A UNIVERSAL ISOMORPHISM FOR P-TYPICAL FORMAL GROUPS AND OPERATIONS IN BROWN-PETERSON COHOMOLOGY

 \mathbf{BY}

MICHIEL HAZEWINKEL

(Communicated by J. P. MURRE at the meeting of December 20, 1975)

ABSTRACT

We construct an abstract isomorphism of p-typical formal groups which is universal for isomorphisms of p-typical formal groups over $\mathbf{Z}_{(p)}$ -algebras or characteristic zero rings. Associated to this universal isomorphism is a homomorphism of rings $\mathbf{Z}[V_1, V_2, \ldots] \to \mathbf{Z}[V_1, V_2, \ldots; T_1, T_2, \ldots]$ which (after localization at p) can be identified with the right unit homomorphism $\eta_R \colon BP_*(pt) \to BP_*(BP)$ of the Hopfalgebra $BP_*(BP)$ of Brown-Peterson (co)homology. We calculate η_R modulo the ideal $(T_1, T_2, \ldots)^2$. These results are then used to obtain information on some of the operations of Brown-Peterson cohomology.

1. INTRODUCTION

Choose a prime number p and let Q denote the rational numbers. Let $a_i(V)$, $a_i(V, T)$ in

$$\mathbf{Q}[V] = \mathbf{Q}[V_1, V_2, ...]$$
 and $\mathbf{Q}[V; T] = \mathbf{Q}[V_1, V_2, ...; T_1, T_2, ...]$

be the polynomials defined by the equations

(1.1)
$$pa_i(V) = \sum_{k=1}^i a_{i-k}(V) V_k^{p^{i-k}}, \ a_0(V) = 1$$

(1.2)
$$a_i(V, T) = \sum_{k=0}^{i} a_k(V) T_{i-k}^{p^k}, \ a_0(V, T) = 1.$$

Now define the power series

(1.3)
$$f_V(X) = \sum_{n=0}^{\infty} a_n(V)X^{p^n}, \ f_{V,T}(X) = \sum_{n=0}^{\infty} a_n(V,T)X^{p^n}$$

$$(1.4) \quad F_{V}(X, Y) = f_{V}^{-1}(f_{V}(X) + f_{V}(Y)), \quad F_{V,T}(X, Y) = f_{V,T}^{-1}(f_{V,T}(X) + f_{V,T}(Y))$$

(1.5)
$$\alpha_{V,T}(X) = f_{V,T}^{-1}(f_{V}(X))$$

where $f_{\overline{r}}^{-1}(X)$ and $f_{\overline{r},\overline{T}}(X)$ are the inverse power series to $f_{V}(X)$ and $f_{V,T}(X)$ respectively, i.e. $f_{\overline{r}}^{-1}(f_{V}(X)) = X$ and $f_{\overline{r},\overline{T}}(f_{V,T}(X)) = X$. One then has (cf. [3], [4] and [5] part I).

1.6. THEOREM.

The power series $F_{V}(X, Y)$, $F_{V,T}(X, Y)$, $\alpha_{V,T}(X)$ have their coefficients in $\mathbb{Z}[V]$, $\mathbb{Z}[V; T]$, $\mathbb{Z}[V; T]$.

The power series $F_V(X, Y)$ and $F_{V,T}(X, Y)$ therefore define p-typical (one dimensional commutative) formal groups over $\mathbf{Z}[V]$ and $\mathbf{Z}[V; T]$ respectively, which are strictly isomorphic via $\alpha_{V,T}(X)$. In addition one has (cf. [4] and [5] part I).

1.7. THEOREM.

The triple $(F_V(X, Y), \alpha_{V,T}(X), F_{V,T}(X, Y))$ over $\mathbb{Z}[V; T]$ is universal for triples $(F(X, Y), \alpha(X), F(X, Y))$ consisting of two *p*-typical formal groups and a strict isomorphism between them defined over a ring A which is a $\mathbb{Z}_{(p)}$ -algebra or a characteristic zero ring.

I.e. for every such triple $(F(X, Y), \alpha(X), G(X, Y))$ there is a unique homomorphism $\phi: \mathbb{Z}[V; T] \to A$ such that $F(X, Y) = F_V^p(X, Y), \alpha(X) = \alpha_{V,T}^p(X), G(X, Y) = F_{V,T}^p(X, Y).$

If we restrict attention to $\mathbf{Z}_{(p)}$ -algebras A theorem 1.7 implies that $\mathbf{Z}_{(p)}[V;T]$ represents the functor $\mathscr{I}:A\mapsto$ set of all triples $(F(X,Y),\alpha(X),G(X,Y))$. Now $BP_*(BP)=\mathbf{Z}_{(p)}[V;T]$, cf. [1] part II, theorem 16.1, or [2], so that \mathscr{I} is also represented by $BP_*(BP)$ where BP is the Brown-Peterson spectrum. This fact has been used to derive all the structure maps of the Hopf algebra $BP_*(BP)$, cf. [7]. $F_V(X,Y)$ is a p-typically universal p-typical formal group and $F_{V,T}(X,Y)$ is a p-typical formal group. It follows that there are unique polynomials $\overline{V}_n \in \mathbf{Z}[V;T]$ such that $F_{\overline{V}}(X,Y) = F_{V,T}(X,Y)$. It follows that we have for the polynomials \overline{V}_n

(1.8)
$$pa_n(V,T) = \sum_{k=1}^n a_{n-k}(V,T) \overline{V}_k^{p^{n-k}}.$$

The assignment $V_n \mapsto \overline{V}_n$ defines a homomorphism $\mathbf{Z}[V] \to \mathbf{Z}[V, T]$. Now $BP_*(pt) = \mathbf{Z}_{(p)}[v_1, v_2, ...]$ where the v_i are defined by

(1.9)
$$pl_n = l_{n-1}v_1^{p^{n-1}} + \ldots + l_1v_{n-1}^p + v_n$$

where $l_n = p^{-n}[\mathbf{CP}^{p^{n}-1}] \in BP_*(pt) \otimes \mathbf{Q} \subset MU_*(pt) \otimes \mathbf{Q}$. Now identify $\mathbf{Z}_{(p)}[V]$ with $BP_*(pt)$ by means of $V_t \mapsto v_t$ and $\mathbf{Z}_{(p)}[V;T]$ with $BP_*(BP)$ by means of $V_t \mapsto v_t$, $T_t \mapsto t_t$ where the t_t are the elements of $BP_*(BP)$ described in theorem 16.1 of part II of [1]. The homomorphism $\mathbf{Z}[V] \to \mathbf{Z}[V;T]$ (when localized at p) then becomes the right unit map $\eta_R: BP_*(pt) \to BP_*(BP)$.

Below we give a recursion formula for \overline{V}_n . On the one hand this formula can be used to give a noncohomological proof of the Lubin-Tate formal moduli theorem and a new proof of Lazard's classification theorem for one dimensional formal groups over an algebraically closed field. On the other hand the formula gives information about η_R , and thus gives information about the BP-cohomology operations. Cf. section 3 below.

2. Some formulas concerning \overline{V}_n

Let $B_n = p^n a_n(V)$ where $a_n(V)$ is as in (1.1) above. Let J denote the ideal $(T_1, T_2, ...)^2$ in $\mathbb{Z}[V; T]$ and let I be the ideal generated by the elements pT_i , i=1, 2, ... and the elements T_iT_j , i, j=1, 2, ... Then we have

2.1. THEOREM.

$$(2.1.1) \begin{cases} \overline{V}_n = \sum_{k=1}^{n-1} a_{n-k} \{ (V_k^{p^{n-k}} - \overline{V}_k^{p^{n-k}}) + \sum_{\substack{i+j=k\\i,j \geq 1}} (V_i^{p^{n-k}} T_j^{p^{n-j}} - T_j^{p^{n-k}} \overline{V}_i^{p^{n-j}}) \} \\ + \sum_{\substack{i+j=n\\i,j \geq 1}} (V_i T_j^{p^i} - T_j \overline{V}_i^{p^j}) + V_n + pT_n. \end{cases}$$

Modulo the ideal J we have (in $\mathbf{Z}[V;T]$).

$$(2.1.2) \begin{cases} \overline{V}_n \equiv \sum (-1)^t (B_{s_1} V_{n-s_1}^{p^{s_1}-1}) (B_{s_2} V_{n-s_1-s_2}^{p^{s_2}-1}) \dots (B_{s_t} V_{n-s_1-\dots-s_t}^{p^{s_t}-1}) (-T_t V_t^{p^t}) \\ + \sum (-1)^t (B_{s_1} V_{n-s_1}^{p^{s_1}-1}) (B_{s_2} V_{n-s_1-s_2}^{p^{s_2}-1}) \dots (B_{s_t} V_{n-s_1-\dots-s_t}^{p^{s_t}-1}) (pT_t) + V_n \end{cases}$$

where the first sum is over all sequences $(s_1, ..., s_t, i, j)$ such that $s_k, i, j \in \mathbb{N}$, $s_1 + ... + s_t + i + j = n$, $t \in \mathbb{N} \cup \{0\}$, and the second sum is over all sequences $(s_1, ..., s_t, i)$ such that $s_k, i \in \mathbb{N}$, $s_1 + ... + s_t + i = n$, $t \in \mathbb{N} \cup \{0\}$. And, finally modulo the ideal I we have in $\mathbb{Z}[V; T]$

$$(2.1.3) \begin{cases} \overline{V}_{n} \equiv \sum (-1)^{t} V_{1}^{(p-1)^{-1}(p^{s_{1}} + \dots + p^{s_{t}} - t)} V_{n-s_{1}}^{p^{s_{1}} - 1} \dots V_{n-s_{1}-\dots - s_{t}}^{s_{t}} (-T_{t} V_{i}^{p^{t}}) \\ + V_{n} - T_{1} V_{n-1}^{p} - T_{2} V_{n-2}^{p} - \dots - T_{n-1} V_{1}^{p^{n-1}} \end{cases}$$

where the sum is over all sequences $(s_1, ..., s_t, i, j)$ such that $s_k, i, j, t \in \mathbb{N}$ and $s_1 + ... + s_t + i + j = n$.

2.2. These formula's can be used to give a noncohomological proof of the Lubin-Tate formal moduli theorem ([9]) and Lazard's classification theorem for one dimensional formal groups over an algebraically closed field, ([8]). Cf. [5] part V. Warning: formula (2.2.1) in [5] part V is not

correct and should be replaced with (2.1.3) above. The proofs in [5] part V remain mutatis mutandi the same.

3. APPLICATIONS TO BROWN-PETERSON COHOMOLOGY OPERATIONS

A stable BP cohomology operation can be described as a $BP_*(pt)$ -linear homomorphism $BP_*(BP) \to BP_*(pt)$, where $BP_*(BP)$ is seen as a left $BP_*(pt)$ module. To find out what such an operation does to elements of $BP_*(pt)$ one composes with $\eta_R \colon BP_*(pt) \to BP_*(BP)$. Cf. [1] part II, section 16 for all this. Let $E = (e_1, e_2, ...)$ be a sequence of integers > 0 which are almost all zero.

Write $BP_*(BP) = BP_*(pt)$ [$t_1, t_2, ...$] where the t_i are as in [1] part II, section 16. The cohomology operation r_E is defined as: = coefficient of t^E . One assigns to the exponent sequence E the weight

$$||E|| = (p-1)e_1 + (p^2-1)e_2 + \dots$$

Let Δ_i denote the exponent sequence $\Delta_i = (0, ..., 0, 1, 0, ...)$ with the 1 in the *i*-th place, let $\Delta_0 = (0, 0, ...)$. Scalar multiplication with an element of **N** and addition of exponent sequences are defined component wise.

A first application of (2.1.1) is then the following slight generalization of lemma 1.9 of [6] (sometimes known as the Budweiser lemma).

3.1. LEMMA.

(i) For $n \ge 3$ and $2 \le l \le n-1$ we have that

$$r_E(v_n) \equiv 0 \mod (p^{p+1}, v_1, ..., v_{l-1})$$

if $p^n - p^{l-1} > ||E|| > p^n - p^l$ except in the cases

$$E = p^{l} \Delta_{n-l}, E = \Delta_{1} + (p-1) \Delta_{n-1} + p^{l} \Delta_{n-l-1}.$$

In these two cases $r_E(v_n)$ is respectively congruent to v_l and $-p^pv_l \mod (p^{p+1}, v_1, ..., v_{l-1})$.

(ii) For $n \ge 3$ (and l=1) we have that $r_E(v_n) \equiv 0 \mod (p^{p+1})$ if $p^n-1 > |E|| \ge p^n-p$ except in the cases

$$E = p \Delta_{n-1}, E = \Delta_1 + (p-1)\Delta_{n-1} + p \Delta_{n-2}.$$

In these two cases $r_E(v_n)$ is respectively congruent to $v_1(1-p^{p-1})$ and $-p^pv_1 \mod (p^{p+1})$.

(iii) For $n \geqslant 3$ (and l = 0) we have that $r_E(v_n) \equiv 0 \mod (p^{p+2})$ if $||E|| \geqslant p^n - 1$ except in the cases $E = \Delta_n$, $E = \Delta_1 + p\Delta_{n-1}$. In these two cases $r_E(v_n)$ is respectively congruent to p and $-p^p \mod (p^{p+2})$.

(There are slightly different formulae for the cases n=1, 2).

A second application is the calculation of the $r_{d_i}(v_n)$. Let $b_n \in BP_*(pt)$ stand for the element $p^n l_n$. Then we have immediately from (2.1.2).

3.2. THEOREM.

For 0 < i < n we have

$$(3.2.1) \begin{cases} r_{\mathcal{A}_{i}}(v_{n}) = \sum (-1)^{t}(b_{s_{1}}v_{n-s_{1}}^{s_{1}-1}) \cdot \ldots \cdot (b_{s_{t}}v_{n-s_{1}-\ldots-s_{t}}^{s_{t-1}})(-v_{n-s_{1}-\ldots-s_{t}-i}^{p^{i}}) \\ + p \sum (-1)^{t}(b_{s_{1}}v_{n-s_{1}}^{s_{-1}}) \cdot \ldots \cdot (b_{s_{t}}v_{n-s_{1}-\ldots-s_{t}}^{s_{1}-1}) - v_{n-i}^{s_{i}} \end{cases}$$

where the first sum is over all sequences $(s_1, ..., s_t)$ with $s_1 + ... + s_t < n - i$, $s_k, t \in \mathbb{N}$ and the second sum is over all sequences $(s_1, ..., s_t)$ with $s_1 + ... + s_t = n - i$, $s_k, t \in \mathbb{N}$. Modulo p we have for 0 < i < n.

$$(3.2.2) \begin{cases} r_{\mathcal{A}_{i}}(v_{n}) \equiv -v_{n-i}^{p^{i}} + \sum_{j=1}^{n} (-1)^{t} v_{1}^{(p-1)^{-1}(p^{s_{1}} + \dots + p^{s_{t-1}})} \\ v_{n-s_{1}}^{p^{s_{1}} - 1} \cdot \dots \cdot v_{n-s_{1}-\dots - s_{t}}^{p^{s_{t}} - 1} (-v_{j}^{p^{i}}) \end{cases}$$

where the sum is over all sequences $(s_1, ..., s_t, j)$ such that $s_k, t, j \in \mathbb{N}$, $s_1 + ... + s_t + j = n - i$.

3.3. COROLLARY.

For 0 < i < n we have $r_{\mathcal{A}_i}(v_n) \equiv -v_{n-i}^{p^i} \mod (p, v_1)$. More generally: let $r = \min (n-i-1, p)$, then we have $\mod (p, v_1^{p+1})$

$$(3.3.1) r_{\Delta_i}(v_n) \equiv -v_{n-i}^{p^i} + \sum_{t=1}^r (-1)^{t+1} v_1^t(v_{n-1} \dots v_{n-t})^{p-1} v_{n-i-t}^{p^i}.$$

REFERENCES

- Adams, J. F. Stable Homotopy and Generalized Homology. Univ. of Chicago Press, 1974.
- Araki, S. Typical Formal Groups in Complex Cobordism and K-theory. Kinokuniya Book-Store Cy, 1973.
- Hazewinkel, M. A Universal Formal Group and Complex Cobordism. Bull. Amer. Math. Soc. 81, 930-933 (1975).
- 4. Hazewinkel, M. Constructing Formal Groups I. The Local one-dimensional Case. (To appear, a Preliminary Version of this is part I of [5]).
- Hazewinkel, M. Constructing Formal Groups I, II, III, IV, V. Reports 7119, 7201, 7207, 7322, 7514. Econometric Inst., Erasmus Univ. Rotterdam, 1971, 1972, 1973, 1975.
- Johnson, D. C. and W. S. Wilson BP-operations and Morava's extraordinary K-theories. Math. Z. 144, 55-75 (1975).
- Landweber, P. S. BP*(BP) and Typical Formal Groups. Osaka J. Math. 12, 357–363 (1975).
- Lazard, M. Sur les groupes de Lie formels à un paramètre. Bull Soc. Math. France 83, 251-274 (1955).
- Lubin, J. and J. Tate Formal Moduli for One Parameter Formal Lie Groups. Bull. Soc. Math. France 94, 49-60 (1966).