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Abstract

New very detailed proofs of Theorems 2.5 and 2.64 from the seminal paper of Philip Hall [P. Hall,
On a theorem of Frobenius, Proc. London Math. Soc. Ser. (2) 40 (1936) 468-501] are given. A num-
ber of generalizations of these theorems are proved. For example, we showGhatafp-group of
order pk(P=D+3 k=~ 2 and exponent p* with £2,(G) = G, then eithelG is of maximal class or
G possesses a normal subgradf order p? and exponenp such thatG/H is of maximal class.
Counting theorems play important role in this note.

0 2005 Elsevier Inc. All rights reserved.

Probably, the following remarkable ‘conditionless’ structure thedrésnone of the
deepest consequences of Hall’s theory of regplgrroups.

Theorem 1 (P. Hall [6, Theorem 2.5]).et H > {1} be a hormal subgroup of a p-group G.
Then there existsin H achainC: {1} =Lg < L1 <--- < L, = H of G-invariant sub-
groups with the properties (i =1, ..., n):
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1 As far as | know, this is the first citing the above theorem since its publication in 1936.
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(@) L;/L;_1isof order < pP~! and exponent p, and
(b) either the order of L; isexactly p(?~b or else L; = £2; (H).

A chainC, having properties (a) and (b) of Theorem 1, is said to ge-al)-admissible
Hall chain in H, and this is agrees with the definition ofkaadmissible Hall chain
following Supplement 2 to Theorem 1. The length(bis at least Iog(exp(H)) since
exp(L;) < p' forall ;.

It follows from Theorem 1 that ifp > 2, ¢ > 1, expG) = p¢, and|G| < pP~Dle—D,
then, for some natural numbkr< ¢, the p-groupG has a characteristic subgroup of order
< p?=Yk and exponenpX. Indeed, leC: {1} =Lo<Li<---< L, =G be a(p — 1)-
admissible Hall chain iz, which exists by Theorem 1. Sinee> ¢, there exists a natural
numberk < e such thatL;| < p?~Dk . In that case, by Theorem L; = £2;(G), and this
subgroup is characteristic @. It is interesting to give a proof of this assertion independent
of Theorem 1.

The original proof of Theorem 1, a skillful and fairly difficult inductive argument, con-
tains a gap. Namely, in [6, p. 481], the numbegeis defined (this number plays the crucial
role in Hall's proof). However, the case in whi¢hdoes not exist, is overlooked. This gap
is easily repaired in part (iii) of our proof of Theorem 1. In view of Remark 2, we do not use
the numbet; at all. All prerequisites for the presented proof of Theorem 1 are contained
in 82 of [6] so that proof is a real simplification of the original one. Our proof, especially in
part (i), uses some ideas of Hall's proof. As a by-product of this approach, two additional
new results, Supplements 1 and 2 to Theorem 1 are presented (these supplements are not
consequences of Theorem 1).

Theorem 2.64 in [6] asserts that ipagroupG has ordex pP~V*+1 and2, (G) = G,
then exgG) < p*. This follows immediately from

Theorem 2. Let k € N and let G be a p-group. If G has no subgroup of order p(»—Dk+1
and exponent < p*, then exp($2¢(G)) < p*.

Suppose thab is as in the statement of [6, Theorem 2.64]. Assuming that@xp- p~,
we see tha6 has no subgroup of exponegatp® and orderp?~Dk+1(> |G)). In that case,
by Theorem 2, ex@2;(G)) < p¥, contrary to the assumption sin€® (G) = G.

The proof of Theorem 2 is based on Lemma 3(i). In part (iii) of the proof of Theorem 1
we use a partial case of Theorem 2. Our proof of Theorem 2 is independent of Theorem 1,
in contrast to the original proof of [6, Theorem 2.64], hence, it is essentially simpler. As
p-groups of maximal class and orderp?~Dk+1 show, Theorem 2 yields the best possible
result. Theorem 2 is a partial case of Theorem 4, which is not so elementary since it is based
on Blackburn’s theory op-groups of maximal class.

The collecting formula (the so called Hall-Petrescu formula) is used in one place of
Hall's proof of Theorem 1 essentially. In our proof, a good substitute for that formula is
Theorem 2.

According to Blackburn, ap-group G is said to be absolutely regular if
|G :01(G)| < p?. By Hall's regularity criterion (see Lemma 3(c)), absolutely regular
p-groups, as their name indicates, are regular. All necessary prerequisites on regular and
absolutely regulap-groups, presented in Lemma 3(c),(d).
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We use the standard notation common for paperspegroups (see [1,2]). Denote
2.(G)=(xeG|xP =1) andU,(G) = (x?" | x € G). If A <G, explA) < p¢ and
k < e, thenUy(A) < 2. (Ux(G)) sinceUy (A) is generated by elements of ordep® .
Let

%G =G, UHG)=01G), UTHG) =01 (U (G), i=12,....

Since expG /Ui (G)) < p', thenU; (G) < U (G). The subgroup® (G) are characteristic
in G and control the structure of the subgro@psG).

In what follows we use the bar convention.

To facilitate the proof of Theorem 1 and all subsequent results, it will be convenient to
begin by proving Lemma 3, Theorem 2 and the assertions contained in Remarks 1-4.

Lemma 3. Let G be a p-group.

(a) If G isirregular, it possesses a characteristic subgroup of order > pP~1 and expo-
nent p. In particular, if G is an arbitrary p-group and H, a hormal subgroup of G,
has a subgroup of order p* < p?~1 and exponent p, then H possesses a G-invariant
subgroup of order p* and exponent p.

(b) Suppose that W, a normal subgroup of G, has a subgroup of order p?~1 and expo-
nent p, let R < W be a G-invariant subgroup of order p*¥ < pP~1 and exponent p.
Then there exists a G-invariant subgroup H < W of order p?~1 and exponent p such
that R < H. On the other hand, if W has no G-invariant subgroup of order p?~1 and
exponent p, it is absolutely regular.

(c) (Hall) (i) p-groups of class < p (so also groups of order p?) are regular. (i) Hall
regularity criterion [6, Theorem 2.3]absolutely regular p-groups are regular. (iii) 1f
G isregular, then exp(£2,(G)) < p" and |£2,(G)| = |G /U, (G)| for n € N.

(d) Sections of absolutely regular p-groups are absolutely regular.

(e) Let H beanormal subgroup of G, where |H| < p?~D¢ andexp(H) = p¢. Then there
existsa chain {1} =Tp < T1 < --- < T, = H of length e of G-invariant subgroups
such that

PPt/ Tol 2 T2/ Tal 2+ > |Te/ Te-al. eXp(Ti/Tic) =p. i=1....e

If, in addition, |[H| = p»~ D¢ then |T;/ T;_1| = pP~L for all i.

() Let H beanormal subgroup of G, where |H| = p?~D¢ and exp(H) < p°. Then there
existsa chain {1} =Tp < T1 < --- < T, = H of length e of G-invariant subgroups
suchthat |7;/Tj_1| = pPLandexp(T;/T;_1) = pfori=1,...,e.

(g) Supposethat W, anormal subgroup of G, is neither absolutely regular nor of maximal
class. (i) [2, Theorem 7.6]The number of subgroups of order p?” and exponent p in W
is=1 (mod p). (ii) [3, Corollary 13.3]If A < W bea G-invariant subgroup of order
p? < p?,thenthereexistsin W a G-invariant subgroup H of order p? and exponent
p containing A.
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(h) (i) If G is absolutely regular and |G| > pP~Dk, then exp(G) > pk. (i) If G is of
maximal class and |G| > pP~P**1 then exp(G) > pX. Any two irregular p-groups
of maximal class and the same order have the same exponent.2

(i) Supposethat |G| < pPX. Then *—1(G) iseither absolutely regular or of order p? and
exponent p (the same is true for U;_1(G)(< B¥~1(G))). If, in addition, |G| < pP¥,
the above two subgroups are absolutely regular.

() [2, Theorem 7.4(b)Buppose that G isirregular but it is not of maximal class. If G
contains a subgroup H of maximal classand index p, then G/K ,(G) isof order pPTt
and exponent p. In that case, exp(G) = exp(H).

(k) [2, Theorem 13.21] et A < G and suppose that all subgroups of G that contain A as
a subgroup of index p, are of maximal class. Then G isalso of maximal class.

(I) (Blackburn, see [2, Theorem 9.6]et G be of maximal class of order > p”*! and
exponent p¢. Then G has no normal subgroup of order p? and exponent p and ex-
actly p maximal subgroups, say My, ..., M,, of G are of maximal class and one of
maximal subgroups of G, say G1, is absolutely regular and exp(G1) = exp(G). Next,
exp(M;) < exp(G) if and only if |G| = pP~D¢*+2 and K ,(G) = U1(G) has exponent
p¢~L. Regular epimorphic images of G are of exponent p.

(m) (Blackburn, see [3, Theorems 9.5 and 9I6}y isof maximal class, then £22(G) =G.
If, in addition, G isirregular, then its subgroups of orders > p? are either absolutely
regular and contained in G1 (see (I)) or of maximal class. Next, if |G| > p?, then G is
irregular and |G/U1(G)| = p?P.

Proof. (a) For a proof of the first assertion, see [2, the paragraph preceding Theorem 7.8].
Let us prove the second assertionHlfis regular, the desired subgroup is contained in the
G-invariant subgroup21(H) of exponenip (see (c)). Now le# be irregular. Then, by the

first assertionH has a characteristic subgrop of order> p?~ and exponenp, and

our claim now is obvious.

(b) By (a), there exists &-invariant subgrougd < W of order p?~1 and exponenp.
SetD = RH; then D is normal inG. Clearly, c{D) < p so D is regular, and we con-
clude that expD) = p (see (c)) The desired subgroup is afyinvariant subgroup. of
order p?~1 such thatR < L < D. Now suppose thalV has noG-invariant subgroup of
order p?~1 and exponenp. Then, by Lemma 3(g)(i)WV is either absolutely regular or
irregular of maximal class. In the second case, howeRe(® (W)) is of orderp?~1 and
exponentp, contrary to the assumption.

(d) Since epimorphic images of are absolutely regular (this is obvious), it suffices to
show that any subgrou of G is absolutely regular. Indeed, by (c),

\U/B1(0)| = |21(0)| < [21(6)| = |G/B1(G)| < pP~H,

and we are done.
(e) If H is absolutely regular, thefl} < £21(H) < --- < £2.(H) = H is the desired
chain. Now letH be not absolutely regular. We use induction|éf. The subgroufd. =

2 There exist, forp > 2, two regularp-groups of maximal class and the same order which have distinct expo-
nents.
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U._1(H) is absolutely regular and e&p) = p, |L| < p?~1 (see (i)). By (b),L <U < H,
whereU is G-invariant of orderp?~1 and exponenp. Since|H/U| < p?~P€-D and
exp(H/U) = p¢~1, there is, by induction, a chaiti/U = T1/U < --- < T,/U = H/ U of
G-invariant subgroups such that €fp/T;_1) = pfori =1, ..., e (hereTp = {1}) and

PP Ty Tol 2 T2/ Thl = -+ > |To/ To-al.

Then{l} =Ty < T1 < --- < T, = H is the desired chain.

(f) In view of (e), one may assume that €¥p) < p¢ so H is not absolutely regular,
by (h), below. ThenH possesses &-invariant subgroud of order p?~1 and expo-
nent p, by (c). Since|H/T1| = p?~D€=D and expH/Ty) < exp(H) < p°~L, there
is, by induction, a chaifly/T1 < T»/T1 < --- < T,/T1 = H/ Ty of G-invariant sub-
groups such thaflj,1/7; is of order p?~1 and exponentp, i = 1,...,e — 1. Then
{}=To<T1 <---<T,= H is the desired chain.

(h) Parts (i), (i) follow from (c), (d) and (1).

(i) Assume that’*~1(G) is not absolutely regular. One may assume thatl. We have
|01 051(G)| = pP fori =1, ..., k, by (d). In that case,

k-1
G: M) =] [0 H6):5/(G)| = pr* P
i=1

so0|UF—1(G)| < pP. In that case, it3*~1(G) is of exponent> p, it is absolutely regular.
In view of U;_1(G) < £21(B*1(G)), we are done.

(j) We have to check the last equality only. In the case under consideratjqi;)k=
U1(H) and expU1(H)) = % exp(H) (Lemma 3(l)). Then

exp(G) < exp(K,,(G)) exp(G/Kp(G)) =p- exp(Bl(H)) =exp(H)
sinceH is of maximal class, and we are done since(éXp> exp(H). O

Remarks. Let G be ap-group andk, j € N.

1. Let exf$2x(G)) < p* and letG/£2;(G) be regular. We claim that exi 1 (G)) <
pPti and R2;(G/2k(G)) = 214+j(G)/2k(G). Indeed, setH = 2,(G) and F/H =
22;(G/H). One may assume th#f < G, then exgH) = pX.If x € F, thenx? ¢ H
(Lemma 3(c)(iii)) soo(x) < p**/ and F < 24 ;(G). Now lety € G with o(y) < p**/.
Theny?' € H soyH € F/H andy € F, and we conclude tha®; . ;(G) < F.

2. Let H be a normal subgroup off, exp($2y(H)) = p*, H/Q(H) is absolutely
regular and 2y (H)| < p?~ D% Let{l}=Lo<Li<--- < Ly = 2:(H) be a(p — 1)-
admissible Hall chain if2; (H) which exists by Lemma 3(e). For a nonnegative intager
put Lyis/Ly = 22,(H/Ly). We claimthat{l} = Lo< Ly <--- <Ly <Lpy1--- < H IS
a (p — 1)-admissible Hall chain irH. Indeed, the factors of the above chain are of or-
der < p?~1 and exponenp and 2; (2x(H)) = £2;(H) for i < k, and we are done (see
Remark 1).
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3. Let M be a normal subgroup & and$2;(G/M) < H/M for someH < G. Then
2;(G) < H. Indeed, ifx € G with o(x) < p/, theno(xM) < p/ soxM < 2,;(G/M) <
H/M andx € H.

4. Let H be a normal subgroup aff and let Fp < H be aG-invariant subgroup of
order p. Suppose thaH / Fy is of order p(»~b¢ and exponenk p¢. We claim that there
isin H a (p — 1)-admissible Hall chain of length + 1 with last index= p. One may
assume that > 0. SetG = G/Fo. By Lemma 3(f), there is &p — 1)-admissible Hall
chain{l} = Fp < F1 < --- < F, = H in H. We proceed by induction on Suppose that
there is a(p — 1)- admlssible Hall chaifl}=Ly <---<L,_1 < F,_1in F,_7 such
that|F,_1/L.—1| = p. ThenH/L,_1 is of order p” so regular, and?/F,_1 is of order
pP~1 and exponenp. It follows that $21(H/L._1) is of order> p?~! and exponenp
(Lemma 3(c)(iii)). LetL./L._1 be an arbitraryG-invariant subgroup of ordep?~1 in
21(H/L._1) (see Lemma 3(c) again). Th¢t} = Lo< Ly <---<L,.1 <L, < H IS
the desired chain of length+ 1 in H.

Proof of Theorem 2. We proceed by induction oit;| andk assuming thaf is a minimal
counterexample. Thef?,(G) > p* soG is irregular (Lemma 3(c)), and ex@) > p*+1.

Let k =1 and letR, a normal subgroup of;, be of exponenip of maximal order.
SinceG has no subgroup of ordgr?~P1*+1 = p7 and exponenp, we get|R| = pP~1
(Lemma 3(a)). Ifx € G — R is of orderp, thensS = (x, R) is of orderp? = p(P~D1+1 gnd
exponentp (Lemma 3(c)), a contradiction. ThuB,= £21(G) so exg$21(G)) = p, and the
theorem is true fok = 1

Now we letk > 1. ThenG has a noncyclic subgroup of ordgf+! (otherwiseG is
cyclic) sop > 2. If M < G is maximal, then exgW) > p* since expG) > p*. LetA < G
be a subgroup of maximal order among subgroups of expeaerit then|A| < pP—Dk,
by hypothesis, and < G since expA) < exp(G). Let A < M < G, where|G:M|=p
then A < 2¢(M). By induction, exps2,(M)) = p* so 2y(M) = A, whenceA is nor-
mal in G and exgA) = p* since expM) > p*. By assumption, there is € G — A with
0(g) < p*. Theng? € M sog? € £2;_1(M) < A. SetB = (g, A); then|B| = p|A| > |A|.
If B< F <G, where|G : F| = p, thenB < 2,(F) has exponenp* (here we use induc-
tion), contrary to the choice of. Thus,F does not exists® = G and|G : A| = p, |G| <
pP=Dk+l - Pk and expG) = p**+1. Therefore, by Lemma 3(i)Y5x—1(G) is absolutely
regular since it has an element of orgé@t Let £21(U1(G)) < H, whereH is aG-invariant
subgroup of ordep”~! and exponenp (H exists, by Lemma 3(b)). Thet;_1(A) <
£221(Ux-1(G)) < H sinceUy;_1(A) is generated by elements of order If H ;{ A, then
G =AH and G/(H NA)=(A/(H N A) x (H/(H N A)) is of exponentp*~1, In that
case, exfG) = p¥, a contradiction. ThusH < < A. SetG = G/H. Letx € G — A be such
thato(x) is as small as possible; thefx) < p In that caseG = (¥, A), exp(A) = pF—1,
|Al < pP~DE=D ando(x) < pt—1 sincex” " < 21(Ur-1(G)) < H. We also hav$é|
pP=DE=D+1 and 2, _1(G) = G The groupG has no subgroup of order?~D%= D+l
(= 1G]) and exponent< p*~1. Therefore by induction, ex®;_1(G)) = p*¥~1 so
exp(G) = pF~1, and we have ex@) < p¥, a final contradiction. O

Remarks. Let G be ap-group andk € N.
5. Let 2,(G) = G. If A is maximal among proper subgroups of G satisfying
2(X) = X, then |G : A] = p. Indeed, assume that is not normal inG. Take x €
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G —Ng(A). Let A < M < G, whereM is maximal inG. ThenA # A* < M, A < H =
(A, A*Yy < M < G and$2x(H) = H, contrary to the choice ol. Thus,A is normal inG.
Let y € G — A be of minimal order; then(y) < p*, y? € A, 2:({y, A)) = (y, A) > A SO
G ={(y,A)>Aand|G: A| = p, as was to be shown.

6. Let A < G be maximal among subgroups 6fof exponent< p*. We claim that if
|A| < p?~Dk thenA = £2,(G). Assume that this is false; theh< G. SetN = Ng(A).
Assume thatV < G. Then, by inductionA = 2 (N) is characteristic inV soN = G and
A = 2;(G), i.e., G is not a counterexample. Thus,is normal inG. Lety € G — A be
of minimal order; ther(y) < p* andy? € A. SetB = (y, A). Then|B| < p?~Dk+1 and
2:(B) = B. It follows from Theorem 2 that exB) = p*, contrary to the choice oA.
Thus,A = 24(G), as was to be shown. (Compare with Theorem 2.)

If, in Remark 6,A is of order p»~Dk+1 it is not necessarily normal it (let G be
a p-group of maximal class and order p(?~D*-D+3: if G contains a subgroug of
order pP~D*+1 and exponenpX, it is maximal among subgroups 6f of exponentp*,
but A < 24(G)). See, however, Theorem 6.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Set exgH) = p¢. We may assume that> 1, p > 2 andH is not
absolutely regular. Indeed,df= 1, then any chain satisfying condition (a), is a Hall chain.
If H is absolutely regular, thefl} < $21(H) < --- < 2.(H) = H is the unique (p — 1)-
admissible Hall chain inH. Next, if p = 2, then any part of a chief series 6f, lying
below H, is a Hall chain inH.

We proceed by induction ofH|.

Let Fp be aG-invariant subgroup of ordes in H and setG = G/ Fy. Then, by induc-
tion, there is ind a (p — 1)-admissible Hall chain

I}=Fy<F1<---<F,=H.
Obviously, exppF;) < p' so exgF;) < p'™ for all i. Let ig be the greatest value of
such that F;| = p»=Di In view of Remark 4, one may assume thgk n; thenp > 2

and|Fi,41| < p?~D00+D 500, 1 (H) = F;,11 since the displayed chain satisfies condi-
tion (b) of the theorem. It follows tha®;,+1(H) < Fjy+1 (Remark 3) so

(%) Rig+1(H) = Rip+1(Fig+1)-

Since|Fiy+1| < p®P~ DU+ Uit follows from Theorem 2 that ex{®2;,+1(F;y+1)) < pott
or, what is the same,

(%) exp(Rij11(H)) < piott,
Next, by the choice ofp, we have|F;,1/F;,| < pP~, and we conclude thall / F;,

has noG-invariant subgroup of ordep”~! and exponenp (indeed, ifU/F;, is a such
subgroup, then ex@y) < p'ot! so U < 2i,+1(H) = Fjy+1, Which is a contradiction).
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Thus, Fiy11/Fi, = $21(H/F;,) whence H/F;, is absolutely regular (Lemma 3(b)) so
H/F;,(= H/F;,) is also absolutely regular.

Assume thaig = 0. Then|Fy| < p?~1 so21(H) = Fy, by (b), and|F1| = | Fol| F1| <
pP~1. In that caseF1 must be of ordep”—1 and exponenp (otherwise H is absolutely
regular, by Lemma 3(b)). Thef21(H) = F1 and H/$21(H) is absolutely regular (see the
previous paragraph). By Remark 2, there (a- 1)-admissible Hall chain irH .

In what follows letip > 0; then Fy is of order p?~! and exponenp so |Fy| = p”
and exgF1) < p?. We also have ex(F;y+1) < | Fol exp(Fio+1) < p - p'o+t = piot2 and,
according to this, we have to consider separately the following three possibilities:

(i) exp(Fig1) < poth,
(i) exp(Fig+1) = pott, and
(iii) exp(Fip1) = p'o+2.

(i) Suppose that exF;,+1) < p'e*?; then, by §), Fig+1 = ip4+1(Fig+1) = Rig+1(H).
It follows from the last equality that expl) < p'o*! so £2,,+1(H) = H and hence
Fi,+1 = H.By Remark 4, there exists ifi, a (p — 1)-admissible Hall chain

{l}=Lo<Li<---<Lj<F
satisfying
|Fio: Ligl=p,  |Ligl=p P72, |H/L;y| = |H/Fi||Fig/Lio| < pP%- p=pP~?

S0 H/L;, is regular of exponeng p?.

If exp(H/L;,) = p,then{l} = Lo < L1 <--- < L;, < H is the desired chain.

Now we let exgH/L;,) = p%. By Lemma 3(c)(iii),U/Li, = $21(H/L;,) is of exponent
p andindex F;,/L;,| = p in H/L;, since exgH/F;,) = p. Therefore,

{l}=Lo<Li<---<Lijy<U

is a (p — 1)-admissible Hall chain inU. Let W/L;, = O1(H/L;,); then |W/L;,| =
[(H/L;,) : (U/Ljy)| = p (part (iii) of Lemma 3(c)). Since expl/ W) = p and|H/W| <
pP~1, we getUi(H) < W (< since |H/U1(H)| > pP: H is not absolutely regular).
Therefore, there exists &-invariant subgroupl;, satisfying U1(H) < T;, < W and
|T;,] = pP~Vio (recall thatpP~Dio = |L; | < |H| and |H :U1(H)| > p? > |H: W)).
We have expl;,) < exp(H) < p'°, so there exists iff;, a (p — 1)-admissible Hall chain
{1} =To < T1 < --- < T;, and all indices of that chain are equal g1 (Lemma 3(f)).
Since H/T;, is of order< pP~1and exponenp, {1} =To< Ty < - < T;, < H is the
desired chain.

(i) Suppose that exFi,+1) = p°tl; then Fi41 = Qip+1(H), by (x). Since
H/$,,+1(H), as an epimorphic image @&/ F;,, is absolutely regular and2;,+1(H)| <
pP~ Dot there is a p — 1)-admissible Hall chain i, by Lemma 3(e) and Remark 2.

(ili) Suppose that ex@;,1) = po*2. Then, by ), exp(2;,+1(H)) = p'ot1. We have
Fiy < 2ip+1(H) andH / F;, is absolutely regular sf /$2;,+1(H) is also absolutely regular
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and, in addition|$2;,+1(H)| < pP~Dl0o+D Therefore, there is g — 1)-admissible Hall
chain inH, by Remark 2.
The proof is complete. O

Let H be a normal subgroup of order” and exponenp® of a p-group G and let
C:{l}=Lo<Li1<---<L,=H be a(p — 1)-admissible Hall chain irH .

(A) Suppose, in addition, that > (p — 1)e. Assume that for some< e, we havelL;| <
pP~Di:thenn > e sincem < (p —1)n. Inthat case, by Theorem L, = 2.(G) = H
son < e, a contradiction. Thus, for all< ¢, we must haveL;| = p®—bi,

(B) Suppose that, for somie< n, we have|L;| < p»~1’ (here we do not assume that
m < (p—1e). ThenL; = 2;(H) < H so exgL;) = p'. It follows that exgL ;) = p’
forall j <nson=e.

(C) Letip be the maximal value af satisfying|L;| = p»~i. Then, by Theorem 1, the
membersL ;, j > ig, of the chainC are determined uniquely by the equality =
Qj(H).

Supplement 1 to Theorem 1. Let kK < p be a natural number and let H be a normal
subgroup of a p-group G. Then thereisin H achain {1} =Lo< L1 <---<L, =H of
G-invariant subgroups with the properties i =1, ..., n):

(@) L;/L;_1isof order < p* and exponent p, and
(b) either the order of L; isexactly pi¥, or else L; = £2; (H).

Setting, in Supplement k,= p — 1, we get Theorem 1.

Supplement 2 to Theorem 1. Let H be a regular normal subgroup of a p-group G and
let k e N. Then thereisin H achain {1} = Lo < Ly <--- < L, = H of G-invariant
subgroups with the properties (i =1, ..., n):

(@) L;/L;_1isof order < p* and exponent p, and
(b) either the order of L; isexactly p'*, or else L; = 2; (H).

A chain C satisfying conditions (a) and (b) of any of the above supplements, is said
to be ak-admissible Hall chainin H (independently of the structure éf). To prove the
above supplements, it suffices to repeat, word for word, the proof of Theorem 1. Hall's
proof of Theorem 1 for regulaf is not easier than in general case. In the second sup-
plement one can replace regularity by the following condition: when&vés a section
of H, then|$2,(U)| = |U/U,(U)| for all n € N. In that case, according to [7], we also
have exps2,(U)) < p* and U (U) = {xl’k | x € U} for all sectionsU of H. Following
Mann, such groups are callgigroups. By Lemma 3(c), regula-groups aréP-groups.

Remark. 7. An irregular p-group G of maximal class is &-group if and only if|G| =
pPt1 and|21(G)| = p?. Indeed,|21(G)| = |G/U1(G)| and the right-hand side of the
last equality equalg” (Lemma 3(m)). In that cas&?1(G) is a normal subgroup af of
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order p? and exponenp. Then|G| = pP*1, by Lemma 3(l); in that case, as it is easy to
check, we must have > 2. On the other hand, i is of maximal class and ordgr”*+1

with |£21(G)| = p?, itis a’P-group since all its proper sections are regular. Mann gave an
example of irregular groug of order p?*1, p > 2, such that21(G)| = p?. (Itis easy to
show that if all subgroups of order”+1 of an irregularp-group G of maximal class are
P-groups, thenG| = p*1)

There existp-groups withoutp-admissible Hall chains. Indeed pagroup of maximal
class and order p2? has nop-admissible Hall chain.

As the proof of Theorem 1 shows, fl} =Lo<Li<---<L,=H isa(p — 1)-
admissible Hall chain inH < G, then |Ly:Lg| > |L2:L1| > |L,:L,_1]. The simi-
lar assertion is not true fop-admissible Hall chains as the groupp = G = (x, y |
x8 =1, y* = x* x¥ = x~1) shows (indices of the unique 2-admissible Hall chairGin
are 4, 2, 4).

Let G be ap-group and letd, a normal subgroup i, be of orderp®” and exponent
< p*. Then there exists p-admissible Hall chain ir of lengthk. Indeed, the claim is
trivial for k = 1. Assumingk > 1, we proceed by induction aonh By Lemma 3(h),H is
neither absolutely regular nor irregular of maximal class. The subgthup(H) is of
order< p? and exponenp (Lemma 3(i)). Then, by Lemma 3(g)(ii}),—1(H) < F < H,
whereF is aG-invariant subgroup of ordgs” and exponenp. We havg H/ F| = pP*-1
and expgH/F) < p*~1 so there is ap-admissible Hall chainFy/F = F/F < F»/F <
-+ < Fy/F in H/F, by induction; then{1l} = Fop < F1 < --- < F;, = H is the desired
chain.

It appears that the same approach as in the proof of Theorem 2, allows us to give the
new proof of the following

Theorem 4 (= [1, Theorem 4]).Let k > 1. Suppose that a p-group G has no subgroup
of order p(?~Dk+2 and exponent < p*. Then either exp(£2¢(G)) < p* or G isof maximal
classand® of order > p(P—Dk+2,

Theorem 2 follows from Theorem 4 immediately. The proof of Theorem 4 is not so
elementary: it based of the theory pfgroups of maximal class.
To facilitate the proof of Theorem 4, we first prove the following

Lemma 5. Suppose that G is a group of order p»~D¥+2 and 2,(G) = G. Then either
exp(G) < pX or G isof maximal class.

Proof. We are working by induction ohG| andk assuming that is a minimal coun-
terexample. Then eX®(G)) > p* (in that caseg is irregular) ands is not of maximal
class. Therefore, by Theorem @, possesses a subgrodpof order p(?~Dk+1 and ex-
ponent< pX. It follows from expG) > p that exgA) = p* since|G: A| = p, and then

3 Itis asserted in [1, Theorem 4] thatd is of maximal class, thenG| = p»~Dk+2_|n fact, there is no
restriction on the order afr in this case, as Theorem 4(b) shows.



Y. Berkovich / Journal of Algebra 294 (2005) 463-477 473

exp(G) = p¥*1. By Lemma 3(h),A is not absolutely regular. Sinag is not of maximal
classk > 1 (see Lemma 3(c)).

Assume thatA is of maximal class; thed is irregular (Lemma 3(m)) and exg) =
exp(A) = p* (Lemma 3(j)), a contradiction.

Since |G| = pP~Dk+2 L prk the subgroufSi_1(G) is absolutely regular since it
has an element of order® (Lemma 3(i)). Since expl) = p*, the subgrougs;_1(A)
is generated by elements of order so it is contained in21(Ux—1(G)); in that
case, exfl;_1(A)) = p and |U;_1(A)| < pP~1 (Lemma 3(c)(iii). By Lemma 3(b),
£21(0-1(G)) < U, whereU is a G-invariant subgroup of ordep? and exponenp.
Assume that/ £ A. ThenG = UA andG/U = A/(U N A) is of exponentp*~1 since
Ur—1(A) < U; in that case, ex{@) < exp(G/U)explU) = p*, a contradiction. Thus,
U < A. Write G = G/U. Letx € G — A be of minimal order; them(x) < p¥. We have
G = (%, A), o(%) < pF~1 sincex” " € 21(0x_1(G)) < U, and so2,_1(G) = p*~1 and
|G| =|G/U| = pP~Dk=-D+1 By Theorem 2, extG) = p*~1 so exfgG) < p¥, andG is
not a counterexample.

Proof of Theorem 4. If G is of maximal class and exponestpX, its order is> p(P—Dk+2

and it satisfies the hypothesis [2, Theorem 13.19]; see also Lemma 3(h),(l),(m). Suppose
thatG is a counterexample of minimal order. Then é%p > exp(£2x(G)) > p**1s0G is
irregular, all maximal subgroups 6f have exponent p* andG is not of maximal class.

By Theorem 2G has a (proper) subgroupof order p(?~D*+1 and exponeng p¥. Since

A is maximal among subgroups 6f of exponent< p*, we get expA) = p*. In view of
Lemma5,G| > pP—Dk+2,

Assume thatG has a subgrou of maximal class and indey. Let R, a normal
subgroup ofG, be of orderp? and exponenp (Lemma 3(g)(i)). Assume, in addition,
that R < H. Then|H| = pP*1 (Lemma 3(l)). By Lemma 3(j), ex{t5) = exp(H) =
p? < p**1, a contradiction. Now leR £ H; then G = RH, |[R N H| = p”~ and
G/R=(H/(RN H)) x (R/(RN H)). In that case, extH/(R N H)) = eXx(G/R) >
p*¥ > p. ThenH/(R N H) is irregular (otherwise, ex@/ /(R N H)) = p). In that case,
H/(R N H) has a subgrouB/(R N H) of order p»~D*=D+1 gand exponenp*—1 [3,
Theorems 9.5, 9.6, 13.19]. BBY/(RN H) = Bo/R for someBy < G. Then expBo) < p~
and |Bg| = pP~D&=D+1lt+p — ,,(p=Dk+2 5 | 4| a contradiction. Thus, all subgroups of
index p in G are not of maximal class.

The hypothesis is inherited by subgroupgafTherefore, ifM is maximal inG, then,
by induction, exp2x(M)) = p¥, sinceM is not of maximal class, by the previous para-
graph. If we take, from the stai/ so that it containgl, we getA = 2, (M) so A is normal
in G. By assumption, there is € G — A with o(x) < p*; thenx? € M, o(x?) < p¥ so
xP € 2i_1(M) < A. SetB = (x, A). Then|B| = p|A| = pP~Y¥+2 exp(B) = pk*1 and
2+ (B) = B so, by Lemma 5 and the choice df B must be of maximal class. By the
previous paragraphG : B| > p. Let B < M < G, whereM is maximal inG. Then, by the
above 2, (M) = A, a contradiction sincd < B < £24(M). The proof is complete. O

Fork =1, Theorem 4 is not true. Indeed, let the central produet M = C, whereM
is a p-group of maximal class and ordeP*1 with |21(M)| = p?~1 andC is cyclic of
order p?, |G| = pP*2. Then£21(G) = G has exponenp?, G has no subgroup of order
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pP*t1l = p(P=D1+2 gnd exponenp (consider the intersection of that subgroup with;
see in [5, Appendix 31, the paragraph preceding Exercise B].

The following theorem generalizes Theorem 4; its proof is shorter since it is based on
other ideas.

Theorem 6. Let G be a p-group and k > 1. Suppose that G has a proper subgroup A of
order pP~Dk+1 \which is maximal among subgroups of G of exponent < p*. Then either
£2;(G) = A or G isof maximal class (in thelast case, A isalso of maximal class).

Proof. Suppose thaf2,(G) > A; then exgs2,(G)) > pX. In that caseG is irregular
(Lemma 3(c)(iii)). It follows that expA) = pk.

First suppose that is normal inG. Letx € G — A be of minimal order. Thena(x) < p¥,
by assumption, and” € A so B = (x, A) has orderp(?~D¥+2 and exponenp*+1, and
£2¢(B) = B. In that case, by Lemma B is of maximal class. It follows from parts (h)
and (l) of Lemma 3 that is also of maximal class. Now let < D < G be such that
|D:A| = p. Since expD) > p* = exp(A), it follows from Lemma 3(j) thatD must be of
maximal class. Thus, all subgroups@fof orderp|A|, containingA, are of maximal class
soG is also of maximal class, by Lemma 3(K).

Now suppose that is not normal inG. Set N; (A) = N. SinceN < G, A is not charac-
teristic in N so, by the previous paragraph,is of maximal class. Then, by [4, Remark 3],
G is also of maximal class. The last assertion follows from Lemma 3(h),(t).

In particular, if ap-group G has only one subgroup, say, of order p(»~D¥+1 and
exponent< p¥, then2,(G) = A.# This follows from Theorem 6 and Lemma 3(h),(I) if
k > 1. Now letk = 1 and$21(G) > A. Firstassume that isnormal inG. Letx € G — A be
of orderp. SetB = (x, A) and letx € B1 < B with |B : B1| = p. Then, by the modular law,
By = (x)- (BN B1) S0821(B1) = B1, and we getB1 # A, exp(B1) = p (Lemma 3(c)(iii))
and|B1| = p? = |A|, a contradiction. Setting §i(A) = N, we get, by what has just been
proved,21(N) = A so A is characteristic inV and soN = G, i.e., A is normal inG,
contrary to the assumption.

Let G be a 2-group of exponent 2¢ > 2 and letA < G be of order 21 and exponent
< 2F which is maximal among subgroups 6fof exponent< 2¢. We claim that then one
of the following holds:

(A) G has a cyclic subgroup of index 2,
B) G=(x,y|x% =1,n>1,y* =x2"_1, xY=x"1.

We assume thaf has no cyclic subgroup of index 2; théhis not of maximal class so,
by Theorem 6 A = £2,(G). It follows from Lemma 3(m) tha#d is not of maximal class;
then clA) < 2. In that case$22(G) = £22(A) is of order 8. By [2, Lemma 2.1(c)l7 is a
group from (B)®

4 Compare with Remark 6.
5 As Janko noticed, two groups in that lemma, corresponding to valge®andi = 1, are isomorphic.
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Proposition 7. Let G be a group of order p(»~D¥+3 & ~ 2. SQupposethat §2;(G) = G and
exp(G) > pX. Then one of the following holds:

() G isof maximal class.
(b) G hasasubgroup A of index p and exponent p*, A hasa G-invariant subgroup H of
order p? and exponent p suchthat G/H and A/H are of maximal class.

Proof. We have|G| = pP~Dk+3 < pkp sincek > 3.

Suppose thatG is not of maximal class. Then, by Theorem &, has a maximal
subgroupA such that expd) = pk; then expG) = p**t1 and |A| = pP~Dk+2 By
Lemma 3(h),A is neither absolutely regular nor of maximal class. By Lemma 3(i),(c),
Ur-1(G) is absolutely regular since it has an elements of orpj%rand UOr_1(A) <
21(0k-1(G)) sinceU;_1(G) is generated by elements of order By Lemma 3(g)(ii),
21(0x-1(G)) < H < G, where H is a G-invariant subgroup of ordep? and expo-
nent p. Let x € G — A be such thab(x) is as small as possible; therix) < p*. Set
G = G/H. We have expd) = pk~1, |G| = pP~D=D+2 (%) < pk1 sincex? " e
21(Ur—1(G)) < H, and sa2,_1(G) = G. We have expG) > p*~1 soH < A (otherwise,
G=HAandG/H = A/(A N H) is of exponentp*~1; then exgG) < p*, which is not
the case). In that casé, is of maximal class, by Lemma 5. It follows from Lemma 3(h),(I)
that A is also of maximal class. The proof is complete

Takingk = 3 in Proposition 7, we get

Corollary 8. Let G be a group of order p°P. If 23(G) = G, then one of the following
holds:

(@) expG) < p°.

(b) G isof maximal class.

(c) G hasa subgroup A of index p and exponent p3, A hasa G-invariant subgroup H of
order p? and exponent p suchthat G/H and A/H are of maximal class.

Proposition 9. Let k > 3, p > 2 and let G be a p-group containing a normal subgroup A
of order p?~Dk+2 which is maximal among subgroups of G of exponent < p*. Then one
of the following holds:

(@) $2(G) = A.
(b) |G:A| = p,thereisin A a G-invariant subgroup R of order p? and exponent p such
that G/R and A/R are of maximal class.

Proof. Assume thak2;(G) > A. Then, ifA < U < G, where|U : A| = p, then exgU) =
p**t1 so exggA) = p*. By Lemma 3(h),A is neither absolutely regular nor of maximal
class.

By Lemma 3(i),(c) Ux—1(A) is of order< p?~1 and exponenp sinceA is generated by
elements of ordep and|A| < p*? in view of k > 3. Then, by Lemma 3(9)(ifk-1(A) <
R < A, whereR is aG-invariant subgroup of ordgs” and exponenp. SetG = G/R. We
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have|A| = p(P~D*~D+1 and exgd) = p*~1. Next, A is maximal among subgroups of
exponemp" Lin G, by the choice ofA. Itfollows from Theorem 6 that eithe®,_1(G) =

A or G and A are of maximal class. In the second cagg; A| = p since each normal
subgroup ofG of index> p has center of ordes p so is not of maximal class.

It remains to consider the possibility;_1(G) = A. Then2;_1(G) < A, by Remark 3.
By assumption, there exists an elemert G — A such thab(x) < p* andx? € A. Since
2v-1G) < A, we geto(x) = p¥. SetB = (x, A); then|B| = pP~Dk+3 sinceA is normal
in G, £2;(B) = B and exgB) = p**1, by the choice ofA. Since the maximal subgroup
A of B is neither absolutely regular nor of maximal class aB¢l> p?*1, B is not of
maximal class (Lemma 3(I)). Working by induction ¢@|, we conclude that there is in
A a B-invariant subgrougk of order p? and exponenp such thatA/K and B/K are
of maximal class. By Lemma 3(m§22(B/K) = B/K s0 £23(B) = B. In that caseB <
23(G) < £2;-1(G) < A, sincek > 3, and this is a contradiction. Thug, (G) = A, and
the proof is complete. O

Proposition 10 (Compare with Corollary 8)Suppose that G isa p-group of order < pP*
such that £2;(G) = G and all irregular sections of G of order p”*1 are P-groups.® Then
exp(G) < pk.

Proof. Suppose that is a counterexample of minimal order; thes- 1 (Lemma 3(c)(i)),
exp($2k(G)) > p* so G is irregular (Lemma 3(c)(iii). In that case, by Remark 5, there
exists inG a maximal subgroug such that2;(A) = A. SinceA satisfies the hypothesis,
we get expA) < pX, by induction, so ex(G) = p*+1 and exgA) = p*

If G is of maximal class, it is irregular; thegi is of orderp?*1, by the last sentence of
Remark 7; then ex@) = p? < p¥*1, which is a contradiction.

Assume thatA is of maximal class; them is irregular,|A| = p?*1 (Remark 7) so
exp(A) = p? (itis easy to see that then> 2 but we do not use this fact). In that case, by
Lemma 3(j), expG) = exp(A) = p? < p¥t1, andG is not a counterexample.

Now assume thad is absolutely regular. Then, by [2, Theorem 7 8},(G) is of order
pP and exponenp. In that case, obviously, exf:(G)) = p*, contrary to the assumption.

Next we letA be neither absolutely regular nor of maximal class.

By Lemma 3(i),Ux_1(G) is absolutely regular since it contains an element of ogder
ThenUy_1(A) < £21(Ux-1(G)) sinces2;_1(A) is generated by elements of orgerand
so Ux_1(A) is of order< pP~1 and exponenp. By Lemma 3(g)(ii), £21(Ux_1(G)) <
H < G, whereH is aG-invariant subgroup of ordqvl’ and exponenp. SetG = G/H
Lety e G A be of minimal order. Them(y) < p*, G = (3, A), whereo(y) < p¥~1
sincey” ! € 21(V_1(G)) < H, exp(A) = pF1 s02_1(G) = G, and |G| < pp<’< D,
Obviously,G satisfies the hypothesis with- 1 instead ok. Then, by induction, ex;) <
p*~1s0 exgG) < p* andG is not a counterexample. The proof is completel

6 For definition ofP-groups, see the paragraph preceding Remark 7.
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Corollary 11. Let k e N and let A be a proper subgroup of a p-group G which is max-
imal among subgroups of G of exponent < p*. Suppose that all irregular sections of the
subgroup £2;(G), having order p?*1, are P-groups. Then, if |A| < p*7, then 2, (G) = A.

Proof. We are working by induction ofG|. Set N;(A) = N. If N < G, thenN satisfies
the hypothesis so, by inductio?;(N) = A. In that caseA is characteristic inV so
N = G, contrary to the assumption. Thus,is normal inG. Letx € G — A be such that
o(x) is as small as possible. Thetx) < p*, x? € A soB = (x, A) is of order< pP* since
A is normal inG, andB = £2,(B). By Proposition 10, ex{B) < p*, contrary to the choice
ofA. O

Question 1. Study the structure of @-group G, p > 2, provided there exists only one
(p — 1)-admissible Hall chain iri;.

Question 2. Let A < G be p-groups with|A| = p®?~Dk+2 exp(A) = pk, wherek > 1.
Suppose that is maximal among subgroups 6f of exponentpX. Study the structure of
G providedA is not normal inG. (See Proposition 9.)

Question 2 is nontrivial even in the cage=2 = k.

Question 3. Let G be ap-group and letE < G be extraspecial of exponept. Suppose
that, wheneveE < E1 < G, then exppE1) > p2. Study the embedding df in G. The case
whereE is the unique subgroup @ of order|E| and exponenp?, is of special interest.

Question 3 is surprisingly complicated. Only in the ciBe= p3 the answer is known:
G is a 2-group of maximal classindeed, takeE; > E such that E1: E| = p; then E1
has a cyclic subgroup of indegx, by hypothesis. Sinc& is not minimal nonabelian, we
havep = 2. ThenE; is of maximal class. Sincg1 is arbitrary,G is of maximal class, by
Lemma 3(k).
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