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Let K be any (finite) simplicial complex, and K’ a subdivision of K. Let
¢: K’ —> K be a simplicial map, and, for all j>0, let ¢; denote the algebraical
number of j-simplices ¥ of K’ such that ¥ < ¢(¥9). From Hopf’s alternating trace
formula it follows that @y— ¢, + ¢@,— - = L(¢), the Lefschetz number of the
simplicial map ¢: X — X. Here X denotes the space of |K] (or |K'|). A purely
combinatorial proof of the case K=a closed simplex (now L(¢)=1) is given, thus
solving a problem posed by Ky Fan in 1978.  © 1992 Academic Press, Inc.

Let K be any (finite) simplicial complex, and K’ a subdivision of K.
Let ¢: K'> K be a simplicial map, and for all j>0, let ¢, denote the
algebraical number of j-simplices ¥ of K’ such that 4 < ¢(¥9). Here
“algebraical” means that 4 is to be counted +1 if the orientation of 4
agrees with that of the bigger j-simplex ¢(%); i.e., if 4 = {v,, vy, ..., v,} then
v, =Y ,50d,,0(v,) with det(a,)>0, otherwise —1. With the notation
explained above, a combinatorial version of Lefschetz’s fixed-point formula
runs as follows.

THEOREM 1. @o— @, +@>— --- =L(p), the Lefschetz number of the
simplicial map ¢: X - X.
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Here X denotes the space |K| (or |K'|), and, as usual, the Lefschetz
number is defined to be the alternating trace sum,

Y (=1Y Tlow: Hi(X; Q) - H,(X; Q)),

jz0

for the induced map in rational homology.

The celebrated 1926 fixed-point theorem of Lefschetz [6] asserts that if
f: X—> X is a continuous map and L(f)#0, then there exists £e X such
that f(£)=%. Lefschetz’s fixed-point theorem was proved by Hopf [5],
as follows: If f(x)#x for all xe X then we can find a triangulation K’
of X, and a simplicial approximation ¢: K’ — K of f such that ¢ & (%)
for all ¥ K’. As f~¢, L(f)=L(¢)=0 by the above theorem. (Cf, e.g.,
Maunder [7, pp. 149-150, 157].)

For the case X=S5", an n-sphere, the above theorem gives a com-
binatorial formula for the (Brouwer) degree of ¢.

We state an important special case of Theorem 1 explicitly as

THEOREM 2. Let K=Cl(o) be a closed n-simplex, K’ a subdivision of K
and ¢: K' = K a simplicial map. Then

Qo— 01+ 0,— - +(—=1)'p,=1

Theorem 2 was conjectured by Ky Fan in 1978. We are deeply indebted
to Professor Ky Fan for calling attention to this conjecture. A purely com-
binatorial proof of Theorem 2 is given in Section 2. We wish to thank the
referee for pointing out that, in fact, the more general Theorem 1 holds, is
implicitly contained in [5], and can be proved by a well-known argument
as in Section 3.

Note that the equality,

Go— Q1+~ - =1

for ali ¢: K’ — K, holds not only in the above case, but also whenever X
has trivial rational homology; e.g., for all triangulations K’ of contractible
polyhedra X, or even-dimensional real projective spaces X = RP*".

By disregarding orientation in Theorem 2, we see that Sperner’s lemma
[8] and Ky Fan’s lemma [4, pp. 523-524] are direct consequences of
Theorem 2.

As an example for the case X has trivial rational homology in Theorem 1
we have a simplicial complex K with vertices aq, a;, .., ag and the subdivi-
sion K’ shown in Fig. 1. For a given vertex v of K’, we identify ¢(v)=gq;
with @(v) =i We have ¢y=35, ¢, =7, ¢,=23, so that ps— ¢, +¢@,=1.
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FIGURE 1

We now prove Theorem 2 by a purely combinatorial method. For the
proof, we associate to any ¢: K’ — K, another subdivision K" of K, and a
simplicial map : K" — K, such that

Qo=@ to,— -+ (—1)"¢,=1,.

To define K” (see Fig. 2) first obtain a subdivision of K by deleting ¢ from
an octahedral n-sphere having ¢ and & as opposite n-simplices, then sub-
divide & further by a copy K’, and finally subdivide the remaining
n-simplices @ * (6\0) by the n-simplices Z=F % (6\0), ¥ K’, 46, and
their faces. (The symbol “*” denotes the join operation.) Let

(v)=v if visavertex of o;

(0)=(v) if 0visavertex of K.

Clearly 4 < ¢(%) =0 iff 1(9)=0. By the oriented Sperner lemma (which
was proved by Brown and Cairns [1]), we have 7, = 1. (A passing remark:
Brown and Cairns’ theorem can be proved by a “path-following” algo-
rithm, see Cohen [2] and Ky Fan [3]). The required equality now follows
by verifying directly that for dim(%) even (resp., odd) the orientation of ¢
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K'

az

FiGURE 2

agrees with that of ¢(%) iff that of 7 agrees (resp., disagrees) with that of
©(%). To see this, let

6=1{ag, Ay, Ay} 0={a, a,,..a;}, o\0={a,, ,.a,}
G = {0y, Uy, s U}, ev,)=a,, r=0,1,..,
Then

0% (a\0)= (T, Ty s Ty Ay, 5 o a,},

G x (0\0) = {T, U1, s T, @y, s oon Ay )

For simplicity, let (see Fig. 2)

a_r= Z brsa:a r=0, 19 eeey n; (b”) =

520

2n+1
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Let
o (To)
v o(v0) ‘ ")
vl g, <p(_v1) ’ 5 =8| <@
l;, (p(:vj) af,_ﬂ r(a:,-”l)
a, r(éz,-)

A computation shows that

g_(B 0 )(B’ 2 >
\o 1,_, N0 1,.)

where
1 2 2
B 1 2 1 2
2n+1): ¢ :
2 2 1 Gnxien
and
2 2
2= : :
2 .2 G+ 1)x(n~j)
Thus

det B,=(—1) (2n+1)"Y*1(2j+ 1) det B,

and, with this identity, the proof of Theorem 2 is complete.

For the proof of Theorem 1, let
s:C(K Q) Ci(K';Q), j=0,

denote the canonical chain subdivision. Composing it with the simplicial
maps

0: Ci(K'; Q) = Ci(K; 0),
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one obtains the chain endomorphisms
os: C(K; Q) > Ci(K; Q).

Inspection shows that

@;=T(0s:C;(K; Q)= Ci(K; Q))

So the well-known alternating sum formuia

Y (—1Y T(ps: Ci(K; Q) = C,(K; Q)

iz0

=2 (=1Y T((¢s)s: Hy(K; Q) = H,(K; Q)

jz0
implies the required equality. This completes the proof of Theorem 1.

Recall that the chain subdivision induces isomorphisms in homology,
se: H)(K; Q)— H,(K'; Q).

This follows from the fact that if 7: K’ > K is a simplicial map which
images each vertex of K’ to a vertex of the simplex of K containing it, then

ts=1d. (*)

As usual we have identified the homologies of K and K’ under s, and
denoted either by H,(X; Q).

Finally, we mention that formula (*) is equivalent to saying that for all
o€ K the algebraical number of simplices 4 of K’ such that 1(4)=¢
equals 1. This oriented Sperner lemma [1] follows also, by induction on n,
from Theorem 1 because it amounts to saying that for a closed n-simplex
Kand t: K'—> K as in () one has 7,=1.
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