
∑k

i=1
αi+ai

αi
− (k − 1)∑k

i=1
1
αi

= 1 + ∑k
i=1

ai
αi∑k

i=1
1
αi

.

Now define

f (a1,a2, . . . ,ak) := 1 +
k∑

i=1

ai

αi
−

(
δ

k
+ 2k − 1

k2

k∑
i=1

ai

)
k∑

i=1

1

αi
.

To complete the proof of this lemma, we need to show f (a1, . . . ,ak) � 0.

Case 1. δ = 0.
Then αi + ai = ∑k

j=1 a j for i = 1, . . . ,k. Set α = ∑k
j=1 a j ; then

∑k
i=1 αi = (k − 1)α. Moreover,

f (a1, . . . ,ak) = 1 +
k∑

i=1

ai

αi
− (2k − 1)α

k2

k∑
i=1

1

αi

= 1 +
k∑

i=1

α − αi

αi
− (2k − 1)α

k2

k∑
i=1

1

αi

= (k − 1)2α

k2

k∑
i=1

1

αi
− (k − 1)

� (k − 1)2α

k2

k2∑k
i=1 αi

− (k − 1)

= 0.

Here the inequality follows from Cauchy–Schwarz, and the last equality follows from the fact that∑k
i=1 αi = (k − 1)α.

Case 2. δ > 0.
Then αi > 0 for i = 1, . . . ,k. (So in this case we need not require a1 > 0 and a2 > 0.) Set α =∑k

j=1 a j .
Let gl(a1, . . . ,al) = f (a1, . . . ,al,0, . . . ,0). It then suffices to show that gl(a1, . . . ,al) � 0 on the

domain Dl := [0,α]l for l = 1, . . . ,k.
First, we prove that for l ∈ {1, . . . ,k}, gl � 0 at all possible critical points of gl in Dl , subject to∑k

j=1 a j − α = 0. For j = 1, . . . , l,

∂ gl

∂a j
= −

k∑
i=1

ai

α2
i

+ a j

α2
j

+ 1

α j
+ δ

k

(
k∑

i=1

1

α2
i

− 1

α2
j

)

− 2k − 1

k2

(
k∑ 1

αi
−

k∑
ai

k∑ 1

α2
i

+
k∑ ai

α2
j

)
.

i=1 i=1 i=1 i=1
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Using the method of Lagrange multipliers, we have ∂ gl
∂a j

= λ for all j = 1, . . . , l. So ∂ gl
∂a j

= ∂ gl
∂a1

, which

gives

a j

α2
j

+ 1

α j
− δ

k

1

α2
j

− 2k − 1

k2

k∑
i=1

ai

α2
j

= a1

α2
1

+ 1

α1
− δ

k

1

α2
1

− 2k − 1

k2

k∑
i=1

ai

α2
1

.

Since α j + a j = α1 + a1 = ∑k
i=1 ai + δ, we have

1

α2
j

(
(k − 1)2

k2

n∑
i=1

ai + k − 1

k
δ

)
= 1

α2
1

(
(k − 1)2

k2

n∑
i=1

ai + k − 1

k
δ

)
.

Hence 1/α2
j = 1/α2

1 for all j = 1, . . . , l. Therefore, α j = α1 for j = 1, . . . , l, which implies a j = a1 for

j = 1, . . . , l. It follows from Lemma 3.1 that gl � 0 at all possible critical points of gl in [0,α]l .
We now show that gl � 0 on [0,α]l by applying induction on l. Suppose l = 1. Then α = a1. So

α1 = δ, and αi = a1 + δ for i = 2, . . . ,k. Hence

g1(a1) = 1 + a1

δ
−

(
δ

k
+ (2k − 1)a1

k2

)(
1

δ
+ k − 1

a1 + δ

)

= (k − 1)2

k2

(
a2

1

δ(a1 + δ)

)
� 0.

So we may assume l � 2 and gi � 0 for all i = 1, . . . , l − 1. We now show gl � 0 on the domain
[0,α]l by proving it for all points in the boundary of [0,α]l (since gl � 0 at all possible critical points
of gl). Let (a1, . . . ,al) be in the boundary of [0,α]l . Then a j = 0 or a j = α for some j ∈ {1, . . . , l}. Note
that gl is a symmetric function. So we may assume without loss of generality that al = 0 or a1 = α.
If al = 0 then gl(a1, . . . ,al) = gl−1(a1, . . . ,al−1) � 0 by induction hypothesis. If a1 = α then a j = 0 for
j = 2, . . . , l, and so, gl(a1, . . . ,al) = g1(a1) � 0. Again, we have gl(a1, . . . ,al) � 0. �

Note that, in the proof of Lemma 3.2, when αi > 0 for all 1 � i � k we have

p j = 1 − k − 1

α j
∑k

i=1
1
αi

for j = 1, . . . ,k, which may be negative. We now apply Lemma 3.2 to prove the next result which
gives the pi ’s needed in a random process.

Lemma 3.3. Let δ � 0. For i = 1, . . . ,k, where k � 3, let ai � 0 and αi = (
∑k

j=1 a j) + δ − ai . Then there exist

pi ∈ [0,1], 1 � i � k, such that
∑k

i=1 pi = 1 and for 1 � i � k,

αi pi + ai � δ

k
+ 1

k − 1

k∑
i=1

ai .

Proof. If ai = 0 for 1 � i � k, then αi = δ for 1 � i � k, and it is easy to check that the assertion of
the lemma holds by taking pi = 1/k, i = 1, . . . ,k. So we may assume without loss of generality that
a1 > 0. If ai = 0 for 2 � i � k and δ = 0, then α1 = 0 and αi = a1 for 2 � i � k; and the assertion of
the lemma holds by setting p1 = 0 and pi = 1

k−1 for i = 2, . . . ,k. Therefore, we may further assume
that a2 > 0 or δ > 0. As a consequence, we have αi > 0 for 1 � i � k.

We prove the assertion of this lemma by induction on k. For 1 � i � k, let

f i(p1, . . . , pk) := αi pi + ai .
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For k = 3, it follows from Lemma 3.2 (and the remark following its proof) that there exist p′
1, p′

2,
p′

3 such that p′
1 + p′

2 + p′
3 = 1 and for i = 1,2,3,

p′
i = 1 − 2

αi
∑3

i=1
1
α j

and f i
(

p′
1, p′

2, p′
3

)
� δ

3
+ 5

9

3∑
i=1

ai .

If p′
i � 0 for i = 1,2,3, then the assertion of the lemma holds by taking pi := p′

i , i = 1,2,3. So we
may assume without loss of generality that p′

3 < 0, which implies a3 > α3 p′
3 + a3 = f3(p′

1, p′
2, p′

3) �
δ
3 + 5

9

∑3
i=1 ai . By Lemma 2.2 (with n := a3 + δ), there exist p1, p2 ∈ [0,1] such that p1 + p2 = 1 and

f1(p1, p2,0) = (a2 + a3 + δ)p1 + a1 � a3 + δ

2
+ 3

4
(a1 + a2),

f2(p1, p2,0) = (a1 + a3 + δ)p2 + a2 � a3 + δ

2
+ 3

4
(a1 + a2).

Now, let p3 = 0. Then p1 + p2 + p3 = 1, pi ∈ [0,1] for all 1 � i � 3, and

f1(p1, p2, p3) = α1 p1 + a1 � δ

3
+ 1

2
(a1 + a2 + a3),

f2(p1, p2, p3) = α2 p2 + a2 � δ

3
+ 1

2
(a1 + a2 + a3),

f3(p1, p2, p3) = a3 � δ

3
+ 1

2
(a1 + a2 + a3).

Hence Lemma 3.3 holds for k = 3.
Now let n � 3 be an integer, and assume that the assertion of the lemma holds when k = n. We

prove the assertion of the lemma also holds when k = n + 1. By Lemma 3.2 (and the remark following
its proof), there exist p′

i , 1 � i � n + 1, such that
∑n+1

i=1 p′
i = 1 and for i = 1, . . . ,n + 1,

p′
i = 1 − n

αi
∑n+1

j=1
1
α j

� 1,

and

f i
(

p′
1, . . . , p′

n+1

)
� δ

n + 1
+ 2n + 1

(n + 1)2

n+1∑
i=1

ai .

If p′
i � 0 for 1 � i � n + 1, then let pi := p′

i ; and the lemma holds (since 2n+1
(n+1)2 > 1

n when n � 3).

So we may assume without loss of generality that p′
n+1 < 0. Then

an+1 > αn+1 p′
n+1 + an+1

= fn+1
(

p′
1, . . . , p′

n+1

)
� δ

n + 1
+ 2n + 1

(n + 1)2

n+1∑
i=1

ai

� δ

n + 1
+ 1

n

n+1∑
i=1

ai .

Let δ′ = δ +an+1. Then for 1 � i � n we have αi = (
∑n

j=1 a j)+ δ′ −ai . Hence by the induction hypoth-
esis, there exist pi ∈ [0,1], 1 � i � n, such that

∑n
i=1 pi = 1 and, for i = 1, . . . ,n,
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αi pi + ai � δ′

n
+ 1

n − 1

n∑
i=1

ai

= δ

n
+ an+1

n
+ 1

n − 1

n∑
i=1

ai

� δ

n + 1
+ 1

n

n+1∑
i=1

ai .

Let pn+1 = 0. Then
∑n+1

i=1 pi = 1 and pi ∈ [0,1] for all 1 � i � n + 1. Also,

f i(p1, . . . , pn+1) � δ

n + 1
+ 1

n

n+1∑
i=1

ai, for 1 � i � n,

fn+1(p1, . . . , pn+1) = an+1 � δ

n + 1
+ 1

n

n+1∑
i=1

ai .

Hence, Lemma 3.3 holds for k = n + 1, completing the proof of this lemma. �
We can now prove the following partition result on weighted graphs.

Theorem 3.4. Let k � 3 be an integer, let G be a graph with m edges, and let w : V (G) ∪ E(G) → R+ such
that w(e) > 0 for all e ∈ E(G). Let λ = max{w(x): x ∈ V (G) ∪ E(G)}, w1 = ∑

v∈V (G) w(v) and w2 =∑
e∈E(G) w(e). Then there is a partition U1, . . . , Uk of V (G) such that for 1 � i � k,

τ (Ui) � 1

k
w1 + 1

k − 1
w2 + λ · O

(
m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem 2.3.
Let V (G) = {v1, . . . , vn} such that d(v1) � d(v2) � · · · � d(vn). Let V 1 = {v1, . . . , vt} with t = �mα�,
where 0 < α < 1/2; and let V 2 := V (G) \ V 1 = {u1, . . . , un−t} such that e(ui, V 1 ∪ {u1, . . . , ui−1}) > 0
for i = 1, . . . ,n − t . Then e(V 1) � 1

2 m2α and d(vt+1) < 2m1−α .
Fix an arbitrary partition V 1 = Y1 ∪ Y2 ∪ · · · ∪ Yk and, for each i ∈ {1, . . . ,k}, assign the color i to

all vertices in Yi . We extend this coloring to V (G) such that each vertex ui ∈ V 2 is independently as-
signed the color j with probability pi

j , where
∑k

j=1 pi
j = 1. Let Zi be the indicator random variable of

the event of coloring ui , i.e., Zi = j iff ui is colored j. Let Gi = G[V 1 ∪ {u1, . . . , ui}] for i = 1, . . . ,n − t ,
and let G0 = G[V 1]. Let X0

j = Y j and x0
j = τG0(X0

j ), and for i = 1, . . . ,n − t and j = 1, . . . ,k, define

Xi
j = {vertices of Gi with color j},

xi
j = τGi

(
Xi

j

)
,

�xi
j = xi

j − xi−1
j ,

ai
j =

∑
e∈(ui ,Xi−1

j )

w(e).

Note that ai
l is a random variable determined by (Z1, . . . , Zi−1). Hence, for 1 � i � n − t and 1 � j � k,

E
(
�xi

j|Z1, . . . , Zi−1
) = pi

j

(
k∑

ai
l + w(ui) − ai

j

)
+ ai

j.
l=1
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So

E
(
�xi

j

) = pi
j

(
k∑

l=1

bi
l + w(ui) − bi

j

)
+ bi

j,

where for 1 � l � k,

bi
l =

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
l .

Since ai
l is determined by (Z1, . . . , Zi−1), bi

l is determined by ps
j , 1 � s � i − 1 and 1 � j � k.

By Lemma 3.3 (with δ = w(ui)), there exist pi
j ∈ [0,1], 1 � j � k, such that

∑k
j=1 pi

j = 1 and

E
(
�xi

j

)
� w(ui)

k
+ 1

k − 1

k∑
j=1

bi
j.

Clearly, each pi
j is dependent only on bi

l , 1 � l � k, and hence is determined (recursively) by ps
l ,

1 � l � k and 1 � s � i − 1. Note that ei := ∑k
j=1 ai

j = ∑
e∈(ui ,Gi−1) w(e) is the total weight of the

edges in (ui, Gi−1), which is independent of Z1, . . . , Zn−t . Thus,

E
(
�xi

j

)
� w(ui)

k
+ 1

k − 1

k∑
j=1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j

= w(ui)

k
+ 1

k − 1

∑
(Z1,...,Zi−1)

(
P(Z1, . . . , Zi−1)

k∑
j=1

ai
j

)

= w(ui)

k
+ 1

k − 1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

= w(ui)

k
+ 1

k − 1
ei .

Therefore, noting that w2 = ∑
e⊆V 1

w(e) + ∑n−t
i=1 ei , we have

E
(
xn−t

j

) =
n−t∑
i=1

E
(
�xi

j

) + x0
j

� 1

k

n−t∑
i=1

w(ui) + 1

k − 1

n−t∑
i=1

ei + x0
j

� 1

k

(
w1 −

t∑
i=1

w(vi)

)
+ 1

k − 1

(
w2 −

∑
e⊆V 1

w(e)

)

� 1

k
w1 + 1

k − 1
w2 −

(
1

k

t∑
i=1

w(vi) + 1

k − 1

∑
e⊆V 1

w(e)

)

� 1

k
w1 + 1

k − 1
w2 − λ

(
1

k
t + 1

k − 1
e(V 1)

)
.
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Now changing the color of ui only affects xn−t
j by at most d(ui)λ + w(ui) � (d(ui)+ 1)λ. Hence, as

in the proof of Theorem 2.3 we apply Lemma 2.1 to conclude that for j = 1, . . . ,k,

P
(
xn−t

j < E
(
xn−t

j

) − z
)
< exp

(
− z2

24λ2m2−α

)
.

Pick z = √
24 ln k m1− α

2 ; then

P
(
xn−t

j < E
(
xn−t

j

) − z
)
< exp(− ln k) = 1

k
.

So there exists a partition V (G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for j = 1, . . . ,k,

τ (X j) � E
(
xn−t

j

) − z

� 1

k
w1 + 1

k − 1
w2 − λ

(
1

k
t + 1

k − 1
e(V 1)

)
− z

� 1

k
w1 + 1

k − 1
w2 + λ · o(m),

where the o(m) term in the expression is

−
(

1

k
mα + 1

2(k − 1)
m2α + √

24 ln k m1− α
2

)
.

Picking α = 2
5 to minimize max{2α,1 − α/2}, the o(m) term becomes O (m

4
5 ). �

Suppose G is a hypergraph whose edges have size 1 or 2. We may view G as a weighted graph
with weight function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all v ∈ V (G)

with {v} ∈ E(G), and w(v) = 0 for all v ∈ V (G) with {v} /∈ E(G). Theorem 3.4 then gives the following
result.

Theorem 3.5. Let k � 3 be an integer and let G be a hypergraph with mi edges of size i, i = 1,2. Then there is
a partition V 1, . . . , Vk of V (G) such that for i = 1, . . . ,k,

d(V i) � m1

k
+ m2

k − 1
+ O

(
m4/5

2

)
.

Note that if X1, . . . , Xk is a random k-partition in a hypergraph with mi edges of size i for i = 1,2,
then E(d(Xi)) = m1/k + (2k − 1)m2/k2.

We have the following corollary, which establishes a conjecture of Bollobás and Scott [7] for large
graphs.

Corollary 3.6. Let G be a graph with m edges and let k � 3 be an integer. Then there is an integer f (k) such
that if m � f (k) then V (G) has a partition V 1, . . . , Vk such that d(V i) � 2m/(2k − 1) for i = 1, . . . ,k.

Note that our proof of Theorem 3.4 gives f (k) = O (k10(log k)5/2).

4. k-Partitions – bounding the number of edges inside each set

Bollobás and Scott [4] proved that every graph with m edges can be partitioned into k sets each of
which contains at most m/

(k+1
2

)
edges, with Kk+1 as the unique extremal graph. They further prove

in [6] that this bound can be improved to

m
2

+ k − 1
2

(
√

2m + 1/4 − 1/2).

k 2k
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Indeed, Xu and Yu [18] further showed that such a partition can be found to satisfy also the property
that every set meets at least

k − 1

k
m + 1

2k
(
√

2m + 1/4 − 1/2)

edges, establishing a conjecture of Bollobás and Scott [8]. This bound was recently improved by Xu
and Yu [19] to

k − 1

k
m + k − 1

2k

√
2m + 1/4 + O (k).

Bollobás and Scott conjecture in [8] that any hypergraph with mi edges of size i, i = 1,2, admits a
partition into k sets each of which contains at most m1/k+m2/

(k+1
2

)+ O (1) edges. We now prove this
conjecture, using a similar approach as before. The following two lemmas will enable us to choose
appropriate probabilities in a random process.

Lemma 4.1. Let δ � 0 and, for integers k � l � 1, let ai = a > 0 for i = 1, . . . , l and a j = 0 for j = l + 1, . . . ,k.
Suppose δ + ai > 0 for all 1 � i � k. Then

1∑k
i=1

1
δ+ai

� δ

k
+ 1

k2

k∑
i=1

ai .

Proof. If l = k then the inequality holds with equality (both sides equal to (δ + a)/k). So we may
assume k > l. Then δ > 0, since δ + ak > 0 by assumption. Thus

∑k
i=1

1
δ+ai

= l
δ+a + k−l

δ
and

∑k
i=1 ai =

la. Hence

1∑k
i=1

1
δ+ai

−
(

δ

k
+ 1

k2

k∑
i=1

ai

)
= −l(k − l)a2

k2(kδ + (k − l)a)
� 0.

Thus the assertion of the lemma holds. �
Lemma 4.2. Let δ � 0 and let ai � 0 for i = 1, . . . ,k. Then there exist pi ∈ [0,1], i = 1, . . . ,k, such that∑k

i=1 pi = 1 and, for 1 � i � k,

(δ + ai)pi � δ

k
+ 1

k2

k∑
i=1

ai .

Proof. If there exists some 1 � i � k such that δ + ai = 0, then δ = ai = 0. In this case let pi = 1 and
p j = 0 for j �= i,1 � j � k. Then (δ + ai)pi = 0 for i = 1, . . . ,k; and clearly the assertion of the lemma
holds.

Therefore, we may assume that δ +ai > 0, 1 � i � k. Setting (δ +ai)pi = (δ +a1)p1 for i = 2, . . . ,k,
we have pi = δ+a1

δ+ai
p1. Requiring

∑k
i=1 pi = 1 we have

(δ + a1)p1

k∑
i=1

1

δ + ai
= 1.

Hence for i = 1, . . . ,k,

(δ + ai)pi = 1∑k
i=1

1
.

δ+ai
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Let

f (a1,a2, . . . ,ak) := 1∑k
i=1

1
δ+ai

−
(

δ

k
+ 1

k2

k∑
i=1

ai

)
.

We need to show f � 0. This is clear if ai = 0 for i = 1, . . . ,k, since f (0, . . . ,0) = 0. Set α = ∑k
j=1 a j .

Let gl(a1, . . . ,al) := f (a1, . . . ,al,0, . . . ,0) for l = 1, . . . ,k. We now show that gl � 0 on Dl := [0,α]l

for all 1 � l � k; and hence f = gk � 0. We apply induction on l.
Suppose l = 1. Clearly, g1(0) = f (0,0, . . . ,0) = 0; and if a1 = a > 0 then by Lemma 4.1, g1(a1) =

f (a1,0, . . . ,0) � 0.
Therefore, we may assume l � 2. It suffices to prove gl(a1, . . . ,al) � 0 for all points (a1, . . . ,al) that

are on the boundary of Dl or critical points of gl in Dl .
Let (a1, . . . ,al) be a point on the boundary of Dl . Then there exists j ∈ {1, . . . , l} such that a j = 0

or a j = α. Since gl is a symmetric function, we may assume al = 0 or a1 = α. If al = 0 then
gl(a1, . . . ,al−1,0) = gl−1(a1, . . . ,al−1) � 0, by induction hypothesis. If a1 = α then a2 = · · · = ak = 0,
and so gl(a1, . . . ,al) = g1(a1) � 0 by induction basis.

Hence it remains to prove gl � 0 at its critical points in Dl , subject to
∑l

j=1 a j − α = 0. Note that
for all j = 1, . . . , l,

∂ f

∂a j
= 1

(
∑k

i=1
1

δ+ai
)2

· 1

(δ + a j)
2

− 1

k2
.

Note that ∂ gl
∂a j

is obtained from ∂ f
∂a j

by setting al+1 = · · · = ak = 0. Thus, letting ∂ gl
∂a j

= λ (the Lagrange

multiplier) for j = 1, . . . , l, we have for 1 � s �= t � l,

1

(
∑k

i=1
1

δ+ai
)2

· 1

(δ + as)2
− 1

k2
= 1

(
∑k

i=1
1

δ+ai
)2

· 1

(δ + at)2
− 1

k2
.

As a consequence, (δ + as)
2 = (δ + at)

2 for 1 � s �= t � l, which implies as = at . Thus, if (a1,a2, . . . ,al)

is a critical point of gl in Dl , then there exists a > 0 such that ai = a > 0 for i = 1, . . . , l. So gl � 0 by
Lemma 4.1. �

We now prove the following partition result for weighted graphs.

Theorem 4.3. Let G be a graph with m edges, and let w : V (G) ∪ E(G) → R+ such that w(e) > 0 for all
e ∈ E(G). Let λ := max{w(x): x ∈ V (G) ∪ E(G)}, w1 = ∑

v∈V (G) w(v) and w2 = ∑
e∈E(G) w(e). Then for

any integer k � 1 there is a partition X1, . . . , Xk of V (G) such that for i = 1, . . . ,k,

e(Xi) � 1

k
w1 + 1

k2
w2 + λ · O

(
m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem 2.3.
Let V (G) = {v1, . . . , vn} such that d(v1) � d(v2) � · · · � d(vn). Let V 1 = {v1, . . . , vt} with t = �mα�,
where 0 < α < 1/2; and let V 2 := V (G) \ V 1 = {u1, . . . , un−t} such that e(ui, V 1 ∪ {u1, . . . , ui−1}) > 0
for i = 1, . . . ,n − t . Then e(V 1) � 1

2 m2α and d(vt+1) < 2m1−α .
Fix an arbitrary k-partition V 1 = Y1 ∪ Y2 ∪ · · · ∪ Yk , and assign each member of Yi the color i,

1 � i � k. Extend this coloring to V (G), where each vertex ui ∈ V 2 is independently assigned the
color j with probability pi

j , where
∑k

j=1 pi
j = 1. Let Zi denote the indicator random variable of the

event of coloring ui . Hence Zi = j iff ui is assigned the color j.
Let Gi = G[V 1 ∪ {u1, . . . , ui}] for i = 1, . . . ,n − t , and let G0 = G[V 1]. For j = 1, . . . ,k, let X0

j = Y j

and x0
j = w(X0

j ); and for i = 1, . . . ,n − t and j = 1, . . . ,k, define
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Xi
j = {vertices of Gi with color j},

xi
j = w

(
Xi

j

)
,

�xi
j = xi

j − xi−1
j ,

ai
j =

∑
e∈(ui ,Xi−1

j )

w(e).

Note that ai
j is determined by (Z1, . . . , Zi−1). Hence for 1 � i � n − t and 1 � j � k,

E
(
�xi

j|Z1, . . . , Zi−1
) = (

w(ui) + ai
j

)
pi

j,

and so

E
(
�xi

j

) = (
w(ui) + bi

j

)
pi

j,

where

bi
j =

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j .

Since ai
j is determined by (Z1, . . . , Zi−1), bi

j is determined by ps
j , 1 � j � k and 1 � s � i − 1. Note

that ei := ∑k
j=1 ai

j = ∑
e∈(ui ,Gi−1) w(e) > 0, which is independent of Z1, . . . , Zn−t . By Lemma 4.2, there

exist pi
j ∈ [0,1], 1 � j � k, such that

∑k
j=1 pi

j = 1 and, for 1 � i � n − t and j = 1, . . . ,k,

E
(
�xi

j

)
� w(ui)

k
+ 1

k2

k∑
j=1

bi
j

= w(ui)

k
+ 1

k2

k∑
j=1

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j

= w(ui)

k
+ 1

k2

∑
(Z1,...,Zi−1)

(
P(Z1, . . . , Zi−1)

k∑
j=1

ai
j

)

= w(ui)

k
+ 1

k2

∑
(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

= w(ui)

k
+ 1

k2
ei .

Note that each pi
j is determined by bi

l , 1 � l � k; and hence each pi
j is recursively defined by ps

l ,

1 � l � k and 1 � s � i − 1. Also note that w2 = ∑
e∈E(G0) w(e) + ∑n−t

i=1 ei . Now

E
(
xn−t

j

) =
n−t∑
i=1

E
(
�xi

j

) + x0
j

� 1

k

n−t∑
i=1

w(ui) + 1

k2

n−t∑
i=1

ei + x0
j

� 1

k
w1 + 1

k2
w2 +

t∑
i=1

w(vi) +
∑

e⊆V 1

w(e)

� 1
w1 + 1

2
w2 + λ

(
t + e(V 1)

)
.

k k
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Clearly, changing the color of ui affects xn−t
j by at most d(ui)λ + w(ui) � (d(ui) + 1)λ. As in the

proof of Theorem 2.3, we apply Lemma 2.1 to conclude that

P
(
xn−t

j > E
(
xn−t

j

) + z
)
� exp

(
− z2

2λ2
∑n−t

i=1(d(ui) + 1)2

)
< exp

(
− z2

24λ2m2−α

)
.

Let z = λ
√

24 ln k m1− α
2 . Then

P
(
xn−t

j > E
(
xn−t

j

) + z
)
< exp(− ln k) = 1

k
.

So there exists a partition V (G) = X1 ∪ X2 ∪ · · · ∪ Xk , such that for 1 � j � k,

e(X j) � E
(
xn−t

j

) + z

� 1

k
w1 + 1

k2
w2 + λ

(
t + e(V 1)

) + z

� 1

k
w1 + 1

k2
w2 + λ · o(m).

The o(m) term in the expression is

mα + 1

2
m2α + √

24 ln k m1− α
2 .

Picking α = 2
5 to minimize max{2α,1 − α/2}, the o(m) term becomes O (m

4
5 ). �

For a hypergraph G with edges of size 1 or 2, we may view G as a weighted graph with weight
function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all v ∈ V (G) with {v} ∈ E(G),
and w(v) = 0 for v ∈ V (G) with {v} /∈ E(G). Then Theorem 4.3 gives the following result, establishing
a conjecture of Bollobás and Scott [8] (the case m1 = o(m2) is implied by Eq. (2) in [8]).

Theorem 4.4. Let G be a hypergraph with mi edges of size i, i = 1,2. Then for any integer k � 1, there is a
partition X1, . . . , Xk of V (G) such that for i = 1, . . . ,k,

e(Xi) � m1

k
+ m2

k2
+ O

(
m4/5

2

)
.

Note that the term m1/k + m2/k2 is the expected value of e(Xi) if X1, . . . , Xk is a random par-
tition. Bollobás and Scott further ask in [8] whether O (m4/5

2 ) in Theorem 4.4 can be improved to
O (

√
m1 + m2 ).
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