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Abstract

New very detailed proofs of Theorems 2.5 and 2.64 from the seminal paper of Philip Hall [P
On a theorem of Frobenius, Proc. London Math. Soc. Ser. (2) 40 (1936) 468–501] are given.
ber of generalizations of these theorems are proved. For example, we show that ifG is ap-group of
orderpk(p−1)+3, k > 2, and exponent> pk with Ωk(G) = G, then eitherG is of maximal class o
G possesses a normal subgroupH of orderpp and exponentp such thatG/H is of maximal class
Counting theorems play important role in this note.
 2005 Elsevier Inc. All rights reserved.

Probably, the following remarkable ‘conditionless’ structure theorem1 is one of the
deepest consequences of Hall’s theory of regularp-groups.

Theorem 1 (P. Hall [6, Theorem 2.5]).Let H > {1} be a normal subgroup of a p-group G.
Then there exists in H a chain C : {1} = L0 < L1 < · · · < Ln = H of G-invariant sub-
groups with the properties (i = 1, . . . , n):

E-mail address: berkov@math.haifa.ac.il.
1 As far as I know, this is the first citing the above theorem since its publication in 1936.
0021-8693/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.06.030

https://core.ac.uk/display/82749035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


464 Y. Berkovich / Journal of Algebra 294 (2005) 463–477

er

l

ent

on-
ial
ap
t use
ined

lly in
tional
s are not

,

m 1
rem 1,
r. As
ble
based

ce of
la is

lar
lar and
(a) Li/Li−1 is of order � pp−1 and exponent p, and
(b) either the order of Li is exactly p(p−1)i , or else Li = Ωi(H).

A chainC, having properties (a) and (b) of Theorem 1, is said to be a(p−1)-admissible
Hall chain in H , and this is agrees with the definition of ak-admissible Hall chain
following Supplement 2 to Theorem 1. The length ofC is at least logp(exp(H)) since
exp(Li) � pi for all i.

It follows from Theorem 1 that ifp > 2, e > 1, exp(G) = pe, and|G| � p(p−1)(e−1),
then, for some natural numberk < e, thep-groupG has a characteristic subgroup of ord
< p(p−1)k and exponentpk . Indeed, letC : {1} = L0 < L1 < · · · < Ln = G be a(p − 1)-
admissible Hall chain inG, which exists by Theorem 1. Sincen � e, there exists a natura
numberk < e such that|Lk| < p(p−1)k . In that case, by Theorem 1,Lk = Ωk(G), and this
subgroup is characteristic inG. It is interesting to give a proof of this assertion independ
of Theorem 1.

The original proof of Theorem 1, a skillful and fairly difficult inductive argument, c
tains a gap. Namely, in [6, p. 481], the numberi1 is defined (this number plays the cruc
role in Hall’s proof). However, the case in whichi1 does not exist, is overlooked. This g
is easily repaired in part (iii) of our proof of Theorem 1. In view of Remark 2, we do no
the numberi1 at all. All prerequisites for the presented proof of Theorem 1 are conta
in §2 of [6] so that proof is a real simplification of the original one. Our proof, especia
part (i), uses some ideas of Hall’s proof. As a by-product of this approach, two addi
new results, Supplements 1 and 2 to Theorem 1 are presented (these supplement
consequences of Theorem 1).

Theorem 2.64 in [6] asserts that if ap-groupG has order� p(p−1)k+1 andΩk(G) = G,
then exp(G) � pk . This follows immediately from

Theorem 2. Let k ∈ N and let G be a p-group. If G has no subgroup of order p(p−1)k+1

and exponent � pk , then exp(Ωk(G)) � pk .

Suppose thatG is as in the statement of [6, Theorem 2.64]. Assuming that exp(G) > pk ,
we see thatG has no subgroup of exponent� pk and orderp(p−1)k+1(� |G|). In that case
by Theorem 2, exp(Ωk(G)) � pk , contrary to the assumption sinceΩk(G) = G.

The proof of Theorem 2 is based on Lemma 3(i). In part (iii) of the proof of Theore
we use a partial case of Theorem 2. Our proof of Theorem 2 is independent of Theo
in contrast to the original proof of [6, Theorem 2.64], hence, it is essentially simple
p-groups of maximal class and order> p(p−1)k+1 show, Theorem 2 yields the best possi
result. Theorem 2 is a partial case of Theorem 4, which is not so elementary since it is
on Blackburn’s theory ofp-groups of maximal class.

The collecting formula (the so called Hall–Petrescu formula) is used in one pla
Hall’s proof of Theorem 1 essentially. In our proof, a good substitute for that formu
Theorem 2.

According to Blackburn, ap-group G is said to be absolutely regular if
|G :�1(G)| < pp. By Hall’s regularity criterion (see Lemma 3(c)), absolutely regu
p-groups, as their name indicates, are regular. All necessary prerequisites on regu
absolutely regularp-groups, presented in Lemma 3(c),(d).
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We use the standard notation common for papers onp-groups (see [1,2]). Denot
Ωn(G) = 〈x ∈ G | xpn = 1〉 and �n(G) = 〈xpn | x ∈ G〉. If A < G, exp(A) � pe and
k < e, then�k(A) � Ωe−k(�k(G)) since�k(A) is generated by elements of order� pe−k .
Let

�0(G) = G, �1(G) = �1(G), �i+1(G) = �1
(�i (G)

)
, i = 1,2, . . . .

Since exp(G/�i (G)) � pi , then�i (G) � �i (G). The subgroups�i (G) are characteristi
in G and control the structure of the subgroups�i (G).

In what follows we use the bar convention.
To facilitate the proof of Theorem 1 and all subsequent results, it will be convenie

begin by proving Lemma 3, Theorem 2 and the assertions contained in Remarks 1–

Lemma 3. Let G be a p-group.

(a) If G is irregular, it possesses a characteristic subgroup of order � pp−1 and expo-
nent p. In particular, if G is an arbitrary p-group and H , a normal subgroup of G,
has a subgroup of order pk � pp−1 and exponent p, then H possesses a G-invariant
subgroup of order pk and exponent p.

(b) Suppose that W , a normal subgroup of G, has a subgroup of order pp−1 and expo-
nent p, let R < W be a G-invariant subgroup of order pk < pp−1 and exponent p.
Then there exists a G-invariant subgroup H < W of order pp−1 and exponent p such
that R < H . On the other hand, if W has no G-invariant subgroup of order pp−1 and
exponent p, it is absolutely regular.

(c) (Hall) (i) p-groups of class < p (so also groups of order pp) are regular. (ii) Hall
regularity criterion [6, Theorem 2.3]:absolutely regular p-groups are regular. (iii) If
G is regular, then exp(Ωn(G)) � pn and |Ωn(G)| = |G/�n(G)| for n ∈ N.

(d) Sections of absolutely regular p-groups are absolutely regular.
(e) Let H be a normal subgroup of G, where |H | � p(p−1)e and exp(H) = pe. Then there

exists a chain {1} = T0 < T1 < · · · < Te = H of length e of G-invariant subgroups
such that

pp−1 � |T1/T0| � |T2/T1| � · · · � |Te/Te−1|, exp(Ti/Ti−1) = p, i = 1, . . . , e.

If, in addition, |H | = p(p−1)e, then |Ti/Ti−1| = pp−1 for all i.
(f) Let H be a normal subgroup of G, where |H | = p(p−1)e and exp(H) � pe. Then there

exists a chain {1} = T0 < T1 < · · · < Te = H of length e of G-invariant subgroups
such that |Ti/Ti−1| = pp−1 and exp(Ti/Ti−1) = p for i = 1, . . . , e.

(g) Suppose that W , a normal subgroup of G, is neither absolutely regular nor of maximal
class. (i) [2, Theorem 7.6]The number of subgroups of order pp and exponent p in W

is ≡ 1 (mod p). (ii) [3, Corollary 13.3]If A < W be a G-invariant subgroup of order
pa < pp , then there exists in W a G-invariant subgroup H of order pp and exponent
p containing A.
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(h) (i) If G is absolutely regular and |G| > p(p−1)k , then exp(G) > pk . (ii) If G is of
maximal class and |G| > p(p−1)k+1, then exp(G) > pk . Any two irregular p-groups
of maximal class and the same order have the same exponent.2

(i) Suppose that |G| � ppk . Then �k−1(G) is either absolutely regular or of order pp and
exponent p (the same is true for �k−1(G)(� �k−1(G))). If, in addition, |G| < ppk ,
the above two subgroups are absolutely regular.

(j) [2, Theorem 7.4(b)]Suppose that G is irregular but it is not of maximal class. If G

contains a subgroup H of maximal class and index p, then G/Kp(G) is of order pp+1

and exponent p. In that case, exp(G) = exp(H).
(k) [2, Theorem 13.21]Let A < G and suppose that all subgroups of G that contain A as

a subgroup of index p, are of maximal class. Then G is also of maximal class.
(l) (Blackburn, see [2, Theorem 9.6])Let G be of maximal class of order > pp+1 and

exponent pe. Then G has no normal subgroup of order pp and exponent p and ex-
actly p maximal subgroups, say M1, . . . ,Mp , of G are of maximal class and one of
maximal subgroups of G, say G1, is absolutely regular and exp(G1) = exp(G). Next,
exp(Mi) < exp(G) if and only if |G| = p(p−1)e+2 and Kp(G) = �1(G) has exponent
pe−1. Regular epimorphic images of G are of exponent p.

(m) (Blackburn, see [3, Theorems 9.5 and 9.6])If G is of maximal class, then Ω2(G) = G.
If, in addition, G is irregular, then its subgroups of orders > pp are either absolutely
regular and contained in G1 (see (l)) or of maximal class. Next, if |G| > pp , then G is
irregular and |G/�1(G)| = pp .

Proof. (a) For a proof of the first assertion, see [2, the paragraph preceding Theorem
Let us prove the second assertion. IfH is regular, the desired subgroup is contained in
G-invariant subgroupΩ1(H) of exponentp (see (c)). Now letH be irregular. Then, by th
first assertion,H has a characteristic subgroupK of order� pp−1 and exponentp, and
our claim now is obvious.

(b) By (a), there exists aG-invariant subgroupH � W of orderpp−1 and exponentp.
SetD = RH ; thenD is normal inG. Clearly, cl(D) < p so D is regular, and we con
clude that exp(D) = p (see (c)) The desired subgroup is anyG-invariant subgroupL of
orderpp−1 such thatR < L � D. Now suppose thatW has noG-invariant subgroup o
orderpp−1 and exponentp. Then, by Lemma 3(g)(i),W is either absolutely regular o
irregular of maximal class. In the second case, however,Ω1(Φ(W)) is of orderpp−1 and
exponentp, contrary to the assumption.

(d) Since epimorphic images ofG are absolutely regular (this is obvious), it suffices
show that any subgroupU of G is absolutely regular. Indeed, by (c),

∣∣U/�1(U)
∣∣ = ∣∣Ω1(U)

∣∣ �
∣∣Ω1(G)

∣∣ = ∣∣G/�1(G)
∣∣ � pp−1,

and we are done.
(e) If H is absolutely regular, then{1} < Ω1(H) < · · · < Ωe(H) = H is the desired

chain. Now letH be not absolutely regular. We use induction on|H |. The subgroupL =

2 There exist, forp > 2, two regularp-groups of maximal class and the same order which have distinct e
nents.
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�e−1(H) is absolutely regular and exp(L) = p, |L| � pp−1 (see (i)). By (b),L � U � H ,
whereU is G-invariant of orderpp−1 and exponentp. Since|H/U | � p(p−1)(e−1) and
exp(H/U) = pe−1, there is, by induction, a chainU/U = T1/U < · · · < Te/U = H/U of
G-invariant subgroups such that exp(Ti/Ti−1) = p for i = 1, . . . , e (hereT0 = {1}) and

pp−1 � |T1/T0| � |T2/T1| � · · · � |Te/Te−1|.

Then{1} = T0 < T1 < · · · < Te = H is the desired chain.
(f) In view of (e), one may assume that exp(H) < pe so H is not absolutely regula

by (h), below. ThenH possesses aG-invariant subgroupT1 of order pp−1 and expo-
nent p, by (c). Since|H/T1| = p(p−1)(e−1) and exp(H/T1) � exp(H) � pe−1, there
is, by induction, a chainT1/T1 < T2/T1 < · · · < Te/T1 = H/T1 of G-invariant sub-
groups such thatTi+1/Ti is of order pp−1 and exponentp, i = 1, . . . , e − 1. Then
{1} = T0 < T1 < · · · < Te = H is the desired chain.

(h) Parts (i), (ii) follow from (c), (d) and (l).
(i) Assume that�k−1(G) is not absolutely regular. One may assume thatk > 1. We have

|�i−1 :�i (G)| � pp for i = 1, . . . , k, by (d). In that case,

∣∣G :�k−1(G)
∣∣ =

k−1∏

i=1

∣∣�i−1(G) :�i (G)
∣∣ � pp(k−1)

so |�k−1(G)| � pp. In that case, if�k−1(G) is of exponent> p, it is absolutely regular
In view of �k−1(G) � Ω1(�k−1(G)), we are done.

(j) We have to check the last equality only. In the case under consideration, Kp(G) =
�1(H) and exp(�1(H)) = 1

p
exp(H) (Lemma 3(l)). Then

exp(G) � exp
(
Kp(G)

)
exp

(
G/Kp(G)

) = p · exp
(�1(H)

) = exp(H)

sinceH is of maximal class, and we are done since exp(G) � exp(H). �
Remarks. Let G be ap-group andk, j ∈ N.

1. Let exp(Ωk(G)) � pk and letG/Ωk(G) be regular. We claim that exp(Ωk+j (G)) �
pp+j and Ωj(G/Ωk(G)) = Ωk+j (G)/Ωk(G). Indeed, setH = Ωk(G) and F/H =
Ωj(G/H). One may assume thatH < G; then exp(H) = pk . If x ∈ F , thenxpj ∈ H

(Lemma 3(c)(iii)) soo(x) � pk+j andF � Ωi+j (G). Now let y ∈ G with o(y) � pk+j .

Thenypj ∈ H soyH ∈ F/H andy ∈ F , and we conclude thatΩi+j (G) � F .
2. Let H be a normal subgroup ofG, exp(Ωk(H)) = pk , H/Ωk(H) is absolutely

regular and|Ωk(H)| � p(p−1)k . Let {1} = L0 < L1 < · · · < Lk = Ωk(H) be a(p − 1)-
admissible Hall chain inΩk(H) which exists by Lemma 3(e). For a nonnegative integes,
put Lk+s/Lk = Ωs(H/Lk). We claim that{1} = L0 < L1 < · · · < Lk < Lk+1 · · · < H is
a (p − 1)-admissible Hall chain inH . Indeed, the factors of the above chain are of
der � pp−1 and exponentp andΩi(Ωk(H)) = Ωi(H) for i � k, and we are done (se
Remark 1).
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3. Let M be a normal subgroup ofG andΩj(G/M) � H/M for someH � G. Then
Ωj(G) � H . Indeed, ifx ∈ G with o(x) � pj , theno(xM) � pj soxM � Ωj(G/M) �
H/M andx ∈ H .

4. Let H be a normal subgroup ofG and letF0 � H be aG-invariant subgroup o
orderp. Suppose thatH/F0 is of orderp(p−1)e and exponent� pe. We claim that there
is in H a (p − 1)-admissible Hall chain of lengthe + 1 with last index= p. One may
assume thate > 0. SetḠ = G/F0. By Lemma 3(f), there is a(p − 1)-admissible Hall
chain{1̄} = F̄0 < F̄1 < · · · < F̄e = H̄ in H̄ . We proceed by induction one. Suppose tha
there is a(p − 1)-admissible Hall chain{1} = L1 < · · · < Le−1 < Fe−1 in Fe−1 such
that |Fe−1/Le−1| = p. ThenH/Le−1 is of orderpp so regular, andH/Fe−1 is of order
pp−1 and exponentp. It follows thatΩ1(H/Le−1) is of order� pp−1 and exponentp
(Lemma 3(c)(iii)). LetLe/Le−1 be an arbitraryG-invariant subgroup of orderpp−1 in
Ω1(H/Le−1) (see Lemma 3(c) again). Then{1} = L0 < L1 < · · · < Le−1 < Le < H is
the desired chain of lengthe + 1 in H .

Proof of Theorem 2. We proceed by induction on|G| andk assuming thatG is a minimal
counterexample. ThenΩk(G) > pk soG is irregular (Lemma 3(c)), and exp(G) � pk+1.

Let k = 1 and letR, a normal subgroup ofG, be of exponentp of maximal order.
SinceG has no subgroup of orderp(p−1)1+1 = pp and exponentp, we get|R| = pp−1

(Lemma 3(a)). Ifx ∈ G − R is of orderp, thenS = 〈x,R〉 is of orderpp = p(p−1)1+1 and
exponentp (Lemma 3(c)), a contradiction. Thus,R = Ω1(G) so exp(Ω1(G)) = p, and the
theorem is true fork = 1.

Now we letk > 1. ThenG has a noncyclic subgroup of orderpk+1 (otherwiseG is
cyclic) sop > 2. If M < G is maximal, then exp(M) � pk since exp(G) > pk . Let A < G

be a subgroup of maximal order among subgroups of exponent� pk ; then|A| � p(p−1)k ,
by hypothesis, andA < G since exp(A) < exp(G). Let A � M < G, where|G :M| = p;
then A � Ωk(M). By induction, exp(Ωk(M)) = pk so Ωk(M) = A, whenceA is nor-
mal in G and exp(A) = pk since exp(M) � pk . By assumption, there isg ∈ G − A with
o(g) � pk . Thengp ∈ M sogp ∈ Ωk−1(M) � A. SetB = 〈g,A〉; then|B| = p|A| > |A|.
If B � F < G, where|G : F | = p, thenB � Ωk(F ) has exponentpk (here we use induc
tion), contrary to the choice ofA. Thus,F does not exist soB = G and|G : A| = p, |G| �
p(p−1)k+1 < ppk and exp(G) = pk+1. Therefore, by Lemma 3(i),�k−1(G) is absolutely
regular since it has an element of orderp2. LetΩ1(�1(G)) � H , whereH is aG-invariant
subgroup of orderpp−1 and exponentp (H exists, by Lemma 3(b)). Then�k−1(A) �
Ω1(�k−1(G)) � H since�k−1(A) is generated by elements of orderp. If H � A, then
G = AH andG/(H ∩ A) = (A/(H ∩ A)) × (H/(H ∩ A)) is of exponentpk−1. In that
case, exp(G) = pk , a contradiction. Thus,H � A. SetḠ = G/H . Let x ∈ G − A be such
thato(x) is as small as possible; theno(x) � pk . In that case,̄G = 〈x̄, Ā〉, exp(Ā) = pk−1,
|Ā| � p(p−1)(k−1) ando(x̄) � pk−1 sincexpk−1 � Ω1(�k−1(G)) � H . We also have|Ḡ| �
p(p−1)(k−1)+1 andΩk−1(Ḡ) = Ḡ. The groupḠ has no subgroup of orderp(p−1)(k−1)+1

(� |Ḡ|) and exponent� pk−1. Therefore, by induction, exp(Ωk−1(Ḡ)) = pk−1 so
exp(Ḡ) = pk−1, and we have exp(G) � pk , a final contradiction. �
Remarks. Let G be ap-group andk ∈ N.

5. Let Ωk(G) = G. If A is maximal among proper subgroupsX of G satisfying
Ωk(X) = X, then |G : A| = p. Indeed, assume thatA is not normal inG. Take x ∈
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G − NG(A). Let A < M < G, whereM is maximal inG. ThenA �= Ax � M , A < H =
〈A,Ax〉 � M < G andΩk(H) = H , contrary to the choice ofA. Thus,A is normal inG.
Let y ∈ G − A be of minimal order; theno(y) � pk , yp ∈ A, Ωk(〈y,A〉) = 〈y,A〉 > A so
G = 〈y,A〉 > A and|G : A| = p, as was to be shown.

6. Let A < G be maximal among subgroups ofG of exponent� pk . We claim that if
|A| � p(p−1)k , thenA = Ωk(G). Assume that this is false; thenA < G. SetN = NG(A).
Assume thatN < G. Then, by induction,A = Ωk(N) is characteristic inN soN = G and
A = Ωk(G), i.e.,G is not a counterexample. Thus,A is normal inG. Let y ∈ G − A be
of minimal order; theno(y) � pk andyp ∈ A. SetB = 〈y,A〉. Then|B| � p(p−1)k+1 and
Ωk(B) = B. It follows from Theorem 2 that exp(B) = pk , contrary to the choice ofA.
Thus,A = Ωk(G), as was to be shown. (Compare with Theorem 2.)

If, in Remark 6,A is of orderp(p−1)k+1, it is not necessarily normal inG (let G be
a p-group of maximal class and order� p(p−1)(k−1)+3; if G contains a subgroupA of
orderp(p−1)k+1 and exponentpk , it is maximal among subgroups ofG of exponentpk ,
butA < Ωk(G)). See, however, Theorem 6.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Set exp(H) = pe. We may assume thate > 1, p > 2 andH is not
absolutely regular. Indeed, ife = 1, then any chain satisfying condition (a), is a Hall cha
If H is absolutely regular, then{1} < Ω1(H) < · · · < Ωe(H) = H is the unique (p − 1)-
admissible Hall chain inH . Next, if p = 2, then any part of a chief series ofG, lying
belowH , is a Hall chain inH .

We proceed by induction on|H |.
Let F0 be aG-invariant subgroup of orderp in H and setḠ = G/F0. Then, by induc-

tion, there is inH̄ a (p − 1)-admissible Hall chain

{1̄} = F̄0 < F̄1 < · · · < F̄n = H̄ .

Obviously, exp(F̄i) � pi so exp(Fi) � pi+1 for all i. Let i0 be the greatest value ofi
such that|F̄i | = p(p−1)i . In view of Remark 4, one may assume thati0 < n; thenp > 2
and|F̄i0+1| < p(p−1)(i0+1) soΩi0+1(H̄ ) = F̄i0+1 since the displayed chain satisfies con
tion (b) of the theorem. It follows thatΩi0+1(H) � Fi0+1 (Remark 3) so

(∗) Ωi0+1(H) = Ωi0+1(Fi0+1).

Since|Fi0+1| � p(p−1)(i0+1), it follows from Theorem 2 that exp(Ωi0+1(Fi0+1)) � pi0+1

or, what is the same,

(∗∗) exp(Ωi0+1(H)) � pi0+1.

Next, by the choice ofi0, we have|F̄i0+1/F̄i0| < pp−1, and we conclude that̄H/F̄i0

has noG-invariant subgroup of orderpp−1 and exponentp (indeed, ifŪ/F̄i0 is a such
subgroup, then exp(Ū) � pi0+1 so Ū � Ωi +1(H̄ ) = F̄i +1, which is a contradiction)
0 0
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Thus, F̄i0+1/F̄i0 = Ω1(H̄ /F̄i0) whenceH̄ /F̄i0 is absolutely regular (Lemma 3(b)) s
H/Fi0(

∼= H̄ /F̄i0) is also absolutely regular.
Assume thati0 = 0. Then|F̄1| < pp−1 soΩ1(H̄ ) = F̄1, by (b), and|F1| = |F0||F̄1| �

pp−1. In that case,F1 must be of orderpp−1 and exponentp (otherwise,H is absolutely
regular, by Lemma 3(b)). ThenΩ1(H) = F1 andH/Ω1(H) is absolutely regular (see th
previous paragraph). By Remark 2, there is a(p − 1)-admissible Hall chain inH .

In what follows let i0 > 0; then F̄1 is of orderpp−1 and exponentp so |F1| = pp

and exp(F1) � p2. We also have exp(Fi0+1) � |F0|exp(F̄i0+1) � p · pi0+1 = pi0+2 and,
according to this, we have to consider separately the following three possibilities:

(i) exp(Fi0+1) < pi0+1,
(ii) exp(Fi0+1) = pi0+1, and

(iii) exp(Fi0+1) = pi0+2.

(i) Suppose that exp(Fi0+1) < pi0+1; then, by (∗), Fi0+1 = Ωi0+1(Fi0+1) = Ωi0+1(H).
It follows from the last equality that exp(H) < pi0+1 so Ωi0+1(H) = H and hence
Fi0+1 = H . By Remark 4, there exists inFi0 a (p − 1)-admissible Hall chain

{1} = L0 < L1 < · · · < Li0 < Fi0

satisfying

|Fi0: Li0| = p, |Li0| = p(p−1)i0, |H/Li0| = |H/Fi0||Fi0/Li0| � pp−2 · p = pp−1

soH/Li0 is regular of exponent� p2.
If exp(H/Li0) = p, then{1} = L0 < L1 < · · · < Li0 < H is the desired chain.
Now we let exp(H/Li0) = p2. By Lemma 3(c)(iii),U/Li0 = Ω1(H/Li0) is of exponent

p and index|Fi0/Li0| = p in H/Li0 since exp(H/Fi0) = p. Therefore,

{1} = L0 < L1 < · · · < Li0 < U

is a (p − 1)-admissible Hall chain inU . Let W/Li0 = �1(H/Li0); then |W/Li0| =
|(H/Li0) : (U/Li0)| = p (part (iii) of Lemma 3(c)). Since exp(H/W) = p and|H/W | <

pp−1, we get�1(H) < W (< since |H/�1(H)| � pp: H is not absolutely regular)
Therefore, there exists aG-invariant subgroupTi0 satisfying �1(H) < Ti0 < W and
|Ti0| = p(p−1)i0 (recall thatp(p−1)i0 = |Li0| < |H | and |H :�1(H)| � pp > |H :W |).
We have exp(Ti0) � exp(H) � pi0, so there exists inTi0 a (p − 1)-admissible Hall chain
{1} = T0 < T1 < · · · < Ti0 and all indices of that chain are equal topp−1 (Lemma 3(f)).
SinceH/Ti0 is of order� pp−1 and exponentp, {1} = T0 < T1 < · · · < Ti0 < H is the
desired chain.

(ii) Suppose that exp(Fi0+1) = pi0+1; then Fi0+1 = Ωi0+1(H), by (∗). Since
H/Ωi0+1(H), as an epimorphic image ofH/Fi0, is absolutely regular and|Ωi0+1(H)| �
p(p−1)(i0+1), there is a(p − 1)-admissible Hall chain inH , by Lemma 3(e) and Remark

(iii) Suppose that exp(Fi0+1) = pi0+2. Then, by (∗∗), exp(Ωi0+1(H)) = pi0+1. We have
Fi � Ωi +1(H) andH/Fi is absolutely regular soH/Ωi +1(H) is also absolutely regula
0 0 0 0
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and, in addition,|Ωi0+1(H)| � p(p−1)(i0+1). Therefore, there is a(p − 1)-admissible Hall
chain inH , by Remark 2.

The proof is complete. �
Let H be a normal subgroup of orderpm and exponentpe of a p-group G and let

C : {1} = L0 < L1 < · · · < Ln = H be a(p − 1)-admissible Hall chain inH .

(A) Suppose, in addition, thatm � (p − 1)e. Assume that for somei � e, we have|Li | <
p(p−1)i ; thenn > e sincem < (p−1)n. In that case, by Theorem 1,Le = Ωe(G) = H

son � e, a contradiction. Thus, for alli � e, we must have|Li | = p(p−1)i .
(B) Suppose that, for somei < n, we have|Li | < p(p−1)i (here we do not assume th

m � (p−1)e). ThenLi = Ωi(H) < H so exp(Li) = pi . It follows that exp(Lj ) = pj

for all j � n son = e.
(C) Let i0 be the maximal value ofi satisfying|Li | = p(p−1)i . Then, by Theorem 1, th

membersLj , j > i0, of the chainC are determined uniquely by the equalityLj =
Ωj(H).

Supplement 1 to Theorem 1. Let k < p be a natural number and let H be a normal
subgroup of a p-group G. Then there is in H a chain {1} = L0 < L1 < · · · < Ln = H of
G-invariant subgroups with the properties (i = 1, . . . , n):

(a) Li/Li−1 is of order � pk and exponent p, and
(b) either the order of Li is exactly pik , or else Li = Ωi(H).

Setting, in Supplement 1,k = p − 1, we get Theorem 1.

Supplement 2 to Theorem 1. Let H be a regular normal subgroup of a p-group G and
let k ∈ N. Then there is in H a chain {1} = L0 < L1 < · · · < Ln = H of G-invariant
subgroups with the properties (i = 1, . . . , n):

(a) Li/Li−1 is of order � pk and exponent p, and
(b) either the order of Li is exactly pik , or else Li = Ωi(H).

A chain C satisfying conditions (a) and (b) of any of the above supplements, is
to be ak-admissible Hall chain in H (independently of the structure ofH ). To prove the
above supplements, it suffices to repeat, word for word, the proof of Theorem 1.
proof of Theorem 1 for regularH is not easier than in general case. In the second
plement one can replace regularity by the following condition: wheneverU is a section
of H , then |Ωn(U)| = |U/�n(U)| for all n ∈ N. In that case, according to [7], we al
have exp(Ωk(U)) � pk and�k(U) = {xpk | x ∈ U} for all sectionsU of H . Following
Mann, such groups are calledP-groups. By Lemma 3(c), regularp-groups areP-groups.

Remark. 7. An irregularp-groupG of maximal class is aP-group if and only if|G| =
pp+1 and |Ω1(G)| = pp. Indeed,|Ω1(G)| = |G/�1(G)| and the right-hand side of th
last equality equalspp (Lemma 3(m)). In that case,Ω1(G) is a normal subgroup ofG of
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orderpp and exponentp. Then|G| = pp+1, by Lemma 3(l); in that case, as it is easy
check, we must havep > 2. On the other hand, ifG is of maximal class and orderpp+1

with |Ω1(G)| = pp, it is aP-group since all its proper sections are regular. Mann gav
example of irregular groupG of orderpp+1, p > 2, such that|Ω1(G)| = pp. (It is easy to
show that if all subgroups of orderpp+1 of an irregularp-groupG of maximal class are
P-groups, then|G| = pp+1.)

There existp-groups withoutp-admissible Hall chains. Indeed, ap-group of maximal
class and order� p2p has nop-admissible Hall chain.

As the proof of Theorem 1 shows, if{1} = L0 < L1 < · · · < Ln = H is a (p − 1)-
admissible Hall chain inH � G, then |L1 :L0| � |L2 :L1| � |Ln :Ln−1|. The simi-
lar assertion is not true forp-admissible Hall chains as the groupH = G = 〈x, y |
x8 = 1, y4 = x4, xy = x−1〉 shows (indices of the unique 2-admissible Hall chain inG

are 4, 2, 4).
Let G be ap-group and letH , a normal subgroup inG, be of orderpkp and exponen

� pk . Then there exists ap-admissible Hall chain inH of lengthk. Indeed, the claim is
trivial for k = 1. Assumingk > 1, we proceed by induction onk. By Lemma 3(h),H is
neither absolutely regular nor irregular of maximal class. The subgroup�k−1(H) is of
order� pp and exponentp (Lemma 3(i)). Then, by Lemma 3(g)(ii),�k−1(H) � F < H ,
whereF is aG-invariant subgroup of orderpp and exponentp. We have|H/F | = pp(k−1)

and exp(H/F) � pk−1 so there is ap-admissible Hall chainF1/F = F/F < F2/F <

· · · < Fk/F in H/F , by induction; then{1} = F0 < F1 < · · · < Fk = H is the desired
chain.

It appears that the same approach as in the proof of Theorem 2, allows us to g
new proof of the following

Theorem 4 (= [1, Theorem 4]).Let k > 1. Suppose that a p-group G has no subgroup
of order p(p−1)k+2 and exponent � pk . Then either exp(Ωk(G)) � pk or G is of maximal
class and3 of order � p(p−1)k+2.

Theorem 2 follows from Theorem 4 immediately. The proof of Theorem 4 is no
elementary: it based of the theory ofp-groups of maximal class.

To facilitate the proof of Theorem 4, we first prove the following

Lemma 5. Suppose that G is a group of order p(p−1)k+2 and Ωk(G) = G. Then either
exp(G) � pk or G is of maximal class.

Proof. We are working by induction on|G| andk assuming thatG is a minimal coun-
terexample. Then exp(Ωk(G)) > pk (in that case,G is irregular) andG is not of maximal
class. Therefore, by Theorem 2,G possesses a subgroupA of orderp(p−1)k+1 and ex-
ponent� pk . It follows from exp(G) > pk that exp(A) = pk since|G :A| = p, and then

3 It is asserted in [1, Theorem 4] that ifG is of maximal class, then|G| = p(p−1)k+2. In fact, there is no
restriction on the order ofG in this case, as Theorem 4(b) shows.
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exp(G) = pk+1. By Lemma 3(h),A is not absolutely regular. SinceG is not of maximal
class,k > 1 (see Lemma 3(c)).

Assume thatA is of maximal class; thenA is irregular (Lemma 3(m)) and exp(G) =
exp(A) = pk (Lemma 3(j)), a contradiction.

Since |G| = p(p−1)k+2 � ppk , the subgroup�k−1(G) is absolutely regular since
has an element of orderp2 (Lemma 3(i)). Since exp(A) = pk , the subgroup�k−1(A)

is generated by elements of orderp so it is contained inΩ1(�k−1(G)); in that
case, exp(�k−1(A)) = p and |�k−1(A)| � pp−1 (Lemma 3(c)(iii)). By Lemma 3(b)
Ω1(�k−1(G)) � U , whereU is a G-invariant subgroup of orderpp and exponentp.
Assume thatU � A. ThenG = UA andG/U ∼= A/(U ∩ A) is of exponentpk−1 since�k−1(A) � U ; in that case, exp(G) � exp(G/U)exp(U) = pk , a contradiction. Thus
U < A. Write Ḡ = G/U . Let x ∈ G − A be of minimal order; theno(x) � pk . We have
Ḡ = 〈x̄, Ā〉, o(x̄) � pk−1 sincexpk−1 ∈ Ω1(�k−1(G)) � U , and soΩk−1(Ḡ) = pk−1 and
|Ḡ| = |G/U | = p(p−1)(k−1)+1. By Theorem 2, exp(Ḡ) = pk−1 so exp(G) � pk , andG is
not a counterexample.�
Proof of Theorem 4. If G is of maximal class and exponent> pk , its order is� p(p−1)k+2

and it satisfies the hypothesis [2, Theorem 13.19]; see also Lemma 3(h),(l),(m). Su
thatG is a counterexample of minimal order. Then exp(G) � exp(Ωk(G)) � pk+1 soG is
irregular, all maximal subgroups ofG have exponent� pk andG is not of maximal class
By Theorem 2,G has a (proper) subgroupA of orderp(p−1)k+1 and exponent� pk . Since
A is maximal among subgroups ofG of exponent� pk , we get exp(A) = pk . In view of
Lemma 5,|G| > p(p−1)k+2.

Assume thatG has a subgroupH of maximal class and indexp. Let R, a normal
subgroup ofG, be of orderpp and exponentp (Lemma 3(g)(i)). Assume, in addition
that R < H . Then |H | = pp+1 (Lemma 3(l)). By Lemma 3(j), exp(G) = exp(H) =
p2 < pk+1, a contradiction. Now letR � H ; then G = RH , |R ∩ H | = pp−1 and
G/R ∼= (H/(R ∩ H)) × (R/(R ∩ H)). In that case, exp(H/(R ∩ H)) = exp(G/R) �
pk > p. ThenH/(R ∩ H) is irregular (otherwise, exp(H/(R ∩ H)) = p). In that case
H/(R ∩ H) has a subgroupB/(R ∩ H) of orderp(p−1)(k−1)+1 and exponentpk−1 [3,
Theorems 9.5, 9.6, 13.19]. ButB/(R ∩H) ∼= B0/R for someB0 < G. Then exp(B0) � pk

and |B0| = p(p−1)(k−1)+1+p = p(p−1)k+2 > |A|, a contradiction. Thus, all subgroups
indexp in G are not of maximal class.

The hypothesis is inherited by subgroups ofG. Therefore, ifM is maximal inG, then,
by induction, exp(Ωk(M)) = pk , sinceM is not of maximal class, by the previous pa
graph. If we take, from the start,M so that it containsA, we getA = Ωk(M) soA is normal
in G. By assumption, there isx ∈ G − A with o(x) � pk ; thenxp ∈ M , o(xp) < pk so
xp ∈ Ωk−1(M) � A. SetB = 〈x,A〉. Then|B| = p|A| = p(p−1)k+2, exp(B) = pk+1 and
Ωk(B) = B so, by Lemma 5 and the choice ofA, B must be of maximal class. By th
previous paragraph,|G :B| > p. Let B < M < G, whereM is maximal inG. Then, by the
above,Ωk(M) = A, a contradiction sinceA < B � Ωk(M). The proof is complete. �

For k = 1, Theorem 4 is not true. Indeed, let the central productG = M ∗ C, whereM

is a p-group of maximal class and orderpp+1 with |Ω1(M)| = pp−1 andC is cyclic of
orderp2, |G| = pp+2. ThenΩ1(G) = G has exponentp2, G has no subgroup of orde
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pp+1 = p(p−1)1+2 and exponentp (consider the intersection of that subgroup withM);
see in [5, Appendix 31, the paragraph preceding Exercise B].

The following theorem generalizes Theorem 4; its proof is shorter since it is bas
other ideas.

Theorem 6. Let G be a p-group and k > 1. Suppose that G has a proper subgroup A of
order p(p−1)k+1 which is maximal among subgroups of G of exponent � pk . Then either
Ωk(G) = A or G is of maximal class (in the last case, A is also of maximal class).

Proof. Suppose thatΩk(G) > A; then exp(Ωk(G)) > pk . In that case,G is irregular
(Lemma 3(c)(iii)). It follows that exp(A) = pk .

First suppose thatA is normal inG. Letx ∈ G−A be of minimal order. Theno(x) � pk ,
by assumption, andxp ∈ A so B = 〈x,A〉 has orderp(p−1)k+2 and exponentpk+1, and
Ωk(B) = B. In that case, by Lemma 5,B is of maximal class. It follows from parts (h
and (l) of Lemma 3 thatA is also of maximal class. Now letA < D � G be such tha
|D :A| = p. Since exp(D) > pk = exp(A), it follows from Lemma 3(j) thatD must be of
maximal class. Thus, all subgroups ofG of orderp|A|, containingA, are of maximal clas
soG is also of maximal class, by Lemma 3(k).

Now suppose thatA is not normal inG. Set NG(A) = N . SinceN < G, A is not charac-
teristic inN so, by the previous paragraph,N is of maximal class. Then, by [4, Remark 3
G is also of maximal class. The last assertion follows from Lemma 3(h),(l).�

In particular, if ap-groupG has only one subgroup, sayA, of orderp(p−1)k+1 and
exponent� pk , thenΩk(G) = A.4 This follows from Theorem 6 and Lemma 3(h),(l)
k > 1. Now letk = 1 andΩ1(G) > A. First assume thatA is normal inG. Letx ∈ G−A be
of orderp. SetB = 〈x,A〉 and letx ∈ B1 < B with |B : B1| = p. Then, by the modular law
B1 = 〈x〉 · (B ∩ B1) soΩ1(B1) = B1, and we getB1 �= A, exp(B1) = p (Lemma 3(c)(iii))
and|B1| = pp = |A|, a contradiction. Setting NG(A) = N , we get, by what has just bee
proved,Ω1(N) = A so A is characteristic inN and soN = G, i.e., A is normal inG,
contrary to the assumption.

Let G be a 2-group of exponent> 2k > 2 and letA < G be of order 2k+1 and exponen
� 2k which is maximal among subgroups ofG of exponent� 2k . We claim that then on
of the following holds:

(A) G has a cyclic subgroup of index 2,
(B) G = 〈x, y | x2n = 1, n > 1, y4 = x2n−1

, xy = x−1〉.

We assume thatG has no cyclic subgroup of index 2; thenG is not of maximal class so
by Theorem 6,A = Ωk(G). It follows from Lemma 3(m) thatA is not of maximal class
then cl(A) � 2. In that case,Ω2(G) = Ω2(A) is of order 8. By [2, Lemma 2.1(c)],G is a
group from (B).5

4 Compare with Remark 6.
5 As Janko noticed, two groups in that lemma, corresponding to valuesi = 0 andi = 1, are isomorphic.
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Proposition 7. Let G be a group of order p(p−1)k+3, k > 2. Suppose that Ωk(G) = G and
exp(G) > pk . Then one of the following holds:

(a) G is of maximal class.
(b) G has a subgroup A of index p and exponent pk , A has a G-invariant subgroup H of

order pp and exponent p such that G/H and A/H are of maximal class.

Proof. We have|G| = p(p−1)k+3 � pkp sincek � 3.
Suppose thatG is not of maximal class. Then, by Theorem 4,G has a maxima

subgroupA such that exp(A) = pk ; then exp(G) = pk+1 and |A| = p(p−1)k+2. By
Lemma 3(h),A is neither absolutely regular nor of maximal class. By Lemma 3(i)�k−1(G) is absolutely regular since it has an elements of orderp2, and �k−1(A) �
Ω1(�k−1(G)) since�k−1(G) is generated by elements of orderp. By Lemma 3(g)(ii),
Ω1(�k−1(G)) � H < G, whereH is a G-invariant subgroup of orderpp and expo-
nent p. Let x ∈ G − A be such thato(x) is as small as possible; theno(x) � pk . Set
Ḡ = G/H . We have exp(Ā) = pk−1, |Ḡ| = p(p−1)(k−1)+2, o(x̄) � pk−1 sincexpk−1 ∈
Ω1(�k−1(G)) � H , and soΩk−1(Ḡ) = Ḡ. We have exp(Ḡ) > pk−1 soH < A (otherwise,
G = HA andG/H ∼= A/(A ∩ H) is of exponentpk−1; then exp(G) � pk , which is not
the case). In that case,Ḡ is of maximal class, by Lemma 5. It follows from Lemma 3(h)
thatĀ is also of maximal class. The proof is complete.�

Takingk = 3 in Proposition 7, we get

Corollary 8. Let G be a group of order p3p . If Ω3(G) = G, then one of the following
holds:

(a) exp(G) � p3.
(b) G is of maximal class.
(c) G has a subgroup A of index p and exponent p3, A has a G-invariant subgroup H of

order pp and exponent p such that G/H and A/H are of maximal class.

Proposition 9. Let k > 3, p > 2 and let G be a p-group containing a normal subgroup A

of order p(p−1)k+2 which is maximal among subgroups of G of exponent � pk . Then one
of the following holds:

(a) Ωk(G) = A.
(b) |G :A| = p, there is in A a G-invariant subgroup R of order pp and exponent p such

that G/R and A/R are of maximal class.

Proof. Assume thatΩk(G) > A. Then, ifA < U � G, where|U :A| = p, then exp(U) =
pk+1 so exp(A) = pk . By Lemma 3(h),A is neither absolutely regular nor of maxim
class.

By Lemma 3(i),(c),�k−1(A) is of order� pp−1 and exponentp sinceA is generated by
elements of orderp and|A| < pkp in view of k > 3. Then, by Lemma 3(g)(ii),�k−1(A) <

R < A, whereR is aG-invariant subgroup of orderpp and exponentp. SetḠ = G/R. We
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have|Ā| = p(p−1)(k−1)+1 and exp(Ā) = pk−1. Next, Ā is maximal among subgroups
exponentpk−1 in Ḡ, by the choice ofA. It follows from Theorem 6 that eitherΩk−1(Ḡ) =
Ā or Ḡ and Ā are of maximal class. In the second case,|G : A| = p since each norma
subgroup ofḠ of index> p has center of order> p so is not of maximal class.

It remains to consider the possibilityΩk−1(Ḡ) = Ā. ThenΩk−1(G) � A, by Remark 3.
By assumption, there exists an elementx ∈ G − A such thato(x) � pk andxp ∈ A. Since
Ωk−1G) � A, we geto(x) = pk . SetB = 〈x,A〉; then|B| = p(p−1)k+3 sinceA is normal
in G, Ωk(B) = B and exp(B) = pk+1, by the choice ofA. Since the maximal subgrou
A of B is neither absolutely regular nor of maximal class and|B| > pp+1, B is not of
maximal class (Lemma 3(l)). Working by induction on|G|, we conclude that there is i
A a B-invariant subgroupK of orderpp and exponentp such thatA/K andB/K are
of maximal class. By Lemma 3(m),Ω2(B/K) = B/K soΩ3(B) = B. In that case,B �
Ω3(G) � Ωk−1(G) � A, sincek > 3, and this is a contradiction. Thus,Ωk(G) = A, and
the proof is complete. �

Proposition 10 (Compare with Corollary 8).Suppose that G is a p-group of order � ppk

such that Ωk(G) = G and all irregular sections of G of order pp+1 are P-groups.6 Then
exp(G) � pk .

Proof. Suppose thatG is a counterexample of minimal order; thenk > 1 (Lemma 3(c)(i)),
exp(Ωk(G)) > pk so G is irregular (Lemma 3(c)(iii)). In that case, by Remark 5, th
exists inG a maximal subgroupA such thatΩk(A) = A. SinceA satisfies the hypothesi
we get exp(A) � pk , by induction, so exp(G) = pk+1 and exp(A) = pk .

If G is of maximal class, it is irregular; thenG is of orderpp+1, by the last sentence o
Remark 7; then exp(G) = p2 < pk+1, which is a contradiction.

Assume thatA is of maximal class; thenA is irregular,|A| = pp+1 (Remark 7) so
exp(A) = p2 (it is easy to see that thenp > 2 but we do not use this fact). In that case,
Lemma 3(j), exp(G) = exp(A) = p2 < pk+1, andG is not a counterexample.

Now assume thatA is absolutely regular. Then, by [2, Theorem 7.5],Ω1(G) is of order
pp and exponentp. In that case, obviously, exp(Ωk(G)) = pk , contrary to the assumption

Next we letA be neither absolutely regular nor of maximal class.
By Lemma 3(i),�k−1(G) is absolutely regular since it contains an element of orderp2.

Then�k−1(A) � Ω1(�k−1(G)) sinceΩk−1(A) is generated by elements of orderp, and
so �k−1(A) is of order� pp−1 and exponentp. By Lemma 3(g)(ii),Ω1(�k−1(G)) <

H < G, whereH is aG-invariant subgroup of orderpp and exponentp. SetḠ = G/H .
Let y ∈ G − A be of minimal order. Theno(y) � pk , Ḡ = 〈ȳ, Ā〉, whereo(ȳ) � pk−1

sinceypk−1 ∈ Ω1(�k−1(G)) � H , exp(Ā) = pk−1 soΩk−1(Ḡ) = Ḡ, and|Ḡ| � pp(k−1).
Obviously,Ḡ satisfies the hypothesis withk−1 instead ofk. Then, by induction, exp(Ḡ) �
pk−1 so exp(G) � pk andG is not a counterexample. The proof is complete.�

6 For definition ofP-groups, see the paragraph preceding Remark 7.
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Corollary 11. Let k ∈ N and let A be a proper subgroup of a p-group G which is max-
imal among subgroups of G of exponent � pk . Suppose that all irregular sections of the
subgroup Ωk(G), having order pp+1, are P-groups. Then, if |A| < pkp , then Ωk(G) = A.

Proof. We are working by induction on|G|. Set NG(A) = N . If N < G, thenN satisfies
the hypothesis so, by induction,Ωk(N) = A. In that case,A is characteristic inN so
N = G, contrary to the assumption. Thus,A is normal inG. Let x ∈ G − A be such tha
o(x) is as small as possible. Theno(x) � pk , xp ∈ A soB = 〈x,A〉 is of order� ppk since
A is normal inG, andB = Ωk(B). By Proposition 10, exp(B) � pk , contrary to the choice
of A. �
Question 1. Study the structure of ap-groupG, p > 2, provided there exists only on
(p − 1)-admissible Hall chain inG.

Question 2. Let A < G be p-groups with|A| = p(p−1)k+2, exp(A) = pk , wherek > 1.
Suppose thatA is maximal among subgroups ofG of exponentpk . Study the structure o
G providedA is not normal inG. (See Proposition 9.)

Question 2 is nontrivial even in the casep = 2= k.

Question 3. Let G be ap-group and letE < G be extraspecial of exponentp2. Suppose
that, wheneverE < E1 � G, then exp(E1) > p2. Study the embedding ofE in G. The case
whereE is the unique subgroup ofG of order|E| and exponentp2, is of special interest.

Question 3 is surprisingly complicated. Only in the case|E| = p3 the answer is known
G is a 2-group of maximal class.7 Indeed, takeE1 > E such that|E1 :E| = p; thenE1
has a cyclic subgroup of indexp, by hypothesis. SinceE1 is not minimal nonabelian, w
havep = 2. ThenE1 is of maximal class. SinceE1 is arbitrary,G is of maximal class, by
Lemma 3(k).
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