
Ž .JOURNAL OF ALGEBRA 199, 124]141 1998
ARTICLE NO. JA977167

A Theorem on Random Matrices and
Some Applications

Aner Shalev

Institute of Mathematics, The Hebrew Unï ersity, Jerusalem, 91904, Israel
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1. INTRODUCTION

w x Ž w x.A conjecture of Cameron C see also CK states that the proportion
of permutations of S which belong to a transitive subgroup other than Sn n
or A tends to 0 as n ª `. This conjecture has recently been proven byn

w x ŽŁuczak and Pyber in LP , where several applications are included see
w x w x . w xMP , Sh2 for additional applications . In LP it is suggested that the
analogous phenomenon might hold for matrices. More specifically, the
following is posed:

Problem. Suppose that p is a fixed prime and n tends to infinity. Is it
Ž .true that almost all matrices in GL n, p do not belong to an irreducible

Ž .subgroup not containing SL n, p ?

The purpose of this paper is to provide an affirmative answer to this
question. In fact, our result is somewhat more general, in that we also deal

Žwith prime powers q, which need not be fixed they may well depend on
. Ž .n . For brevity, let us say that a subgroup H of GL n, q is proper if H

Ž .does not contain SL n, q , and that H is maximal if it is maximal with
respect to being proper.

� 4THEOREM. There exists a series of real numbers d tending to 0 suchn
that, for e¨ery prime power q, the probability that a randomly chosen matrix in

Ž .GL n, q belongs to a proper irreducible subgroup is at most d .n

w xWe note that, by Neumann and Praeger NP, Lemma 2.3 , the probabil-
Ž . Ž .ity that a matrix A g GL n, q is irreducible is at least 1r n q 1 . In
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Ž .particular, the probability that a matrix in GL n, q belongs to a proper
irreducible subgroup is bounded away from zero if n is bounded, so in this
sense our theorem is best possible.

Ž .Our proof shows that we can take d s o 1rlog log log n , but in factn
better bounds can be obtained with some more care. The main tools in the

w xproof are recent results of Schmutz S on random matrices, as well as well
w x w xknown results of Aschbacher A and Liebeck L on maximal subgroups of

classical groups. It is easy to see that our main result still holds if we
Ž . Ž .replace GL n, q by any almost simple group with socle PSL n, q . It is

likely that analogues for other classical groups also exist; this may require
Ž . Ž w xextending the statistical theory of GL n, q see S and the references

.therein to symplectic, orthogonal, and unitary groups.
The main result of this paper seems to be useful in several contexts.

Ž .Applying it we show that, if x is any non-trivial element of PSL n, q , then
Ž .the probability that x and a randomly chosen element y generate PSL n, q

Ž .tends to 1 as q ª ` regardless of n . This extends a result of Guralnick,
w x Ž .Kantor, and Saxl from GKS . We also show that, for large n, GL n, q is

generated invariably by two elements, which can be found rather easily.
See Section 4 for terminology and more details. Additional applications of

w xthe main result will be included in Sh1, LSSh .
I thank Laci Pyber, Martin Liebeck, and Jan Saxl for stimulating

discussions, and All Souls College, Oxford, for its hospitality while this
work was carried out.

2. PRELIMINARIES

ŽThroughout this paper n denotes a large integer sufficiently large to
.satisfy all required inequalities below .

Ž .Let P denote the uniform distribution on GL n, q . For a matrix
Ž . w xA g GL n, q , let f g F x denote its characteristic polynomial. Let MA q n

w xdenote that set of all monic polynomials of degree n in F x . Then theq
Ž . Žcorrespondence A ¬ f defines a function c : GL n, q ª M whoseA n

.image is the set of polynomials in M with non-zero constant term . Letn
P9 denote the uniform distribution on M . We shall often use a differentn

Ž .probability measure on M , induced from P, which by abuse of notationn
is also denoted by P. More specifically, for a subset E : M , definen

P E [ P cy1 E .Ž . Ž .Ž .

The measure P will be used whenever we talk about probability without
specifying the probability measure.
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Ž . Ž .The order of a matrix A g GL n, q is denoted by o A . For f g Mn
Ž . Ž .with f 0 / 0 we define the order or the exponent of f by

o f s min k ) 0 : f N x k y 1 .� 4Ž . Ž .

Let C denote the companion matrix of f , namely the matrix corre-f
w x Ž .sponding to multiplication by t in F x r f with respect to the basisq

ny1 Ž w x.consisting of the images of 1, x, . . . , x see for instance J, p. 191 . It is
Ž . Ž . n Žthen clear that o f s o C - q where the last inequality follows fromf

w x Ž . n.the fact that the group of units of F x r f has order - q .q
Ž .Now, let A g GL n, q and let f s f be its characteristic polynomial.A

Ž .Then A can be brought to a rational canonical form diag C , . . . , C ,f f1 kw x Ž .where f are polynomials in F x satisfying f s f ??? f . Setting m s o fi q 1 k
Ž . Ž .we see that for i s 1, . . . , k, o C s o f divides m, and this implies thatf ii

Ž .o A divides m as well. In particular it follows that for a matrix A g
Ž . Ž . Ž . Ž .GL n, q we have o A F o f equality need not hold .A

Ž Ž .Let f denote the Euler function so that f d is the number of positive
. Ž .integers k - d which are prime to d , and let F x denote the dthd

cyclotonic polynomial. We now define some parameters which will be used
throughout the paper, as

y1
e s log log log n ,Ž .n

2d s log log log n ,Ž .n

1ye nb s log n .Ž .n

w xThe main result of S shows that, if n is large, then

P q ny Žlog n.2q e n - o A - q ny Žlog n.2y e n G 1 y o e . 1Ž . Ž . Ž .Ž . n

Ž .For d G 1 let a s a f be the number of irreducible factors of degreed d
Ž .d of f , counted with multiplicity. Let v s v f be the number ofd d

Ždistinct irreducible divisors of f whose degree is divisible by d thus v is1
. Ž .the number of distinct irreducible factors of f . Let V s V f denoted d

the number of irreducible factors of f whose degree is divisible by d,
Ž .counted with multiplicity thus V G v . Setd d

w s w f s max 0, V f y 1 .� 4Ž . Ž .d d d

w x Ž .It is shown in S, Lemma 6 that, with probability 1 y o e we haven

a f F d for all d , and a f F 1 for all d ) d . 2Ž . Ž . Ž .d n d n
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Ž .Note that, if f satisfies 2 , then the number of irreducible factors of f of
Ž . 2degree F d is at most Ý a f F d .n dF d d nn

Let

1
m s m s log nrd .Ž .d d , n d

w xThen it follows from S, Theorem 5 that the condition

1
< <v f y m F m for all d F b 3Ž . Ž .d d d n4

Ž .holds with probability 1 y o e . Definen

M X s f g M : f satisfies conditions 2 and 3 above .� 4Ž . Ž .n n

Ž X . Ž .Then P M G 1 y o e .n n
Ž .For a group H, let m H denote the maximal order of an element of H.

Ž . Ž . Ž .Then we have m H F m HrK m K for K e H. It is also clear that, if G
Ž . � Ž . Ž .4is a central product of H and K, then m G s max m H , m K . It is

well known that

m GL n , q s q n y 1. 4Ž . Ž .Ž .

It is also known that

k log k'm S F c , 5Ž . Ž .k

where c is some absolute constant.
We need the following observation on the maximal order of cyclic

subgroups of finite simple groups in general. By a simple group we shall
always mean a nonabelian finite simple group. Recall that an almost
simple group is a group lying between a simple group and its automor-
phism group.

LEMMA 2.1. Let T be a finite almost simple group. Then

< <1r3qoŽ1.m T F T .Ž .

Proof. Let T be almost simple with socle T . Then0

< <m T F m T m TrT F m T TrT F m T Out T .Ž . Ž . Ž . Ž . Ž . Ž .0 0 0 0 0 0

< Ž . < < < oŽ1. Ž w x. Ž .It is well known that Out T F T see At . This shows that m T0 0
Ž . < < oŽ1.F m T T , so the result for T would follow from the result for T . We0 0

may therefore assume that T is simple.
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Sporadic groups can obviously be ignored, and so it suffices to deal with
alternating groups and with simple groups of Lie type. If T is alternating,

Ž . Ž . < < oŽ1.then 5 shows that m T F T and we are done. So suppose T is a
Ž .simple group of Lie type. Denote the twisted Lie rank of T by l, and let

q denote the size of the underlying field.
There are absolute positive constants c , d with the property that1

< < d l 2 Ž . Ž .T G q and T F PGL n, q for some n F c l. Hence m T F1
Ž Ž .. n c1 l Ž . < < oŽ1.m PGL n, q F q F q . It follows that m T F T provided l ª `.

So it remains to deal with groups of bounded rank.
Ž . Ž Ž .. ŽLet m T m T denote the maximal order of a semisimple un-s u

.ipotent element of T. Then the Jordan decomposition in T shows that

m T F m T m T .Ž . Ž . Ž .s u

Ž .Clearly, m T is equal to the exponent of a Sylow p-subgroup P of Tu
Ž .recall that q is a pth power . Now, P is embedded in a Sylow p-subgroup

Ž .Q of PGL n, q , where n F c l is bounded, say, by c . Hence1 2

m T F exp Q F pn F c p F c q.Ž .u 2 2

By the structure of maximal tori in T we also have

m T F c q l .Ž .s 3

Ž . lq1 Ž . lIt follows that m T F c q in general, and that m T F c q if p is4 5
bounded.

ŽNow, the order of T is given by some polynomial in q depending on the
w x.type of T ; see At . Let d denote the degree of this polynomial. Then

< < d w xT G c q . Inspection of At shows that lrd F 1r3 in all cases, and that6
Ž . Ž . Ž .l q 1 rd F 1r3 except when T s PSL 2, q , PSL 3, q , or the Suzuki

Ž . Ž . Ž . < <1r3qoŽ1.group Sz q . In view of our bounds on m T , we see that m T F T
Ž Ž .. Ž .if p is bounded which includes the case T s Sz q , or if T / PSL 2, q ,

Ž . Ž . Ž .PSL 3, q . The cases T s PSL 2, q , PSL 3, q are easily settled using the
well known subgroup structure of these groups.

The result follows.

Ž .Remark. The example of PSL 2, q shows that the exponent 1r3 in
Ž . Ž .Lemma 2.1 is best possible. It is likely that m T s m T for simples

groups of Lie type, perhaps with a few exceptions.

Now, let U be the union of all irreducible maximal subgroups of
Ž .GL n, q . To prove the main result, we need to show that

P U s o e .Ž . Ž .n
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Ž w x.By a theorem of Aschbacher see KL, p. 3 , the irreducible maximal
Ž .subgroups of GL n, q are divided into 8 classes, denoted by C y C and2 8

SS . We can therefore write

U s D8 U j U ,Ž .is2 i SS

Ž . Ž .where U U is the union of the maximal subgroups in C SS .i SS i
Ž .Let S denote the set of all matrices in GL n, q whose order is at most

0.9n Ž .q . Then it follows from 1 that

P S s o e .Ž . Ž .n

The theorem is therefore a direct consequence of the three following
results.

PROPOSITION A. For large n we ha¨e

U j U j U j U j U j U : S.2 4 5 6 7 SS

Ž . Ž .PROPOSITION B. P U s o e .3 n

Ž . Ž .PROPOSITION C. P U s o e .8 n

3. PROOFS

Proof of Proposition A. Let M g C . Then there is a factorization2
Ž . Ž .n s ab where b G 2 such that M ( GL a, q X S . Henceb

a b log b n r2 n log n 0.9n' 'm M F q ? c F q ? c F q ,Ž .

assuming n is large. Hence M : S in this case.
Ž .Let M g C . Then there is a factorization n s ab where a, b G 2 such4

Ž . Ž .that M is a central product of GL a, q with GL b, q . Therefore

m M F max q a , q b F q n r2 - q0.9n ,� 4Ž .

as required.
Let M g C . Then there is a prime power q and a prime r such that5 0

r Ž .q s q and M ( GL n, q . It follows that0 0

1rrn n n r2 0.9nm M F q s q F q F q .Ž . Ž .0

Let M g C . Then there is a prime r and an integer a such that n s r a
6

Ž 1q2 a. Ž . Žand M ( C ( r .Sp 2 a, r a normalizer of a symplectic type r-qy1
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.group . In this case we have

m M F qr 2 ? m Sp 2 a, r F qr 2 ? r 2 a F qn4 F q0.9n .Ž . Ž .Ž .

Let M g C . Then there are integers a, t G 2 such that n s at and M is7
Ž .a central product of t copies of GL a, q , extended by the symmetric

group S . Hencet

a t log t n log n log log n 0.9n'' 'm M F m GL a, q m S F q c F q c - q .Ž . Ž . Ž .Ž . t

Ž .Finally, let M g SS . Let Z denote the centre of GL n, q . Then M > Z
and T s MrZ is almost simple. Note that M is not S or A in ak k
representation of smallest degree over F , since the resulting subgroupsq

Ž . Žare not maximal in GL n, q they are contained in an orthogonal sub-
. < < 3n w xgroup . Therefore we have T - q by the main result of L . Further-

w x Ž .more, by Corollary 4.3 of L and the fact that n is large , one of the
following holds:

kŽ . Ž . Ž . Ž .1 n s and Soc T s PSL k, q ,2

Ž . < < 2 nq42 T - q .

Ž .In the first case, inequality 4 yields

m M F q k m Out PSL k , q F q k 2k log q - q0.9n .Ž . Ž .Ž .Ž .

< < 2 nq4 < <So suppose T - q . Applying Lemma 2.1, we find that either T is
bounded, in which case the conclusion follows trivially, or

< < 2r5m T - T . 6Ž . Ž .

Ž .Using 6 it follows that

2r52 nq4 0.8 nq2.6 0.9nm M - q q s q - q .Ž . Ž .

Proposition A is proved.

Proof of Proposition B. Let M g C . Then there is a factorization3
Ž . Ž b.n s ab where b is prime and a G 1 such that M ( GL a, q .C, where C

Ž b.bis the Galois group of F over F . Set N s GL a, q e M.q q

Claim 1. M _ N : S.

To show this, let A g M _ N. Then A s Bs where B g N and 1 / s
g C. Note that

Ab s BBs ??? Bs by 1 g N.
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Ž b.s s s 2 bThis implies that A s B B ??? B is conjugate in N to A . Let
w x b Ž b.bf g F x be the characteristic polynomial of A , as a matrix in GL a, q .q

Ž b.s sThen the characteristic polynomial of A is f , and so it follows that
s w x Žf s f . Hence f g F x , since the fixed field of s is F recall that b isq q
. Ž . aprime . However, the degree of f is a. It follows that o f F q . Since the

Ž b.order of a matrix in GL a, q is at most the order of its characteristic
polynomial, we conclude that

o Ab F q a .Ž .
This implies

o A F bqa F nqn r2 - q0.9n .Ž .
The claim follows.

Next, we study matrices inside N. We need some more notation. Given a
polynomial f g M , we shall writen

k
m if s f ,Ł i

is1

w xwhere f g F x are distinct monic irreducible polynomials, and the multi-i q
plicities m are positive.i

Ž .Claim 2. Suppose A g N and f s f . Then b N m deg f for all i sA i i
1, . . . , k.

Indeed, let g be the characteristic polynomial of A as an element of
Ž b. s w xbGL a, q . Then f s Ł g . Now let h g F x be an irreducibles g C q

w x bfactor of g. Then either h g F x , and h contributes h to the factoriza-q
w x stion of f over F , or h f F x , in which case the contribution is Ł g ,q q s g C

Ž .which is irreducible over F of degree divisible by b. The claim follows.q
For a prime b let Q denote the set of all polynomials f g M withb n

m i Ž .factorization Ł f satisfying b N m deg f for all i. Let Q s jQ overi i i i b
all primes b. By Claim 2 we have

N : cy1 Q .Ž .
Ž . Ž .We shall now show that P Q s o e , and this will complete the proof ofn

the proposition.
Let

Q9 s Q l M X , QX s Q l M X .n b b n

Ž . Ž . ŽThen the polynomials f g Q9 satisfy conditions 2 and 3 stated in
. Ž X . Ž .Section 2 . Since P M G 1 y o e , we haven n

P Q F P Q9 q o e .Ž . Ž . Ž .n

Ž . Ž .It therefore suffices to show that P Q9 s o e .n
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< Ž . Ž . < 2 XClaim 3. v f y v f F d for all f g Q .1 b n b

X Ž .Indeed, let f g Q . Since f satisfies 2 , all irreducible factors of f ofb
degree exceeding d occur with multiplicity 1, and so the degrees of suchn

Ž .factors are all divisible by b. It also follows from 2 that there are at most
d2 irreducible factors of degree F d . The claim follows.n n

Claim 4. QX s B for all b F b .b n

Suppose, by contradiction, that b F b and f g QX . Since f satisfiesn b
Ž .condition 3 we have

3 3
v f G m s log n.Ž .1 14 4

We also have

5 5 1 5
v f F m s log nrb F log n.Ž . Ž .b b4 4 b 8

By combining the above inequalities we obtain

1
v f y v f G log n.Ž . Ž .1 b 8

In view of Claim 3 it follows that

1 42log n F d s log log log n .Ž .n8

For n large this yields a contradiction.
We can now write

Q9 s D QX . 7Ž .b) b bn

w xChoose a constant c as in S, Theorem 12 .0

Ž .Claim 5. With probability 1 y o e ,n

2qe nf d w f - log n .Ž . Ž . Ž .Ý d
d)c log n0

w Ž .xTo show this, first note that, by S, 14 , the inequality

Ž . 2q 3e r4w f nŽlog n.dF q - qŽ .Ł d
dG1
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Ž . Ž . Ž1r2.f Žd. wholds with P9-probability 1 y o e . We also have F q G q S,n d
xLemma 4 , hence the inequality

1 2q3e r4nf d w f - log nŽ . Ž . Ž .Ý d2dG1

Ž . Ž .en r4holds with P9-probability 1 y o e . Assuming log n G 2 as we may,n
we see that

2qe nf d w f - log nŽ . Ž . Ž .Ý d
dG1

Ž .holds with P9-probability 1 y o e . The same is true of course for then
weaker inequality

2qe nf d w f - log n . 8Ž . Ž . Ž . Ž .Ý d
d)c log n0

Since the above sum depends only on irreducible factors of f whose
w xdegree exceeds c log n, Theorem 12 of S implies that the P-probability0

Ž . Ž .of 8 and the P9-probability of 8 differ by at most 1rlog n. Therefore
Ž . Ž .inequality 8 occurs with P-probability at least 1 y o e y 1rlog n s 1n

Ž .y o e . The claim is proved.n
Ž Y . Ž X .Let Q0 Q denote the set of all polynomials f in Q9 Q satisfyingb b
Ž . Ž . Ž . Ž .inequality 8 . Then P Q9 F P Q0 q o e , and so it suffices to shown

Ž . Ž .that P Q0 s o e . In fact we show a bit more.n

Claim 6. Q0 s B.

Ž .To show this first note that, by 7 , we have

Q0 s D QY .b) b bn

Suppose, by contradiction, that f g QY for some b ) b . Let K denote theb n
Ž Ž .en .set of primes in the open interval c log n , b , and fix p g K. Assum-0 n

Ž .ening c log n ) d as we may, we see that if g is an irreducible factor of0 n
Ž .f of degree divisible by p, then b divides deg g as well. This yields

v f s v f . 9Ž . Ž . Ž .p pb

Ž .Since p - b and f g Q9, we have for large nn

3 3 1 1
v f G m s log nrp G 1 q log nrp . 10Ž . Ž . Ž . Ž .p p4 4 p 2 p
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Ž . Ž .It follows from 9 and 10 that

1
w f G v f y 1 G log nrp . 11Ž . Ž . Ž . Ž .pb pb 2 p

Ž .Note that pb ) c log n for all p g K. Since inequality 8 is satisfied in0
Q0, it follows that

2qe nf pb w f - log n . 12Ž . Ž . Ž . Ž .Ý pb
pgK

Ž .However, using 11 we see that

1
f pb w f G b y 1 p y 1 log nrpŽ . Ž . Ž . Ž . Ž .Ý Ýpb 2 ppgK pgK

b y 1
G log nrp . 13Ž . Ž .Ý4 pgK

Now,

< <log nrp s K log n y log p. 14Ž . Ž .Ý Ý
pgK pgK

By the Prime Number Theorem we have

bn
< <K ; and log p ; b .Ý nlog bn pgK

Ž .Substitution in 14 yields

2ye nb log n log nŽ .n
log nrp ; y b ; .Ž .Ý nlog b log log nnpgK

Ž .Applying 13 we now obtain

2ye 3y2 en nb y 1 log n log nŽ . Ž .
f pb w f G G . 15Ž . Ž . Ž .Ý pb 4 log log n 4 log log npgK

Ž . Ž .This violates inequality 12 for large n .
The claim follows.
The proof of Proposition B is complete.
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Ž . Ž .Proof of Proposition C. Let M g C . Then M s Sp q n even , or8 n
e Ž . Ž . Ž 1r2 . Ž .O q q odd , or GU q where q is a square , embedded naturally.n n

Let t denote the transpose operation. If M is a unitary group, let s be the
Ž .1r2generator of the Galois group Gal F rF , otherwise set s s 1. Now, forq q

Ž .a matrix A g GL n, q , define
stA* s A .Ž .

For a polynomial f s Ýn a x i g M with a / 0, we defineis0 i n 0

n
y1s s if̃ s a a x .Ž . Ý0 nyi

is0

˜ ˜ n s y1Ž .Then f g M . Note that f is the monic scalar multiple of t f t .n
y1 ˜Ž .Therefore, if f s f , then the characteristic polynomial of A* is f.A

Define

˜Q s f g M : f 0 / 0, f s f .Ž .� 4n

Claim 1. If f s f for some A g M, then f g Q.A

Ž .Indeed, if A lies in M or in a conjugate of M , then A is conjugate in
Ž . Ž .y1 Ž w xGL n, q to A* see for instance Wall W for this and more detailed

. Ž .y1information . Thus A and A* have the same characteristic polynomial,
˜namely f s f.

In order to prove the proposition it suffices to show that

P Q s o e .Ž . Ž .n

Claim 2. Let f g Q. Then for each irreducible factor g of f we have
Ž . Ž .g s g or gg N f. In particular, if a f s 1 where d s deg g , then g s g.˜ ˜ ˜d

˜Indeed, this follows immediately from the equality f s f.
Define

Q9 s Q l M X .n

Ž . Ž . Ž . Ž . Ž .Then P Q F P Q9 q o e , and so it suffices to show that P Q9 s o e .n n
Ž .Let f g Q9. Then a f F 1 for all d ) d . Therefore any irreducibled n

factor g of f of degree exceeding d satisfies g s g .̃n
For d G 1 let I denote the set of all monic irreducible polynomials ofd

Ž .degree d over F and letq

J s g g I : g s g .� 4˜d d

It is known that

q d q d
1yd r2 < <1 y q F I F .Ž . dd d

< < dIn particular, I G q r2 d for d ) d .d n
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It is also clear that

< < d r2J F q .d

Indeed, this is a bound on the number of all degree d monic polynomials
g satisfying g s g. Let˜

J s D J .d) d dn

Note that, if f g Q9, then f has irreducible factors of degree exceeding
Ž Ž . 2 Ž . 2 .d indeed it has at least v f y d G 3r4 log n y d such factors . Wen 1 n n

can therefore write

Q9 s D Q9 g ,Ž .g g J

where

� 4Q9 g s f g Q9 : g N f .Ž .

We also set

QX s D Q9 g .Ž .d g g Jd

Then

Q9 s D QX .d) d dn

For g irreducible, define

M X g s f g M X : f 0 / 0, g N f .� 4Ž . Ž .n n

Ž X Ž .. ydClaim 3. Suppose d ) d and g g I . Then P M g F 2 dq .n d n

Ž . Ž� 4.It is known that, if f g M and f 0 / 0, then P f depends only onn
Ž wthe degrees of the irreducible factors of f and their multiplicities see S,

x. Ž X Ž .. Ž X Ž ..p. 353 . This implies that P M g s P M h for all g, h g I . How-n n d
X Ž . Ž . Ž Ž .ever, the events M g g g I are pairwise disjoint since a f F 1 forn d d

X .f g M . It follows thatn

< < XI P M g F 1.Ž .Ž .d n

< < dSince I G q r2 d the result follows.d

Ž X . yd r2Claim 4. For d ) d , P Q F 2 dq .n d
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X < < Ž . Ž .Indeed, Q is a union of J subsets of the form Q9 g . Since Q9 g :d d
X Ž . Ž Ž .. ydM g we have P Q9 g F 2 dq by Claim 3. It follows thatn

X < < yd d r2 yd yd r2P Q F J 2 dq F q 2 dq s 2 dq .Ž .d d

Ž . Ž .Claim 5. P Q9 s o e .n

We have

P Q9 F P QX F 2 dqyd r2 .Ž . Ž .Ý Ýd
d)d d)dn n

For n large and d ) d we have 2 d - q d r4. Thusn

qyd n r4
yd r4 yd r4nP Q9 F q F F 10q .Ž . Ý y1r41 y qd)dn

Ž .The term on the right hand side is clearly in o e . The claim follows.n
This completes the proof of Proposition C, and of the main result.

4. APPLICATIONS

In this section we derive some new results concerning generating pairs
Ž .for the general and special linear group.

Ž .For a group G and an element x g G, let P G denote the probabilityx
that x, y generate G, where y is a randomly chosen element of G. Set also

Py G s min P G : 1 / x g G .� 4Ž . Ž .x

Ž . yŽ . ŽThe probabilities P G , P G were studied in a slightly differentx
. w xnotation by Guralnick, Kantor, and Saxl GKS in the case where G is a

finite simple classical group. Let G be such a group, let F be itsq
underlying field, and let n denote the dimension of G. Then it is proved in
w xGKS that

1
yP G F 1 y ,Ž . 22 q q 2

yŽ .so P G is bounded away from 1 if q is bounded. It is also shown that

Py G ª 1 as q ª `, provided n is bounded.Ž .

The case where both q and n tend to infinity remains unclear. For
Ž .PSL n, q this case can now be settled as follows.
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yŽ Ž ..THEOREM 4.1. With the abo¨e notation, P PSL n, q ª 1 as q ª `,
without restrictions on n.

To prove the theorem we may assume n ª `. We need some notation.
Ž .For a maximal subgroup M of G and an element x g G, let fix x, M

denote the number of fixed points of x in the permutation representation
of G on the cosets of M, and let the fixity of G in this representation be
defined by

fix G, M s max fix x , M : 1 / x g G ,� 4Ž . Ž .

Ž .and the relative fixity or the fixed-point ratio by

fix G, MŽ .
rfix G, M s .Ž .

< <G : M

Let MM be a set of representatives for the conjugacy classes of maximal
subgroups of G, and fix a non-identity element x g G.

Now, if x, y do not generate G, then there is a maximal subgroup M of
G containing x, such that y g M. This yields the inequality

< <y11 y P G F G : M s rfix x , M , 16Ž . Ž . Ž .Ý Ýx
xgM max G MgMM

w xwhich was obtained and used in GKS .
Ž .Now, suppose G s PSL n, q , n ª `, and y g G is chosen at random.

Then, by our main result, the probability that y lies in an irreducible
Ž .maximal subgroup of G tends to 0, and is of the form o e . Thereforen

1 y P G F o e q Q G ,Ž . Ž . Ž .x n x

Ž .where Q G is the probability that a random element y g G lies in somex
reducible maximal subgroup M of G containing x. Let PP be a set of
representatives for the conjugacy classes of the reducible maximal sub-

Ž .groups of G. As in 16 , we have

Q G F rfix x , M .Ž . Ž .Ýx
MgPP

We therefore obtain

1 y P G F o e q rfix x , M F o e q rfix G, M .Ž . Ž . Ž . Ž . Ž .Ý Ýx n n
MgPP MgPP

Ž .Maximizing the left hand side over 1 / x g G we obtain

1 y Py G F o e q rfix G, M .Ž . Ž . Ž .Ýn
MgPP
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yŽ .To show that P G ª 1 it therefore suffices to show that

rfix G, M ª 0 as q ª `. 17Ž . Ž .Ý
MgPP

Write

� 4PP s P : 1 F k F n y 1 ,k , n

where P is the stabilizer in G of some k-dimensional subspace. Itk , n
w xfollows from the results of Shih Shi that

c
rfix G, P F ,Ž .k , n lq

� 4where c is some absolute constant and l s min k, n y k . This yields

rfix G, M s rfix G, P F 2c qykŽ . Ž .Ý Ý Ýk , n
0-k-n 0-kFnr2MgPP

qy1
y1F 2c F 4cq .y11 y q

Ž .This implies 17 .
Theorem 4.1 is proved.
Note that our proof yields

1 1
yP PSL n , q G 1 y O y o .Ž .Ž . ž / ž /q log log log n

Ž w x .Remark. Using somewhat similar ideas and LP in particular , it can
be shown that, for x g A ,n

supp xŽ .
P A s q o 1 ,Ž . Ž .x n n

Ž . w xwhere supp x denotes the number of points moved by x Sh2 . It would be
Ž Ž ..nice to obtain an analogous formula for P PSL n, q , as a function ofx

some relevant invariants of x.
The second application of our main theorem has to do with invariable

Ž .generation of GL n, q .
We say that elements x , . . . , x of a group G generate G in¨ariably if1 d

x g1 , . . . , x g d generate G for all g , . . . , g g G.1 d 1 d

This condition, which arises in the context of the inverse Galois problem
Ž w x.and the computation of Galois groups see SM , is obviously a very strong
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one; many groups do not have small sets of invariable generators. How-
Ž .ever, our main theorem can be used to prove that, for large n, GL n, q is

invariably generated by two elements. In fact we prove a little more.

Ž . Ž .THEOREM 4.2. There exists x g GL n, q such that, if y g GL n, q is
Ž .chosen at random, then the probability that x, y generate GL n, q in¨ariably

Ž .is at least 1 y o e .n

Ž .To prove the theorem, set G s GL n, q and let x g G be a Singer
cycle. Let U denote the set of elements y g G which do not belong to a
proper irreducible subgroup. We shall prove

Claim. If y g U then x, y generate G invariably.

Indeed, suppose by contradiction that y g U and that x, y do not
generate G invariably. Then there exist a conjugate x9 of x and a
conjugate y9 of y such that

² :H [ x9, y9 / G.

Note that x9 is also a Singer cycle, so in particular it is irreducible. This
implies that the subgroup H is irreducible.

Ž .Now, since y g U we have y9 g U as U is closed under conjugacy .
Since y9 lies in the irreducible subgroup H it follows that H is not proper,

Ž .namely H = SL n, q . We find that

² :H = SL n , q , x9 s GŽ .

Žwhere the last equality follows from the fact that the determinant of a
w.Singer cycle generates the multiplicative group F . This contradictionq

completes the proof of the claim.
Ž .Theorem 4.2 follows, since the probability that y g U is 1 y o e .n

Remark. It can be shown that a variant of Theorem 4.2 holds for S .n
Ž .More precisely, let x be the full cycle 1, 2, . . . , n . Then, adopting the

w xarguments of the proof of Theorem 4.2 and using LP , one easily sees that
Ž y0.05.the probability that x, y generate S invariably is 1 y o n if n isn

Ž y0.05.even, and 1r2 y o n if n is odd. In particular, if n is large, then S isn
invariably generated by two elements, which can in practice be found
rather easily. This could be useful in deciding whether the Galois group of
a given irreducible polynomial of degree n over the rationals is equal to

Ž w x.the full symmetric group S see SM .n
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