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Abstract

We show that every Banach space X whose centralizer is infinite-dimensional satisfies that every non-
empty weakly open set in BY has diameter 2, where Y = ⊗̂

N,s,πX (N -fold symmetric projective tensor
product of X, endowed with the symmetric projective norm), for every natural number N . We provide ex-
amples where the above conclusion holds that includes some spaces of operators and infinite-dimensional
C∗-algebras. We also prove that every non-empty weak∗ open set in the unit ball of the space of N -
homogeneous and integral polynomials on X has diameter two, for every natural number N , whenever the
Cunningham algebra of X is infinite-dimensional. Here we consider the space of N -homogeneous integral
polynomials as the dual of the space

⊗̂
N,s,εX (N -fold symmetric injective tensor product of X, endowed

with the symmetric injective norm). For instance, every infinite-dimensional L1(μ) satisfies that its Cun-
ningham algebra is infinite-dimensional. We obtain the same result for every non-reflexive L-embedded
space, and so for every predual of an infinite-dimensional von Neumann algebra.
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1. Introduction

It is known that a Banach space without the Radon–Nikodým property satisfies that there is
a bounded, closed and convex subset such that it does not have slices of small diameter. Several
authors proved that for some classical Banach spaces every slice of the unit ball has diameter two.
One of the first results along this line is valid for any infinite-dimensional uniform algebra [21].
Spaces with the Daugavet property satisfy that every weak neighborhood of the unit ball has
diameter two [24]. For the vector valued spaces C(K,X) and L1(μ,X) this phenomenon was
characterized in [6]. The interpolation spaces L1(R

+) + L∞(R+) (endowed with two natural
norms) and L1(R

+) ∩ L∞(R+) (endowed with the maximum norm) also satisfy the above prop-
erty [3]. The class of infinite-dimensional C∗-algebras satisfies that every slice of the unit ball
has diameter two [8,7]. Also every non-reflexive Banach space which is M-embedded satisfies
that every non-empty weakly open set relative to its unit ball has diameter two [20].

If a Banach space X satisfies the above property, then it is immediate to check that the projec-
tive tensor product of X and any other non-trivial Banach space also satisfies the same property.
For the symmetric tensor product it is not so clear the behaviour of such property. If either
X = C(K) (K is a compact and Hausdorff infinite topological space) or X = L1(μ), for any σ -
finite and atomless measure μ, then the space

⊗̂
N,s,πX (the N -fold symmetric projective tensor

product of X) satisfies that every slice of the unit ball have diameter two [1]. The same result does
also hold for the symmetric projective tensor product of any infinite-dimensional C∗-algebra [2].
The following papers contain isometric results on spaces of polynomials and symmetric tensor
products [12,11,15,23].

In this paper we will extend several results previously obtained for concrete classes of spaces.
In Section 2, we will prove that a Banach space X whose centralizer is infinite-dimensional
space satisfies that every non-empty weakly open set of the unit ball of the space

⊗̂
N,s,πX has

diameter two. In Section 3 we will improve the previous result and obtain the same conclusion
for a wider class of spaces that contains some spaces of operators and non-reflexive JB∗-triples,
for instance. The last section contains a result of the same type for weak∗ neighborhoods of
the dual of the injective symmetric tensor product of some Banach spaces. More precisely, if X

satisfies that its Cunningham algebra is infinite-dimensional, then every non-empty weak∗ open
set of the unit ball of the space of N -homogeneous integral polynomials on X has diameter two.
Here we are using that the space of N -homogeneous integral polynomials on X can be identified
as the topological dual of the space

⊗̂
N,s,εX (injective symmetric tensor product of X) and so

we consider the weak∗ topology associated to this identification.
Now we will recall some notions and notation. Throughout the paper, X will be a Banach

space over the scalar field K (R or C). As usual, SX , BX and X∗ will denote the unit sphere, the
closed unit ball, and the (topological) dual, respectively, of X.

For a Banach space X and N ∈ N, we will consider the symmetric projective N -tensor
product

⊗̂
N,s,πX (see [16]). This space is the completion of the linear space generated by

{x ⊗ N· · · ⊗ x: x ∈ X} under the norm given by

‖z‖ = inf

{
N∑

i=1

|λi |: z =
N∑

i=1

λixi ⊗ N· · · ⊗ xi, λi ∈ K, xi ∈ SX, ∀1 � i � N

}
.

Its topological dual can be identified with the space of all N -homogeneous (and bounded)
polynomials on X, denoted by P N(X) [16, Proposition, Section 2.2]. Every polynomial
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P ∈ P N(X) acts as a linear functional P̂ on the N -fold symmetric tensor product through its as-

sociated symmetric N -linear form P and it is satisfied that P(x) = P(x, N. . . , x) = P̂ (x⊗ N· · · ⊗x)

for every element x ∈ X.
The dual norm of the symmetric tensor product is the usual polynomial norm, that is,

‖P̂ ‖ = ‖P ‖ = sup
{∣∣P(x)

∣∣: x ∈ X, ‖x‖ � 1
} (

P ∈ P N(X)
)
.

A slice of BX is a subset of the form

S
(
BX,x∗, α

) := {
x ∈ BX: Rex∗(x) > 1 − α

}
,

where x∗ ∈ SX∗ and 0 < α < 1.
Given a family {Xi}i∈I of Banach spaces, we will denote by

∏∞
i∈I Xi the Banach space of el-

ements x ∈ ∏
i∈I Xi such that supi∈I ‖x(i)‖ < ∞, endowed with the sup-norm. We recall that a

function module is a triple (K, (Xt )t∈K,X), where K is a non-empty compact Hausdorff topo-
logical space (called the base space), (Xt )t∈K a family of Banach spaces (called the component
spaces), and X a closed C(K)-submodule of the C(K)-module

∏∞
t∈K Xt such that the following

conditions are satisfied:

(1) For every x ∈ X, the function t → ‖x(t)‖ from K to R is upper semicontinuous.
(2) For every t ∈ K , we have Xt = {x(t): x ∈ X}.
(3) The set {t ∈ K: Xt 
= 0} is dense in K .

We point out that it is satisfied

‖x‖ = sup
t∈K

∥∥x(t)
∥∥, ∀x ∈ X.

We follow the notation of [10], where the basic results on function modules can be found.
Let X be a Banach space over K and L(X) the space of all bounded and linear operators

on X. By a multiplier on X we mean an element T ∈ L(X) such that every extreme point of
BX∗ becomes an eigenvector for T ∗. Thus, given a multiplier T on X, and an extreme point
p of BX∗ , there exists a unique number aT (p) satisfying T ∗(p) = aT (p)p. The centralizer of
X (denoted by Z(X)) is defined as the set of those multipliers T on X such that there exists a
multiplier S on X satisfying aS(p) = aT (p) for every extreme point p of BX∗ . Thus, if K = R,
then Z(X) coincides with the set of all multipliers on X. In all cases, Z(X) is a closed subalgebra
of L(X) isometrically isomorphic to C(KX), for some compact Hausdorff topological space KX

(see [10, Proposition 3.10]). Moreover X can be seen as a function module whose base space is
precisely KX , and such that the elements of Z(X) are precisely the operators of multiplication
by the elements of C(KX) [10, Theorem 4.14].

2. Preliminary results

Lemma 2.1. (See [9, Lemma 2.1].) Let (K, (Xt )t∈K,X) be a function module, and let x be an
extreme point of BX . Then, for every t ∈ K we have ‖x(t)‖ = 1.



M.D. Acosta, J. Becerra Guerrero / Journal of Functional Analysis 259 (2010) 842–856 845
Lemma 2.2. Let X be a Banach space such that BX contains some extreme point. Assume also
that K := KX is infinite. Then for every x ∈ SX , ε > 0 and for every weakly null sequence {gn}
in SC(K), there exist y ∈ SX , N ∈ N and r > 0, such that ‖x − y‖ < ε and ‖gny‖ > r for every
n � N .

Proof. The statement is clear in the case when {‖gnx‖} does not converge to 0. Assume that
{‖gnx‖} → 0. By assumption there is an extreme point p in BX ; in view of Lemma 2.1, since
{‖gnx‖} → 0 we know that x + αp 
= 0 for every scalar α. Hence we can choose α > 0
small enough such that y := x+αp

‖x+αp‖ satisfies ‖x − y‖ < ε. Since {‖gnx‖} → 0, we have that

limn→∞ ‖gny‖ = limn→∞ ‖ αgnp
‖x+αp‖‖. By Lemma 2.1, we have that ‖gnp‖ = 1 for every n in N.

We conclude that limn→∞ ‖gny‖ = α
‖x+αp‖ , so the statement follows easily. �

The following result is standard and a proof was written in detail in [1, Lemma 2.1].

Lemma 2.3. Let Ω be a locally compact and Hausdorff infinite topological space. Then there
are two sequences of non-empty open and relatively compact sets {Vn} and {Un} satisfying

Vn ⊂ Un, Un ∩ Um = ∅ (n 
= m),

and sequences of continuous functions {fn}, {gn} and {hn} in C0(Ω) satisfying

{fn} w−→ 0, {gn} w−→ 0, {hn} w−→ 0,

suppfn, supphn ⊂ Vn, fn(Ω),hn(Ω) ⊂ [−1,1],
∃sn, tn ∈ Vn: fn(sn) = fn(tn) = 1 = hn(tn) = −hn(sn), ∀n

and

0 � gn � 1, suppgn ⊂ Un, gn(Vn) = {1}, ∀n.

Proposition 2.4. Let X be a Banach space and assume that BX contains some extreme point and
Z(X) is infinite-dimensional. If N is a positive integer and Y := ⊗̂

N,s,πX, then every non-empty
open set in (BY ,w) has diameter two.

Proof. Let W be a non-empty weakly open set relative to BY . From the assumptions, X is
infinite-dimensional, so Y is also infinite-dimensional. Then W contains an element in the unit
sphere of Y . In fact we can assume that W contains an element y that can be expressed as

y =
m∑

i=1

αix
N
i ,

where αi ∈ K,
∑m

i=1 |αi | = 1, xi ∈ X, ‖xi‖ = 1, and we denoted xN := x ⊗ N· · · ⊗ x.
By a previous remark, we can assume that X is a function module with base space equal to

some compact K := KX , and such that Z(X) coincide with the set of operators of multiplica-
tion by elements of C(K). Since Z(X) is infinite-dimensional, K is infinite. We can apply now
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Lemma 2.3 and so there are weakly null sequences {fn}, {gn}, {hn} in C(K) satisfying the condi-
tions stated in the lemma. Since W is a weakly open set in BY , it is also open for the relative norm
topology. By the assumption we can choose an extreme point p of BX . Hence, by Lemma 2.2
we may assume that there is r > 0 such that ‖gnxi‖ � r for every n ∈ N and 1 � i � m. Hence
{gnxi}n is equivalent to the usual c0-basis for each i.

In the complex case we can assume that αi ∈ R+. In this case, we define the sequences {un}
and {vn} in Y by

un =
m∑

i=1

αi

(
(1 − gn)xi + hnp

)N
, vn =

m∑
i=1

αi

(
(1 − gn)xi + whnp

)N
,

where w is a complex number satisfying wN = −1. Let us notice that for every λ ∈ C with
|λ| = 1, and every s ∈ K , depending on s ∈ Vn or s /∈ Vn, one has∥∥(

(1 − gn)xi + λhnp
)
(s)

∥∥ = ∥∥hn(s)p(s)
∥∥ � 1,∥∥(

(1 − gn)xi + λhnp
)
(s)

∥∥ = ∥∥(
(1 − gn)xi

)
(s)

∥∥ � 1,

hence ‖un‖,‖vn‖ � 1.
The real case, for N odd can be handled in the same way as the complex case.
Finally, if the space is real and N is even, we consider the elements

un =
∑
i∈P

αi

(
(1 − gn)xi + fnp

)N +
∑
i∈R

αi

(
(1 − gn)xi + hnp

)N
,

vn =
∑
i∈P

αi

(
(1 − gn)xi + hnp

)N +
∑
i∈R

αi

(
(1 − gn)xi + fnp

)N

where P := {i: αi � 0} and R := {i: αi < 0}. It is immediate to check that un, vn belong
to BX .

Since p is an extreme point in BX , in view of Lemma 2.1, there are functionals ϕtn ∈ (Xtn)
∗,

ψsn ∈ (Xsn)
∗ such that ‖ϕtn‖ = ‖ψsn‖ = 1 = ϕtn(p(tn)) = ψsn(p(sn)). Then the functionals on

X defined by

ϕn(x) = ϕtn

(
x(tn)

)
, ψn(x) = ψsn

(
x(sn)

)
(x ∈ X)

belong to BX∗ .
In this case, we consider the N -homogeneous polynomial given by

Qn = ψN−1
n ϕn.

It is clear that ‖Qn‖ � 1 and

Q̂n(un) − Q̂n(vn) =
∑
i∈P

αifn(sn)
N−1fn(tn) +

∑
i∈R

αihn(sn)
N−1hn(tn)

−
∑

αihn(sn)
N−1hn(tn) −

∑
αifn(sn)

N−1fn(tn)
i∈P i∈R
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=
∑
i∈P

αi +
∑
i∈R

αi(−1)N−1 −
∑
i∈P

αi(−1)N−1 −
∑
i∈R

αi

= 2
s∑

i=1

|αi | = 2.

Since p is an extreme point of BX , in view of Lemma 2.1, we know that ‖hnp‖ = ‖fnp‖ = 1
for every n. Hence {gnxi}, {hnp} and {fnp} are equivalent to the usual basis of c0. Hence,
the subspace M := Lin{xi, gnxi, hnp,fnp: n ∈ N, i ∈ {1, . . . ,m}} of X is isomorphic to c0.
If {fn} is weakly null in C(K) and x ∈ X, then {fnx} is weakly null in X. Since M has the
Dunford–Pettis property, in view of [22, Theorem 2.1], then it has the polynomial Dunford–
Pettis property. That is, if {zn} converges weakly to z in M , then {Q(zn)} converges to Q(z) for
every Q ∈ P N(M). Since the sequences {fn}, {gn} and {hn} used above are weakly null in C(K),
then we deduce that the sequences {un} and {vn} converge weakly to y = ∑m

i=1 αix
N
i . Hence un

and vn ∈ W for n large enough. In any case, it holds∣∣Q̂n(un) − Q̂n(vn)
∣∣ = 2,

and so 2 � ‖un − vn‖ � diamW . �
Remark 2.5. Let us notice that in the previous result we proved that for any weakly open set W

in (BY ,w) it is satisfied that

2 = diamW = sup

{
Re Q̂(y1 − y2): y1, y2 ∈ W, ∃x∗

i ∈ SX∗ (1 � i � N),

Q(x) =
N∏

i=1

x∗
i (x), ∀x ∈ X

}
.

We will use the well-known fact that every N -homogeneous polynomial P on X can be
extended in a canonical way to an N -homogeneous polynomial P (2 on X∗∗ [4]. P (2 is called
the Aron–Berner extension of P and it satisfies ‖P (2‖ = ‖P ‖.

We will improve Proposition 2.4 by removing one of the assumptions. The following state-
ment also generalizes previous results obtained before for concrete classes of spaces (see
[1, Proposition 2.2]).

Corollary 2.6. Let X be a Banach space such that Z(X) is infinite-dimensional. If N is a positive
integer and Y := ⊗̂

N,s,πX, then every non-empty open set in (BY ,w) has diameter two. Indeed
the diameter of every weakly open set can be computed by using N -homogeneous polynomials
which are products of N elements of X∗.

Proof. Assume that W is a non-empty weakly open set in (BY ,w). The assumption implies that
X is infinite-dimensional, so is Y . Then W contains an element y0 ∈ SY . We can clearly assume
that there is η > 0 and P1, . . . ,Pk in P N(X) such that

W := {
y ∈ BY :

∣∣P̂i(y) − P̂i(y0)
∣∣ < η, ∀1 � i � k

}
.
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Denote by Qi the Aron–Berner extension of the N -homogeneous polynomial Pi to X∗∗, for
each i. The set

W̃ := {
z ∈ B⊗̂

N,s,πX∗∗ :
∣∣Q̂i(z) − P̂i(y0)

∣∣ < η
}

is a non-empty open set in (B⊗̂
N,s,πX∗∗ ,w).

By assumption, Z(X) is infinite-dimensional, so Z(X∗∗) is also infinite-dimensional by
[17, Corollary I.3.15]. Since BX∗∗ has extreme points, we can apply Proposition 2.4 and Re-
mark 2.5. Hence for every ε > 0 there are elements ϕ1, . . . , ϕN ∈ SX∗∗∗ such that the polynomial
Q = ∏N

i=1 ϕi satisfies

2 − ε < Re Q̂(ũ − ṽ),

for some ũ, ṽ ∈ W̃ . We can assume that there are positive integers n and m, real numbers ti , sj
(1 � i � n,1 � j � m) and elements ui, vj ∈ BX∗∗ such that

n∑
i=1

|ti | =
m∑

j=1

|sj | = 1, ũ =
n∑

i=1

tiu
N
i , ṽ =

m∑
j=1

sj v
N
j

and

Re

(
n∑

i=1

tiQ(ui) −
m∑

j=1

sjQ(vj )

)
> 2 − ε. (2.1)

Since BX∗ is w∗-dense in BX∗∗∗ , there are functionals x∗
1 , . . . , x∗

N ∈ SX∗ such that the polynomial

P(x) = ∏N
i=1 x∗

i (x) satisfies that

Re

(
n∑

i=1

ti P̃ (ui) −
m∑

j=1

sj P̃ (vj )

)
> 2 − ε, (2.2)

where P̃ (u) := ∏N
i=1 u(x∗

i ) for each u ∈ X∗∗.
Since ũ, ṽ ∈ W̃ , in view of (2.2) and [13, Theorem 2], there are xi, yj ∈ BX (1 � i � n,

1 � j � m) such that x := ∑n
i=1 tix

N
i , y := ∑m

j=1 sj y
N
j satisfy that x, y ∈ W and also

Re

(
n∑

i=1

tiP (xi) −
m∑

j=1

sjP (yj )

)
> 2 − ε.

Since P ∈ BP N (X), diamW � Re P̂ (x − y) > 2 − ε, so diamW = 2, as we wanted to show. �
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3. The main result

Given a Banach space X, we consider the increasing sequence of its even duals

X ⊆ X∗∗ ⊆ X(4 ⊆ · · · ⊆ X(2n ⊆ · · · ,

and we define X(∞ as the completion of the normed space
⋃∞

n=0 X(2n.

Proposition 3.1. Let X be a Banach space. Then B(X∗)(∞ is w∗-dense in B(X(∞)∗ .

Proof. We begin by noticing the existence of a natural embedding f → f̃ from (X∗)2n to
(X(∞)∗ for every n ∈ N. Indeed, let f be in (X∗)(2n. Given α ∈ ⋃∞

n=0 X(2n, there exists m ∈ N

such that α belongs to X(2m, so that, regarding f as an element of (X∗)(2m = (X(2m)∗, the
symbol f (α) has a meaning which does not depend on m. In this way we are provided with
a natural Hahn–Banach extension of f to

⋃∞
n=0 X(2n, which extends uniquely by continuity to

X(∞, giving rise to an element f̃ of (X(∞)∗. Hence (X∗)(∞ is linearly isometric to a closed
subspace of (X(∞)∗. Since B(X∗)(∞ is convex and the subset B = ⋃

n BX2n+1 ⊂ B(X(∞)∗ satisfies
that ‖f ‖ = supb∈B |f (b)| for every f ∈ X(∞, then B(X∗)(∞ is w∗-dense in B(X(∞)∗ . �

For every Banach space X and N ∈ N, we will show that there is a natural embedding
P → P̃ from P N(X) to P N(X(∞). We denote by P (2 the Aron–Berner extension of an element
P ∈ P N(X) to X∗∗. We know that this canonical extension satisfies ‖P (2‖ = ‖P ‖. We denote by
P (2n the Aron–Berner extension of P (2n−2 to X(2n. We have that ‖P (2n‖ = ‖P ‖ for all n ∈ N.
Indeed, let P be in P N(X). Given α ∈ ⋃∞

n=0 X(2n, there exists m ∈ N such that α belongs to
X(2m, allowing us to consider the element P (2m(α), which is well defined. In this way we are
provided with a natural extension of P to

⋃∞
n=0 X(2n, which extends uniquely by continuity to

X(∞, giving rise to an element P̃ of P N(X(∞).
In this way we have the following chain of embeddings

P N(X) ↪→ P N
(
X∗∗) ↪→ P N

(
X(4) ↪→ ·· · ↪→ P N

(
X(2n

)
↪→ ·· · ,

where each arrow means Aron–Berner extension.
Hence we can complete the above chain as follows

P N(X) ↪→ P N
(
X∗∗) ↪→ P N

(
X(4) ↪→ ·· · ↪→ P N

(
X(2n

)
↪→ ·· · ↪→ P N

(
X(∞)

,

and the embedding P → P̃ from P N(X) to P N(X(∞) is isometric.
As we will see later, the next result improves Corollary 2.6.

Theorem 3.2. Let X be a Banach space such that Z(X(∞) is infinite-dimensional. Then for
every N , every non-empty weakly open set relative to the unit ball of

⊗̂
N,s,πX has diameter

two.

Proof. Let W be a non-empty weakly open set relative to the unit ball of Y := ⊗̂
N,s,πX. By the

assumptions W contains an element y0 ∈ SY . Since W is a weakly open set, we can assume that
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there is η > 0 and Pi ∈ P N(X) (1 � i � k) such that

W := {
y ∈ BY :

∣∣P̂i(y) − P̂i(y0)
∣∣ < η, ∀1 � i � k

}
.

We denote by Qi the canonical extensions of the polynomials Pi (1 � i � k) to X(∞ and define

W̃ := {
ũ ∈ B⊗̂

N,s,πX(∞ :
∣∣Q̂i(ũ) − P̂i(y0)

∣∣ < η, ∀1 � i � k
}
.

Hence W̃ is a weakly open set relative to the unit ball of
⊗̂

N,s,πX(∞ and it is non-empty since
it does contain W . By Corollary 2.6, W̃ has diameter two. By the proof of Corollary 2.6, for
every ε > 0 there are functionals ϕj ∈ B(X(∞)∗ (1 � j � N ) and elements ũ, ṽ ∈ W̃ such that the

N -homogeneous polynomial Q given by Q = ∏N
j=1 ϕj satisfies

Q̂(ũ − ṽ) > 2 − ε.

Since W̃ is open relative to the norm topology, by using also the definition of X(∞ and Propo-
sition 3.1, we can assume that there is a natural number m such that ũ, ṽ ∈ ⊗̂

N,s,πX(2m and
ϕj ∈ X(2m+1 for each j . Now we proceed as in the last part of the proof of Corollary 2.6 and
find elements u,v ∈ W̃ ∩ B⊗̂

N,s,πX(2m−2 and functionals ψj ∈ X(2m−1 (1 � j � N ) such that the

polynomial P := ∏N
j=1 ψj satisfies that

P̂ (u − v) > 2 − ε.

After a finite number of steps, we deduce that diamW � 2 − ε. Since ε is any positive number
we conclude that diamW = 2. �

Now we will provide more examples of spaces where the previous results can be ap-
plied.

It is known that for every T in Z(X), T ∗∗ lies in Z(X∗∗) [17, Corollary I.3.15]. Since T ∗∗ is
an isometric extension of T , there exists a natural embedding from L(X) to L(X(∞). The image
under this embedding of an operator T ∈ L(X) is the operator such that its restriction to X(2m

is obtained by transposing T 2m times. Indeed, it is known that the image of Z(X) under this
embedding is contained in Z(X(∞) (see [9, Proposition 4.3]).

For a Banach space X, an L-projection on X is a (linear) projection P : X → X satisfying
‖x‖ = ‖P(x)‖+‖x −P(x)‖ for every x ∈ X. In such a case, we will say that the subspace P(X)

is an L-summand of X. X is L-embedded if it is an L-summand of X∗∗.
Let us notice that the composition of two L-projections on X is an L-projection [10, Propo-

sition 1.7], so the closed linear subspace of L(X) generated by all L-projections on X is a
subalgebra of L(X). This algebra, denoted by C(X), is called the Cunningham algebra of X.
It is known that C(X) is linearly isometric to Z(X∗) [10, Theorems 5.7 and 5.9].

We will provide examples of Banach spaces X such that Z(X(∞) is infinite-dimensional. The
following Banach spaces satisfy this condition:

(1) A Banach space X satisfying that Z(X(2n) is infinite-dimensional for some natural number n,
and so every infinite-dimensional predual of an L1-space.
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(2) X is a real or complex non-reflexive Banach space that X∗∗ is a JB∗-triple (see [19,18] for
the definition) [9, Corollary 5.2]. For instance, every real or complex infinite-dimensional
C∗-algebra.

(3) The space C(K, (X, τ)) where K is an infinite compact topological space, X is a non-null
Banach space and τ is a topology such that the weak topology is contained in τ and the norm
topology is finer than τ [9, Proposition 3.2].

(4) L(X,Y ) (the space of all bounded and linear operators from X to Y ) for every Banach
spaces X, Y such that either C(X) is infinite-dimensional or Z(Y ) is infinite-dimensional
(see [17, Lemma VI.1.1]). For instance, any infinite-dimensional space L1(μ) satisfies that
its Cunningham algebra is infinite-dimensional.

Proposition 3.3. Let X be a non-reflexive Banach space such that X∗ is L-embedded. Then
Z(X(∞) is infinite-dimensional.

Proof. We have that X∗∗∗ = (X∗ ⊕ N)
1 for some subspace N of X∗∗∗, and hence X4) is
isometric to (X∗∗ ⊕ N∗)
∞ . Since X is non-reflexive, then N 
= {0} and so we have that
dimZ(X(4) � dimZ(X∗∗) + 1 � 1 [9, Lemma 2.2]. By using the same argument and induc-
tion, we deduce that dimZ(X(2n) � n − 1 for every natural number n. Since we already know
that Z(X(∞) contains Z(X(2n) for every n, then Z(X(∞) is infinite-dimensional. �

Let us remark that non-reflexive JB∗-triples are spaces satisfying the above assumption in
view of [14, Corollary 11] and [5, Proposition 3.4].

Proposition 3.4. Let X be a non-reflexive Banach space that is L-embedded, then C(X(∞) is
infinite-dimensional.

Proof. If T ∈ L(X) is an L-projection, then T ∗∗ is also an L-projection in X∗∗. Hence every L-
projection on X can be extended to an L-projection on X(∞, and so C(X(∞) contains C(X(2n)

for every n.
By assumption we have that X∗∗ = (X ⊕ N)
1 for some subspace N 
= {0} of X∗∗, and hence

X∗∗∗ is isometric to (X∗ ⊕ N∗)
∞ . Keeping in mind the proof of the above result, we conclude
that dimZ(X(∗∗∗) � dimZ(X∗) + 1. By induction we deduce that

dimZ
(
X(2n+1) � dimZ

(
X(2n−1) + 1 � n.

Since C(Y ) is linearly isometric to Z(Y ∗) for every Banach space Y [10, Theorems 5.7 and 5.9],
then we conclude that dimC(X(2n) � n and so C(X(∞) is infinite-dimensional. �
4. The space of integral polynomials

A polynomial P is said to be integral [16] if there is a regular Borel measure μ on (BX∗ ,w∗)
such that

P(x) =
∫ (

x∗(x)
)n

dμ
(
x∗), ∀x ∈ X. (4.1)
BX∗
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As usual, denote by P N
I (X) the space of all N -homogeneous integral polynomials on X. We

recall that the integral norm of an integral polynomial P , ‖P ‖I , is the infimum of the set{‖μ‖: μ satisfies (4.1)
}
.

Endowed with the integral norm P N
I (X) becomes a Banach space. For every Banach space

X we have P N
I (X) ⊆ P N(X) and it is clear that ‖P ‖ � ‖P ‖I for every P ∈ P N

I (X). For
x∗ ∈ SX∗ it is easily seen that (x∗)N is an integral polynomial (associated to the measure δx∗ )
and ‖(x∗)N‖I = 1. Apart from the projective norm, there are other reasonable norms that can be
placed on

⊗
N,s X. Given an element

∑k
i=1 λixi ⊗ xi ⊗ · · · ⊗ xi in the N -fold symmetric tensor

product on X, we recall that its injective norm is given by

sup
x∈BX∗

∣∣∣∣∣
k∑

i=1

λi

(
x∗(xi)

)N

∣∣∣∣∣.
This may also be regarded as the norm inherited from P N(X∗). We denote the completion of⊗
N,s X with respect to this norm by

⊗̂
N,s,εX.

It is shown in [16, Theorem, Section 3.4] that the dual of
⊗̂

N,s,εX is isometrically isomorphic
to (P N

I (X),‖.‖I ).
We will show that the Cunningham algebra plays the role of the centralizer in the third section

in order to obtain results of similar nature for the space of integral polynomials.

Proposition 4.1. Let X be a Banach space such that C(X) is infinite-dimensional. Then for every
positive integer N , every weak-∗ neighborhood relative to the unit ball of P N

I (X) has diameter
two.

Proof. Let N ∈ N and W be a non-empty weak-∗ open set relative to the unit ball of P N
I (X). By

[12, Proposition 1] (see also [11]) the set of extreme points of the unit ball of P N
I (X) is contained

in {±ϕN : ϕ ∈ SX∗}.
It follows from the Krein–Milman Theorem that there exist k ∈ N, tj ∈ [−1,1] and ϕj ∈ SX∗

(1 � j � k) with
∑k

j=1 |tj | = 1 such that P := ∑k
j=1 tj ϕ

N
j ∈ W . By [10, Theorems 5.7 and 5.9]

C(X) is isomorphic to Z(X∗), so K := KX∗ is infinite. By Lemma 2.3, there are sequences of
disjoint open sets, {Vn} and {Un} in K and sequences {gn} and {hn} in C(K) satisfying that

0 � gn � 1, −1 � hn � 1, ‖hn‖∞ = 1, ∀n ∈ N,

{gn} w−→ 0, {hn} w−→ 0, (4.2)

supphn ⊂ Vn, suppgn ⊂ Un, gn(Vn) = {1}. (4.3)

Let p be an extreme point of BX∗ . For every n and j � k, for each t ∈ K , depending on t ∈ Vn

or t /∈ Vn we have ∥∥(
(1 − gn)ϕj ± hnp

)
(t)

∥∥ = ∥∥(hnp)(t)
∥∥ � 1,∥∥(

(1 − gn)ϕj ± hnp
)
(t)

∥∥ = ∥∥(
(1 − gn)ϕj

)
(t)

∥∥ � 1,
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hence

∥∥(1 − gn)ϕj ± hnp
∥∥ � 1. (4.4)

We write M := {j ∈ {1, . . . , k}: tj > 0} and R = {1, . . . , k}\M . If N is odd, for every natural
number n we consider the integral polynomials Pn and Qn given by

Pn :=
∑
j∈M

tj
(
(1 − gn)ϕj + hnp

)N +
∑
j∈N

tj
(
(1 − gn)ϕj − hnp

)N
,

Qn :=
∑
j∈M

tj
(
(1 − gn)ϕj − hnp

)N +
∑
j∈N

tj
(
(1 − gn)ϕj + hnp

)N
.

It follows from (4.4) that Pn,Qn ∈ BP N
I (X). In view of (4.2) {(1 − gn)ϕj ± hnp} converges

weakly to ϕj in X∗ for every j � k. As a consequence, {Pn} and {Qn} converge to P in the
weak-∗ topology of P N

I (X). Since P ∈ W and W is a weak-∗ open set in BP N
I (X), then for m

large enough, we have that Pm and Qm belong to W . From now on, we fix m large enough such
that the previous conditions hold.

By Lemma 2.3 we know that there is an element tm ∈ Vm satisfying hm(tm) = 1. Since p is
an extreme point of BX∗ , by Lemma 2.1, ‖p(t)‖ = 1 for every t ∈ K . Let αtm be an element of
B(X∗

tm
)∗ , such that αtm(p(tm)) = 1. Then the functional defined by αm(ϕ) := αtm(ϕ(tm)) belongs

to BX∗ . We have that αm(ϕj (1 − gm) + hmp) = 1 and αm(ϕj (1 − gm) − hmp) = −1 for all
1 � j � k. Since BX is w∗-dense in BX∗∗ , there exists {xn} ∈ BX such that

lim
n

{(
(1 − gm)ϕj + hmp

)
(xn)

} = 1 = − lim
n

{(
(1 − gm)ϕj − hmp

)}
, ∀1 � j � k

and for m fixed.
By using that N is odd and that for each n the element xn ⊗ N· · · ⊗ xn belongs to B⊗̂

N,s,εX
we

have

‖Pm − Qm‖I �
∣∣(Pm − Qm)(xn)

N
∣∣

=
∑
j∈M

tj
((

ϕj (1 − gm) + hmp
)
(xn)

)N +
∑
j∈R

tj
((

ϕj (1 − gm) − hmp
)
(xn)

)N

−
∑
j∈M

tj
((

ϕj (1 − gm) − hmp
)
(xn)

)N −
∑
j∈R

tj
((

ϕj (1 − gm) + hmp
)
(xn)

)N
.

By taking limit (n → ∞), we deduce that diamW � ‖Pm − Qm‖I � 2
∑k

i=1 |ti | = 2.
Now we will prove the same fact in the case that N is even. By Lemma 2.3 we know that for

every n there are elements tn, sn ∈ Vn and functions fn,hn satisfying

fn(sn) = fn(tn) = 1 = hn(tn) = −hn(sn).

In this case we consider the polynomials given by
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Pn =
∑
j∈M

tj
(
(1 − gn)ϕj + fnp

)N +
∑
j∈R

tj
(
(1 − gn)ϕj + hnp

)N
,

Qn =
∑
j∈M

tj
(
(1 − gn)ϕj + hnp

)N +
∑
j∈R

tj
(
(1 − gn)ϕj + fnp

)N
.

By using the same argument of the odd case, Pn,Qn ∈ BP N
I (X) and the sequences {Pn} and {Qn}

converge to P in the w∗-topology of P N
I (X). Hence for m large enough, Pm,Qm ∈ W . We fix

m from now on.
Since p is an extreme point of BX∗ , by Lemma 2.1, ‖p(t)‖ = 1 for every t ∈ K . Hence

there are functionals αtm ∈ (X∗
tm

)∗, βsm ∈ (X∗
sm

)∗ such that ‖αtm‖ = ‖βsm‖ = 1 = αtm(p(tm)) =
βsm(p(sm)). Then the functionals on X∗ defined by

αm

(
x∗) = αtm

(
x∗(tm)

)
, βm

(
x∗) = βsm

(
x∗(sm)

) (
x∗ ∈ X∗)

belong to BX∗∗ . We have that

αm

(
(1 − gm)ϕj + hmp

) = 1 = αm

(
(1 − gm)ϕj + fmp

) = 1, ∀1 � j � k

and

βm

(
(1 − gm)ϕj + fmp

) = 1 = −βm

(
(1 − gm)ϕj + hmp

)
, ∀1 � j � k.

Since BX is w∗-dense in BX∗∗ , for each m there exist {xn}, {yn} ∈ BX such that

lim
n

{(
(1 − gm)ϕj + hmp

)
(xn)

} = 1 = lim
n

{(
(1 − gm)ϕj + fmp

)
(xn)

}
, ∀1 � j � k,

lim
n

{(
(1 − gm)ϕj + fmp

)
(yn)

} = 1 = − lim
n

{(
(1 − gm)ϕj + hmp

)
(yn)

}
, ∀1 � j � k.

Given w := x1 ⊗ N· · · ⊗xN in
⊗

N X, we recall that the element ws := 1
n!

∑
σ∈ΠN

xσ(1) ⊗ N· · · ⊗
xσ(N) belongs to

⊗̂
N,s,εX (ΠN is the set of all permutations on {1,2, . . . ,N}). It is immediate

that ws ∈ B⊗̂
N,s,εX

if the elements xi ∈ BX for every 1 � i � N . If for each n, we take w =
yn ⊗ N−1· · · ⊗ yn ⊗ xn, then ws ∈ B⊗̂

N,s,εX
and we obtain that

‖Pm − Qm‖I �
∣∣(Pm − Qm)(ws)

∣∣
=

∣∣∣∣ ∑
j∈M

tj
(
(1 − gm)(ϕj + fmp)(yn)

)N−1(
(1 − gm)(ϕj + fmp)(xn)

)
+

∑
j∈R

tj
(
(1 − gm)(ϕj + hmp)(yn)

)N−1(
(1 − gm)(ϕj + hmp)(xn)

)
−

∑
j∈M

tj
(
(1 − gm)(ϕj + hmp)(yn)

)N−1(
(1 − gm)(ϕj + hmp)(xn)

)
−

∑
tj

(
(1 − gm)(ϕj + fmp)(yn)

)N−1(
(1 − gm)(ϕj + fmp)(xn)

)∣∣∣∣.

j∈R
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By taking limit (n → ∞), we deduce that diamW � ‖Pm −Qm‖I � 2
∑k

i=1 |ti | = 2. In any case,
we have proved that diamW = 2. �
Theorem 4.2. Let X be a Banach space such that C(X(∞) is infinite-dimensional. Then for every
positive integer N , every weak-∗ neighborhood relative to the unit ball of P N

I (X) has diameter
two.

Proof. Let N ∈ N and W be a non-empty weak-∗ open set relative to the unit ball of P N
I (X).

By [12, Proposition 1] the set of extreme points of the unit ball of P N
I (X) is contained in

{±ϕN : ϕ ∈ SX∗}. By using Krein–Milman Theorem there exist k ∈ N, tj ∈ [−1,1] and fj ∈ SX∗

(1 � j � k) with
∑k

j=1 |tj | = 1 such that P0 := ∑k
j=1 tj (fj )

N ∈ W .

Let Y := ⊗̂
N,s,εX. Since W is a weakly-∗ open set, we can assume that there is η > 0 and

yi ∈ SY (1 � i � m) such that

W := {
P ∈ BP N

I (X):
∣∣P(yi) − P0(yi)

∣∣ < η, ∀1 � i � m
}
.

It is clear that yi ∈ S⊗̂
N,s,εX

(∞ for all 1 � i � m. By the remarks of Section 3, P0 can be seen as

an N -homogeneous polynomial on X(∞ and it is also clear that it is also an element in BP N
I (X(∞).

We define

W̃ := {
P ∈ BP N

I (X(∞):
∣∣P(yi) − P0(yi)

∣∣ < η, ∀1 � i � m
}
.

Hence W̃ is a weak∗ neighborhood of P0 in the unit ball of P N
I (X(∞). Given ε > 0, by

Proposition 4.1, there are sj ∈ [−1,1] and ϕj ,ψj ∈ S(X(∞)∗ (1 � j � k) with
∑k

j=1 |sj | = 1

such that P := ∑k
j=1 sjϕ

N
j ,Q := ∑k

j=1 sjψ
N
j ∈ W̃ and there is w ∈ B⊗̂

N,s,εX
(∞ satisfying

|(P − Q)(w)| > 2 − ε.
It is clear that for every net {fα} that converges weakly-∗ to f in (X(∞)∗, we have that {f N

α }
converges weakly-∗ to f N in P N

I (X(∞). By Proposition 3.1 B(X∗)(∞ is w∗-dense in B(X(∞)∗ .
Since W̃ is weakly-∗ open, we can assume that ϕj ,ψj ∈ S(X∗)(∞ for all 1 � j � k.

By using also the definitions of X(∞ and (X∗)(∞, given ε > 0 we can assume that there is a
natural number n such that, ϕj ,ψj ∈ SX(2n+1 for all 1 � j � k, w ∈ B⊗̂

N,s,εX
(2n .

Now we proceed as in the proof of Corollary 2.6. Since the unit ball of X(2n−1 is w∗-dense in
the unit ball of X(2n+1, we can assume that ϕj ,ψj ∈ SX(2n−1 for all 1 � j � k. Since BX(2n−2 is
w∗-dense in BX(2n , we can also assume that w ∈ B⊗̂

N,s,εX
(2n−2 . After a finite number of steps, we

deduce that diamW � 2 − ε. Since ε is any positive number we conclude that diamW = 2. �
Let us remark that the above theorem extends Proposition 4.1, since every L-projection can

be extended to an L-projection on X(∞ and so C(X) is always contained in C(X(∞).
A predual X of a non-reflexive JBW∗-triple satisfies that C(X(∞) is infinite-dimensional,

and so the above result can be applied to the dual of any infinite-dimensional C∗-algebra (see
[14, Corollary 11] and [5, Proposition 3.4]). We recall that the Cunningham algebra of X(∞ is
infinite-dimensional for every non-reflexive L-embedded space X in view of Proposition 3.4.
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