PSY8
SYSTEMATIC REVIEW OF ECONOMIC EVALUATIONS IN MULTIDISCIPLINARY PAIN MANAGEMENT SERVICES FOR MANAGING PEOPLE WITH FIBROMYALGIA OR CHRONIC WIDESPREAD PAIN
AlAujan S, Elliott R, Knagger R
University of Nottingham, Nottingham, UK

OBJECTIVES: The objective of this literature review was to explore the existing evidences regarding the economic evaluation of multidisciplinary pain management services in managing people with fibromyalgia or chronic widespread pain

METHODS: Electronic search of Embase, MEDLINE, PsychInfo, NHL EED, JBI, and Cochrane database was performed. Studies published from the time of the respective database inception to April 2015 were considered for inclusion in this review. The quality of studies was assessed using the Cochrane Back Group and the Consolidated Health Economic Evaluation Reporting Standards (CHEERS).

RESULTS: The literature review allowed retrieving 620 studies of which 68 were included in the final analyses. All included economic evaluations were accompanied alongside randomized clinical trials published between 1996 and 2015. Two were from the UK, two from Spain, and two from the Netherlands. Risk of bias was high in two studies. The intervention, comparators, disciplines involved, and number of sessions were well described in most of the studies. Variation of the studies included were in type of interventions, length of administration, follow-up period, and outcome measured. None of the studies met all CHEERS quality criteria. In five studies, multidisciplinary pain management services were cost-effective at short-term follow up; however, this was not always maintained in long term follow up.

CONCLUSIONS: Due to the high level of heterogeneity among selected studies, we were unable to make a definitive conclusion about the cost-effectiveness of pain management services in managing people with fibromyalgia or chronic widespread pain. Multidisciplinary pain management services trials must be based on high methodological and economic quality to determine the cost-effectiveness of multidisciplinary pain management services.

PSY9
COMPARISONS OF FACTOR CONSUMPTION FOR ROUTINE PROPHYLAXIS AND BLEEDING DURING EPISODIC THERAPY WITH RECOMBINANT FACTOR VIII FC FUSION PROTEIN AND CONVENTIONAL RECOMBINANT FACTOR VIII
Iorio A, Krishnan S, Myreen B, Lethagen S, McCormick N, Karner P
1McMaster University, Hamilton, ON, Canada; 2Biogen Hemophilia, Cambridge, MA, USA; 3Sobi, Stockholm, Sweden; 4Analysis Group, Boston, MA, USA

OBJECTIVES: To better understand the impact of new extended-half-life recombinant factor VIII (rFVIII-Fc) treatments relative to conventional rFVIII, we indifferently compared published clinical study results of the factor consumption (FC) and number of injections to treat a bleed during episodic therapy and the FC and annualized bleeding rates (ABR) during prophylaxis with rFVIIIFc fusion protein (rFVIIIFc) and conventional factor VIII (cFVIII).

METHODS: A systematic review identified studies of routine prophylaxis in previously treated adults and adolescents with severe haemophilia A for comparison with rFVIIIFc (Mahangu 2014, Arm 1, individualized prophylaxis). Comparisons were based on the simple differences between studies in median weekly FC, mean prophylaxis ABRs, and the median FC and numbers of injections per bleed. Median weekly FC was reported or estimated from the reported dose and weekly number of injections; FC per bleed was estimated from the reported dose and number of injections per bleed. The number of injections per bleed was calculated from the reported breakdown of bleeds by required number of injections or the total number of injections divided by total bleeds.

RESULTS: Four conventional rFVIII studies were included: Tarantino 2001 and 2005, Roth 2001 and 2007. The number of injections in rFVIII per bleed was calculated from the reported breakdown of bleeds by required number of injections or the total number of injections divided by total bleeds.

CONCLUSIONS: Pregabalin is an effective treatment for postherpetic neuralgia (PHN) and is associated with 0% adherence. We used the model to extrapolate ABRs for conventional rFIX, rFIXFc, and rFIXFusion protein, rFVIIIFc and rFVIIIFc. We developed a model that extrapolates the ABR for a given adherence level as the weighted average of two ABRs from clinical trials: those associated with prophylaxis (interpreted in the model as ABR ≥ 30% with a median adherence of 28.8%) and those associated with 0% adherence. We used the model to extrapolate ABRs for conventional rFIX for usual adherence levels of 90% (90% adherence), 70% (70% adherence), and 50% (50% adherence). We used the model to extrapolate ABRs for conventional rFVIIIFc for usual adherence levels of 90% (90% adherence), 70% (70% adherence), and 50% (50% adherence). Extrapolated ABRs were compared using simple weights. We also mapped simulated adherence

PSY10
COMPARISON OF NETWORK META-ANALYSIS AND TRADITIONAL META-ANALYSIS FOR PREVENTION OF RELAPSES IN MULTIPLE SCLEROSIS
Aggarwal S, Kumar S, Topaloglu H
1NOVEL Health Strategies, Chevy Chase, MD, USA; 2GLOBAL ACCESS Monitor, Bethesda, MD, USA

OBJECTIVES: Several new agents have shown positive results in clinical trials for prevention of relapses in multiple sclerosis. The objective of this study was to compare network meta-analysis results with traditional meta-analysis.

METHODS: A systematic literature search for randomized clinical trials for multiple sclerosis was undertaken for the databases Pubmed, Embase, Biosis, Google Scholar and Cochrane. Data was collected for the study type, methods, country and key findings. The database search included studies of patients with multiple sclerosis and related outcomes. A bayesian random effects network meta-analysis (NMA) model was developed in WinBUGS14. Results were compared to previously published traditional meta-analyses. The results were also compared to the results of 10 randomized trials in 4095 patients with 2518 events. The drugs included in our study were interferon (IFN), glatiramer (GLAT), natalizumab (NAT) and fingolimod (FING). The Odds Ratios (ORs) for FING versus NAT was 1.66 [0.31–9.96]; FING versus GLAT was 0.91 (0.55–1.49); and 2.85 (1.14–7.03) for FING versus NAB. Results for NAT versus GLAT was 1.32 (0.52–2.40), NAT versus IFN was 1.312.35 (0.29–5.75), NAT versus PLB 2.68 (0.71–9.99), GLAT versus IFN was 1.03 (0.42–3.16), GLAT versus PLB 2.04 (0.95–4.91), IFN-B versus PLB 1.97 (1.01–4.16). The probability to be in estimates published results was 75.9% for FING, 17.0% for NAT and 6.3% for GLAT.