
Developmental Biology 368 (2012) 415–426

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect
Developmental Biology
0012-16

http://d

n Corr

E-m
1 JB
2 Cu

The Net
3 Cu

54911,
4 Cu

mental
5 Cu

Biology
journal homepage: www.elsevier.com/locate/developmentalbiology
Genomes and Developmental Control
The in vivo dissection of direct RFX-target gene promoters in C. elegans
reveals a novel cis-regulatory element, the C-box
Jan Burghoorn 1,2, Brian P. Piasecki 1,3, Filip Crona 4, Prasad Phirke, Kristian E. Jeppsson 5,
Peter Swoboda n

Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, Hälsovägen 7, S-141 83 Huddinge, Sweden
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a b s t r a c t

At the core of the primary transcriptional network regulating ciliary gene expression in Caenorhabditis

elegans sensory neurons is the RFX/DAF-19 transcription factor, which binds and thereby positively

regulates 13–15 bp X-box promoter motifs found in the cis-regulatory regions of many ciliary genes.

However, the variable expression of direct RFX-target genes in various sets of ciliated sensory neurons

(CSNs) occurs through as of yet uncharacterized mechanisms. In this study the cis-regulatory regions of

41 direct RFX-target genes are compared using in vivo genetic analyses and computational comparisons

of orthologous nematode sequences. We find that neither the proximity to the translational start site

nor the exact sequence composition of the X-box promoter motif of the respective ciliary gene can

explain the variation in expression patterns observed among different direct RFX-target genes. Instead,

a novel enhancer element appears to co-regulate ciliary genes in a DAF-19 dependent manner. This

cytosine- and thymidine-rich sequence, the C-box, was found in the cis-regulatory regions in close

proximity to the respective X-box motif for 84% of the most broadly expressed direct RFX-target genes

sampled in this study. Molecular characterization confirmed that these 8–11 bp C-box sequences act as

strong enhancer elements for direct RFX-target genes. An artificial promoter containing only an X-box

promoter motif and two of the C-box enhancer elements was able to drive strong expression of a GFP

reporter construct in many C. elegans CSNs. These data provide a much-improved understanding of how

direct RFX-target genes are differentially regulated in C. elegans and will provide a molecular model for

uncovering the transcriptional network mediating ciliary gene expression in animals.

& 2012 Elsevier Inc. All rights reserved.
Introduction

The correct spatiotemporal expression of genes is required for
the proper development of all cells. In multicellular organisms
variations in gene expression patterns define cellular specializa-
tion and functional diversification (Prud’homme et al., 2007;
Wray, 2007). Genes that are commonly regulated in specific cell
types are often hardwired within a specific gene regulatory
network. Whereby, similarly expressed genes share specific
cis-regulatory DNA sequences that are bound and regulated by
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common transcriptional regulators, including transcription fac-
tors (Tuch et al., 2008). In the model organism Caenorhabditis

elegans for example, numerous cis-regulatory sequences have
been identified that promote the expression of genes broadly or
specifically expressed in certain groups of neurons (Etchberger
et al., 2007; Hobert et al., 2010; McCarroll et al., 2005; Nokes
et al., 2009; Ruvinsky et al., 2007; Swoboda et al., 2000).

Cilia are complex microtubule-based organelles that facilitate a
variety of motile- and sensory-specific functions in many eukaryotic
organisms (Berbari et al., 2009; Rosenbaum and Witman, 2002;
Silverman and Leroux, 2009). In animals, Regulatory Factor X (RFX)
transcription factors (TFs) are key direct upstream regulators of
ciliary-specific genes (Piasecki et al., 2010; Swoboda et al., 2000). In
this transcriptional network, X-box promoter motif sequences
residing in the cis-regulatory regions of more than 50 known ciliary
genes are bound and positively regulated by RFX TFs (Blacque et al.,
2005; Efimenko et al., 2005; El Zein et al., 2009; Laurencon et al.,
2007). X-box promoter motifs are 13–15 bp imperfect inverted
repeat sequences (Emery et al., 1996), which typically reside within
300 bp of the translational start site of the respective direct RFX-
target genes (Blacque et al., 2005; Efimenko et al., 2005; Laurencon
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et al., 2007). Phylogenetic footprinting of ciliary gene promoters has
shown that this regulatory pathway is highly conserved in animals
(Piasecki et al., 2010).

In C. elegans, cilia are exclusively formed on a subset of
terminally differentiated neurons, so-called ciliated sensory neu-
rons (CSNs; Perkins et al., 1986). In contrast to mammalian
genomes, which encode at least seven RFX TF genes (Aftab
et al., 2008), the C. elegans genome encodes only a single RFX TF
gene, daf-19 (Swoboda et al., 2000). However, multiple isoforms
of daf-19 occur in C. elegans, including A, B, C (cilia-specific), and
M (male-specific) isoforms (Senti et al., 2009; Senti and Swoboda,
2008; Wang et al., 2010). Mutations in the C. elegans gene daf-19

lead to the complete loss of all ciliated structures in an otherwise
viable organism (Perkins et al., 1986; Swoboda et al., 2000).
Bioinformatics-based comparisons and expression profiling
experiments have revealed a large battery of putative and known
direct RFX-target genes in C. elegans (Blacque et al., 2005; Chen
et al., 2006; Efimenko et al., 2005; Phirke et al., 2011).

While about two-thirds of the more than 40 direct DAF-19/
RFX-target genes identified to date in C. elegans are expressed in
most or all 60 CSNs, approximately one-third are expressed in
only a specific subset of CSNs. Of note, the CSN-specific expres-
sion is significantly reduced or eliminated when expressed in a
daf-19/rfx mutant background or upon mutation of the respective
X-box promoter motif sequences (Blacque et al., 2005; Burghoorn
et al., 2007; Chen et al., 2006; Efimenko et al., 2006, 2005; Li et al.,
2008; Murayama et al., 2005; Schafer et al., 2003; Swoboda et al.,
2000; Williams et al., 2008; Winkelbauer et al., 2005). However,
the mechanisms controlling direct RFX-target gene expression to
either all or to only specific subsets of CSNs remain largely
unknown. In this study, we conduct bioinformatics-based com-
parisons and in vivo dissections of direct RFX-target gene pro-
moters in closely related Caenorhabditis species. These analyses
reveal a novel cis-regulatory enhancer element, the C-box, which
is located in close proximity (o60 bp) to the X-box promoter
motif of direct RFX-target genes that are broadly expressed
in CSNs.
Materials and methods

Strains and growth conditions

Unless otherwise indicated, the wild-type C. elegans strain,
Bristol N2, was used for all experiments. The DAF-19/RFX depen-
dent expression of xbx-1, dyf-2, xbx-9, and nhr-44 was examined
using the strains JT204 daf-12(sa204) and JT6924 daf-19(m86);
daf-12(sa204) as previously described (Senti et al., 2009). All
strains were cultured using standard procedures (Brenner,
1974). Germline transformations were conducted for all promo-
ter-to-GFP fusion constructs using microinjection (Mello and Fire,
1995; Mello et al., 1991). Extrachromosomal arrays containing a
GFP-tagged transgene injected at 100 ng/ml together with an elt-

2::mCherry co-injection marker (gift from G. Jansen) were used for
all expression analyses. All strains used and strain construction
details are available upon request.

Generation of plasmid constructs for transgenesis

Construction of 2 kb promoter::GFP fusion constructs for the
genes xbx-1, dyf-2, mks-3 and che-2 have been described pre-
viously (Efimenko et al., 2006; Efimenko et al., 2005; Phirke et al.,
2011; Schafer et al., 2003). Promoter::GFP fusion constructs of
variable lengths were generated for the genes xbx-1, mks-3, bbs-8,
che-2, dyf-2, xbx-9, nhr-4, nhr-44, nhr-194, nhr-219, nhr-258 and pes-1

using PCR amplification followed by subsequent cloning of each of
the respective regions into the pPD95.75, pPD95.77 or pPD95.79 GFP
expression vectors (gift from A. Fire). The 2 kb promoter::GFP xbx-1

construct was elongated to various lengths using Lambda phage
DNA (#SMO0101/2/3, Fermentas GmbH, St. Leon-Rot, Germany).
X-box promoter motif mutations for the 2 kb xbx-1, dyf-2, xbx-9 and
nhr-44 promoter::GFP fusion constructs were generated using fusion
PCR (Hobert, 2002). Minimal X-box motif promoters were con-
structed by separately cloning the 14 bp X-box promoter motif
sequences from the genes xbx-1, mks-3, bbs-8, che-2, dyf-2, xbx-9 and
nhr-44 into the pPD95.75 GFP expression vector exactly 109 bp
upstream of the translational start site (ATG) of the reporter gene.
Mutations of exactly 10 bp were introduced into the respective
C-box sites in the xbx-1, mks-3, bbs-8, che-2 and xbx-9 GFP expres-
sion vectors using fusion PCR (Hobert, 2002). The xbx-1 artificial
promoter construct was generated by PCR amplifying Lambda phage
DNA (#SMO0101/2/3) using modified oligonucleotides, which pre-
served the native configuration, distance, and composition of only
the X-box promoter motif and C-box enhancer elements; the
modified product was subsequently cloned into the pPD95.75 GFP
expression vector.

Microscopy and imaging

For live imaging of worms expressing GFP-tagged fusion
proteins, worms were anesthetized using 20 mM sodium azide
in M9 buffer and immobilized on a 2% agar pad. Worms were
analyzed using conventional fluorescence microscopy using a
Zeiss Axioplan 2 microscope at a total magnification of 630�
(Carl Zeiss, Jena, Germany). GFP-tagged fusion proteins were
localized and assigned to CSNs using a 40� objective lens on a
Zeiss confocal microscope (CLSM510). Confocal projections were
prepared using the Zeiss LSM image browser.

Analysis of GFP expression patterns

To significantly reduce possible experimental variability intro-
duced by the mosaic expression pattern of a particular transgene,
three of six independent transgenic lines with the highest
penetrance were selected and analyzed for the respective pro-
moter-to-GFP-fusion constructs. For all experiments, transgenic
lines were grown at 20 1C for at least three generations prior to
analysis. The 60 C. elegans CSNs present in an adult hermaphro-
dite worm (see also at www.wormatlas.org) were divided into
5 subgroups or anatomical regions including, neurons that reside
in the amphids (region 1¼24 CSNs: AWAL/R, AWBL/R, AWCL/R,
AFDL/R, ASEL/R, ADFL/R, ASGL/R, ASHL/R, ASIL/R, ASJLR, ASKL/R,
ADLL/R) or in the tail (region 2¼5 CSNs: PHAL/R, PHBL/R, PQR),
neurons surrounding the anterior bulb (region 3¼24 CSNs: BAGL/
R, CEPVL/R, CEPDL/R, IL1L/R, IL2L/R, IL1VL/R, IL2VL/R, IL1DL/R,
IL2DL/R, OLLL/R, OLQVL/R, OLQDL/R) or the posterior bulb (region
4¼5 CSNs: ADEL/R, FLPL/R, AQR) of the pharynx, and neurons in
the midbody region of the worm (region 5¼2 CSNs: PDEL/R). In
the CSNs of the amphids (region 1) and in the tail (region 2) direct
RFX-target genes are consistently expressed at high frequencies.
In all other CSNs direct RFX-target gene expression patterns are
typically more variable (cf. Fig. 1). The average number of cells
expressing GFP in each of these respective anatomical regions was
determined for at least 30 transgenic animals per construct. The
unmodified 2 kb promoter-to-GFP-fusion construct of a given
direct RFX-target gene was used as a baseline control for all
comparisons and the expression levels of all mutated and variable
length promoter-fusion constructs are depicted as fold-change
relative to the level of the unmodified construct (cf. Figs. 4–7,
Supplemental Figs. S1 and S2, and Supplemental Table S1). To
account for the possible impact of photobleaching during the
analyses, for all experiments the anatomical regions of all



Fig. 1. Expression patterns of direct RFX-target genes in ciliated sensory neurons (CSNs) of the worm C. elegans. (A) Fluorescence confocal projection (top) and schematic diagram

(bottom) depicting the expression pattern of the xbx-1 promoter fused to GFP, a fusion construct that is ubiquitously expressed in all 60 CSNs. The hermaphrodite worm shown here

has been subdivided into five specific anatomical regions to be able to classify the variety in expression patterns often seen with direct RFX-target genes: CSNs of the amphids (region

1) and in the tail (region 2), surrounding the anterior bulb (region 3) and posterior bulb (region 4) of the pharynx, and in the midbody region of the worm (region 5). Open circles in

the worm schematic illustrate the positions of all CSN cell bodies in a hermaphrodite animal (only the left CSNs of lateral pairs are shown). (B) Description of the 41 experimentally

characterized X-box regulated genes in C. elegans analyzed in this study. The sequence composition and position of the X-box promoter motif relative to the translational start site

(ATG) is depicted for each gene. Using the specific anatomical expression regions defined in the schematic above (cf. Fig. 1A), the CSN-specific expression pattern is listed for each

gene.
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Fig. 2. Expression of direct RFX-target genes in wild type and daf-19 mutant worms.(A–D) Schematic diagrams (left) and expression patterns of promoter-to-GFP fusion

constructs (right) of representative direct RFX-target genes (xbx-1, dyf-2, xbx-9, nhr-44) are shown. Note that each gene is expressed in different numbers of CSNs,

respectively. For each gene, the corresponding X-box promoter motif sequence composition and position relative to the translational start site (ATG) is shown. Schematic

head diagrams illustrate the wild-type expression pattern of each gene: the presence (black ovals) or absence (white ovals) of GFP expression in neuronal cell bodies is

depicted for each of the 48 CSNs (only the left CSNs of lateral pairs are shown) collectively found in the amphids and the group of CSNs surrounding the anterior bulb of the

pharynx (cf. Fig. 1A, regions 1 and 3). Expression patterns observed in other CSNs (cf. Fig. 1B) are not depicted. Confocal projections of the head region (right) from

transgenic worms expressing promoter-to-GFP fusion constructs are shown for each gene in both wild type and daf-19 mutant backgrounds. In all panels the scale bars

depict 10 mm.
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transgenic animals were always analyzed in the same order of
sequence: first region 4, then region 3, region 1, region 5, and
region 2 last.

Bioinformatics

400 bp of promoter region from each of the 41 C. elegans direct
RFX-target genes sampled in this study were first analyzed using
a multiple expectation maximization for motif elicitation (MEME)
algorithm (Bailey and Elkan, 1994). Subsequently, orthologous
400 bp promoter regions from C. elegans, C. briggsae and C.

remanei were individually collected for each of the respective
direct RFX-target genes sampled. Based on the GFP expression
analysis comparisons carried out for each of the C. elegans direct
RFX-target genes, all the corresponding orthologous gene promo-
ter regions from the other two Caenorhabditis species (C. briggsae

and C. remanei) were pooled into one of two groups: (i) genes that
are broadly expressed in many or most CSNs or (ii) genes that are
expressed in only specific CSNs. The pooled promoter regions
were subsequently re-analyzed using MEME. The consensus motif
illustration for the C-box was generated using WebLogo V2.8.2
(Crooks et al., 2004).
Results

C. elegans direct RFX-target genes show variable expression patterns

within the CSN class of neurons

To begin exploring the dynamics of direct RFX-target gene
regulation, the expression patterns of 41 known direct RFX-target
gene promoters in C. elegans were compared (Fig. 1). To simplify
these comparisons we first categorized each of the 60 CSNs of an
adult hermaphrodite worm as being part of one of five defined
anatomical regions, which were each selected to reflect the
variation in expression commonly observed among various direct
RFX-target genes (Fig. 1A). All but two direct RFX-target genes are
expressed in CSNs of the amphids, while 32 of 41 such genes are
expressed in both the amphid and tail CSNs (regions 1 and 2,
respectively) (Fig. 1B). Direct RFX-target genes are more variably
expressed in CSNs surrounding the anterior bulb (region 3) and
posterior bulb (region 4) of the pharynx, and in the midbody
(region 5) (Fig. 1B). We then selected seven direct RFX-target
genes as a basis for our in-depth comparative analyses of gene
expression pattern and regulation. Whereby, the genes xbx-1/

dync2li1, mks-3/mks3, bbs-8/bbs8 and che-2/ift80 are broadly
expressed in all CSNs (Fig. 2A and data not shown). In contrast,
the expression of dyf-2/ift144, xbx-9/novel and nhr-44/nhr are
restricted to a more targeted set of CSNs (Fig. 2B–D). As expected
and as has been previously observed, for all seven genes the CSN-
specific expression is significantly reduced or eliminated when
expressed in a daf-19/rfx mutant background or when the respec-
tive X-box promoter motif sequences have been mutated and
expressed in otherwise wild-type worms (Fig. 2; Supplemental
Fig. S1A).

Direct RFX-target gene expression pattern specificity is independent

of X-box proximity

To explore the possibility that direct RFX-target gene expres-
sion patterns are influenced by the position of the X-box promo-
ter motif, the promoter regions of all 41 direct RFX-target genes
sampled in this study were compared (Fig. 3A and B). First, the
relative proximity of each X-box promoter motif from the transla-
tional start site of a direct RFX-target gene was determined (Fig. 1B).
This data was then used to plot the number and position of X-box
promoter motif sequences for genes that are broadly (Fig. 1B, nr
1–25) or more restrictedly (Fig. 1B, nr 26–41) expressed in CSNs



Fig. 3. Effect of X-box promoter motif position on the expression of direct RFX-target genes. (A, B) Comparisons of the number of X-box promoter motif sequences residing

at specific distances from the translational start site (ATG) for all 41 direct RFX-target genes sampled. Separate bar graphs depict genes that are either (A) broadly

expressed in most or all CSNs (cf. Fig. 1B, nr 1–25) or (B) show a more restricted expression pattern in specific CSNs (cf. Fig. 1B, nr 26–41). (C) Comparison of reporter gene

expression (promoter-to-GFP fusion constructs) between unmodified and extended xbx-1 gene promoter regions. The unmodified xbx-1 promoter, which contains an X-box

promoter motif at 78 bp from the translational start site, was compared to replicate promoter regions that had been extended to various lengths by inserting unrelated

lambda-phage DNA. Schematic diagrams (left) depict the X-box promoter motif sequence composition, location, and when present, position of inserted DNA for each

construct. Representative confocal projections show GFP expression patterns (right) in the head region from animals expressing each of the respective constructs. In all

panels the scale bars depict 10 mm.
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(Fig. 3A – B). These comparisons revealed that broadly expressed
direct RFX-target genes typically contain an X-box promoter motif
between 60 bp and 130 bp upstream of the translational start site
(80% of 25). While direct RFX-target genes that are expressed in only
a few CSNs can contain X-box sequences that also reside within
130 bp of the translational start site (50% of 16), the location of the
X-box in these genes is not clustered toward the proximal end of
this range. Interestingly, X-box promoter motif sequences were
found to strictly reside within 300 bp upstream of the translational
start site for all 41 direct RFX-target genes sampled in this study.

To experimentally examine the relationship between X-box
promoter motif proximity and direct RFX-target gene expression
pattern, unmodified and artificially elongated xbx-1 promoter
constructs were analyzed in vivo. Using the unmodified xbx-1

promoter as a template, several GFP-fusion gene constructs were
generated that each contained this promoter either unaltered or
extended to various lengths away from the translational start site
using unrelated Lambda phage DNA (Fig. 3C). Transgenic worms
expressing unmodified and elongated constructs revealed the
ubiquitous expression of the xbx-1::gfp fusion gene in all CSNs
for constructs with an X-box distance of less than 300 bp.
However, consistent with the observed X-box positions of all 41
direct RFX-target genes sampled in this study (Fig. 3A and B), an
expression threshold appears to occur at approximately 300 bp
upstream of the translational start site. Whereby, expression of a
direct RFX-target gene is significantly reduced or eliminated
when the X-box promoter motif resides at a distance greater
than approximately 300 bp upstream of the translational start site
of the respective gene. Thus, it appears that direct RFX-target
gene expression pattern specificity is largely independent of
X-box proximity provided the X-box promoter motif resides in
relatively close proximity upstream of the translational start site
(within 300 bp).

Direct RFX-target gene expression pattern specificity is largely

independent of X-box sequence composition

Additional variables that may contribute to the expression pattern
specificity of a particular direct RFX-target gene include either the
X-box promoter motif sequence composition or the sequence com-
position of the promoter region flanking the X-box. To explore either
of these possibilities, various direct RFX-target gene promoters were
molecularly dissected, to determine the specific role that these
different promoter components—both individually and in concert—
have on the expression of a GFP reporter gene in vivo.

In the first set of experiments, we analyzed whether the X-box
promoter motif sequence alone was sufficient to drive expression
of a GFP reporter gene. Minimal promoters consisting of only the
respective X-box promoter motif sequence from direct RFX-target
genes with either a broad CSN expression pattern, including xbx-

1, mks-3, bbs-8 and che-2 or a more restricted CSN expression
pattern, including dyf-2, xbx-9 and nhr-44 were examined. Trans-
genic animals expressing any of these GFP-fusion constructs
revealed either an undetectable level of reporter gene expression
or a level of expression that was barely visible. Of note, this very
weak visibility of expression was restricted to the amphid (region



Fig. 4. Expression of direct RFX-target gene promoters with or without X-box flanking regions. (A–D) Comparisons of reporter gene expression (promoter-to-GFP fusion

constructs) between unmodified promoter regions and minimal promoters consisting of only the respective X-box promoter motif sequence for each of the direct RFX-

target gene sampled (xbx-1, dyf-2, xbx-9, nhr-44). Schematic diagrams (left) illustrate the promoter regions, whereby a double hash mark at the 50 end of a construct

indicates that an approximately 2 kb promoter region was used. Expression analyses (right) illustrate the specific reporter gene expression patterns observed in a

particular anatomical region for each construct (cf. Fig. 1A and Materials and methods for details). Error bars represent the standard error of the mean.
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1) and tail (region 2) CSNs (Fig. 4A–D; Supplemental Figs. S1B and
S2A–C).

While the X-box promoter motif alone was unable to suffi-
ciently drive expression of a reporter gene in C. elegans CSNs, it
remained possible that—to varying degrees—both the X-box
promoter motif sequence composition and the sequence compo-
sition of the X-box flanking regions affect the expression pattern
specificity of a given direct RFX-target gene. To explore both of
these possibilities, various reporter genes were constructed in
which either the X-box or the X-box flanking regions of various
different direct RFX-target genes were reciprocally exchanged.
First, separate xbx-1 reporter gene constructs were generated that
each contained an X-box promoter motif modified to the correspond-
ing motif sequence found in genes with more restricted expression
patterns, including dyf-2, xbx-9 or nhr-44 (Fig. 5A–C). Transgenic
worms expressing constructs that contained either the dyf-2 or xbx-9



Fig. 5. Expression of direct RFX-target gene promoters with swapped-in X-box motif sequences. Reciprocal reporter gene comparisons of promoter-to-GFP fusion constructs

expressing either (A–C) xbx-1 promoter regions individually modified to contain a dyf-2, xbx-9 or nhr-44 X-box promoter motif sequence or (D–F) the promoter regions of dyf-2, xbx-9

or nhr-44 separately modified to contain the xbx-1 X-box promoter motif sequence. Each schematic diagram (left) depicts the unmodified promoter region containing an endogenous

X-box promoter motif sequence (top, white bar) and the promoter region modified to contain the corresponding X-box promoter motif sequence (bottom, dark bar). Double hash

marks on the left of each promoter schematic illustrate that an approximately 2 kb promoter region was used for these analyses. Expression analyses (right) illustrate the specific

reporter gene expression patterns observed in a particular anatomical region for each construct (cf. Fig. 1A and Materials and methods for details). Expression of GFP was normalized

to the expression of the unmodified xbx-1 X-box promoter construct. Error bars represent the standard error of the mean.

J. Burghoorn et al. / Developmental Biology 368 (2012) 415–426 421



xbx-1

xbx-1

xbx-9

dyf-2

Fig. 6. In vivo dissection of direct RFX-target gene promoters. (A–D) Comparisons of reporter gene expression (promoter-to-GFP fusion constructs) between unmodified

promoter regions and promoter regions that contain deletions or mutations. Schematic diagrams (left) illustrate key features in the respective unmodified and modified

promoter regions from the direct RFX-target genes xbx-1, dyf-2 and xbx-9, including X-box promoter motif sequences (white boxes), C-box enhancer elements (gray boxes),

and sequences that are very similar to C-box sequences (not boxed). A cross mark through a particular sequence indicates that it was replaced using a cross-means

mutation. Deletions are represented by a gap. Double hash marks at the 50 end of a construct indicate that an approximately 2 kb promoter region was used. Expression

analyses (right) illustrate the specific reporter gene expression patterns observed in a particular anatomical region for each construct (cf. Fig. 1A and Materials and

methods for details). Error bars represent the standard error of the mean.
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X-box motif sequence embedded in the xbx-1 promoter were both
expressed in all CSNs, which are expression patterns that mirror the
unmodified xbx-1 constructs used for comparisons (Fig. 5A and B).
Whereas, expression of either the unmodified dyf-2 or xbx-9 reporter
gene constructs occurs in only a subset of CSNs (Fig. 5D and E).
Transgenic worms expressing a construct containing the nhr-44

X-box promoter motif sequence embedded in the xbx-1 promoter
resulted in a more restricted expression pattern than was observed
for the unmodified xbx-1 promoter region (Fig. 5C), but at the same
time in a much broader expression pattern and at a higher expression
level than that observed for the unmodified nhr-44 reporter gene
construct alone (Fig. 5F).
In a reciprocal set of experiments, the respective X-box motif
sequences from the dyf-2, xbx-9 and nhr-44 gene promoters were
each separately modified to the corresponding xbx-1 X-box
promoter motif sequence. Transgenic worms expressing reporter
gene constructs containing the xbx-1 X-box embedded in either
the dyf-2 or xbx-9 promoter regions resulted in more restricted
expression patterns that mirrored each of the respective unmo-
dified dyf-2 and xbx-9 reporter gene constructs (Fig. 5D and E),
which in both cases are more restricted expression patterns than
those observed for each of the unmodified or reciprocally mutated
xbx-1 reporter gene constructs (compare Fig. 5D with A and E
with B). Interestingly, transgenic worms expressing a reporter



Fig. 7. Analyses of C-box enhancer elements in direct RFX-target genes. (A) Consensus sequence logo of the C-box enhancer element based on nine experimentally verified

sequences. (B, C) Comparisons of the number and positions of C-box enhancer elements identified in direct RFX-target genes. The distance between each candidate or

experimentally verified C-box (cf. Supplemental Fig. S3) in connection to its corresponding X-box promoter motif is depicted in separate bar graphs for direct RFX-target

genes that are (B) broadly expressed in most or all CSNs (cf. Fig. 1B, nr 1–25) or that (C) show a more targeted or restricted expression in specific CSNs (cf. Fig. 1B, nr 26–

41). (D) Expression analysis of an artificial promoter containing an X-box and C-boxes. Schematic diagrams (left) illustrate key features from the unmodified promoter

region of the direct RFX-target gene xbx-1, including X-box promoter motif sequences (white boxes) and C-box enhancer elements (gray boxes). Unrelated lambda-phage

DNA is depicted as dashed lines. Deletions are represented by a gap. Double hash marks at the 50 end of a construct indicate that an approximately 2 kb promoter region

was used. Expression analyses (right) illustrate the specific reporter gene expression patterns observed in a particular anatomical region for each construct (cf. Fig. 1A and

Materials and methods for details). Error bars represent the standard error of the mean.
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gene construct containing the xbx-1 X-box promoter motif
sequence embedded in the nhr-44 promoter region resulted (i)
in an increase of expression of this reporter gene as compared to
the expression pattern observed for the unmodified nhr-44

reporter gene construct (Fig. 5F), and (ii) in a highly decreased
expression as compared to the unmodified or reciprocally
mutated xbx-1 reporter gene constructs (compare Fig. 5F with
C). Thus, while the X-box sequence composition has a minor
affect on the level and specificity of direct RFX-target gene
expression patterns in CSNs, the above data indicate that X-box
sequence composition is likely not the primary factor regulating
direct RFX-target gene expression pattern specificity.

Cumulatively, the minimal X-box promoter motif expression
analysis and reciprocal promoter motif comparisons indicate that
while the X-box promoter motif is required for the efficient
expression of direct RFX-target genes, expression pattern specifi-
city is largely influenced by sequences flanking the X-box motif.
Thus, we hypothesized that direct RFX-target gene promoters
may contain additional regulatory elements that influence both
the level and specificity of their gene expression patterns.

Identification of a novel enhancer element, the C-box, in direct RFX-

target gene promoters

It has been previously demonstrated that the human RFX5
recognition site contains an additional enhancer element within
18 bp of the 30 end of the X-box promoter motif of a direct target
gene of human RFX5 (Boss and Jensen, 2003; Masternak et al.,
2000). However, other than the conserved composition of X-box
promoter motif sequences, no additional sequence homology has
been observed when comparing human RFX5 enhancer elements
and other sequences residing in C. elegans direct RFX-target gene
promoters. To explore the possibility that a cryptic or divergent
enhancer element resides in close proximity to the X-box pro-
moter motifs of direct RFX-target genes in C. elegans, the expres-
sion patterns of xbx-1 and mks-3 X-box promoter motifs
elongated by exactly 18 bp on both the 50 and 30 flanking regions
were examined. These analyses revealed that constructs contain-
ing only an X-box motif and short flanking sequences were largely
unable to drive expression of a reporter gene in C. elegans

(Supplemental Fig. S1). We conclude that the expression of a
direct RFX-target gene likely depends on cis-regulatory sequences
that extend beyond the immediate X-box flanking region.

To provide a preliminary indication of the overall size and
complexity of a direct RFX-target gene promoter in C. elegans,
reporter genes expressing unmodified and truncated promoters
were compared in vivo for select direct RFX-target genes with
either a broad CSN expression pattern, including xbx-1, mks-3,
bbs-8 and che-2, or a more restricted CSN expression pattern,
including dyf-2 and xbx-9. These analyses revealed that promoters
of 400 bp in length or less consistently retained an expression
pattern similar to each of the respective 2 kb unmodified promo-
ter constructs (Fig. 6A–D; Supplemental Fig. S2A–C). Each of these
400 bp direct RFX-target gene promoter sequences were then
compared using the MEME algorithm, a bioinformatics-based
method used to identify conserved regulatory elements in the
promoters of similarly regulated genes (cf. Materials and
methods; Bailey and Elkan, 1994). Other than identifying known
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X-box motif sequences from each of these direct RFX-target gene
promoters, these initial comparisons were unable to predict with
a high degree of certainty the presence of additional candidate
regulatory sequence motifs.

We next exploited the observation that enhancer motifs are
often conserved in different Caenorhabditis species (Bigelow et al.,
2004) by applying a comparative genomics-based approach in
conjunction with a MEME search effort. For each of the 41 C.

elegans direct RFX-target genes sampled in this study, the corre-
sponding orthologous promoter regions were extracted from the
Caenorhabditis briggsae and Caenorhabditis remanei genomes.
When pooling all of the promoters together and analyzing them
for the presence of conserved elements using MEME, with the
exception of X-box promoter motif sequences, we were unable to
identify additional conserved sequence motifs. Next, each of the
respective orthologous, direct RFX-target gene promoter regions
from C. elegans, C. briggsae and C. remanei were clustered according
to the expression patterns observed for the C. elegans direct RFX-
target gene. Direct RFX-target gene promoters and their orthologous
counterparts were pooled into two groups: (i) gene promoters that
are broadly (cf. Fig. 1B, nr 1–25) and (ii) that are more restrictedly
(cf. Fig. 1B, nr 26–41) expressed in C. elegans CSNs. Subsequent
MEME analyses of these pooled, direct RFX-target gene promoters,
extracted from the genomes of three different Caenorhabditis species
revealed an enrichment of a specific cytosine (C) and thymidine
(T) rich sequences in the promoter regions of direct RFX-target
genes that are broadly expressed in CSNs. When present, these C/T
rich sequences were conserved in the respective orthologous gene
promoters of C. elegans, C. briggsae and C. remanei. No C/T rich
sequences or any other motifs were identified with MEME in the
pooled direct RFX-target genes with more restricted CSN expression
patterns. C/T rich sequences thus seem to be associated with broad
expression in CSNs.

To determine experimentally if the C/T rich sequences identi-
fied in many broadly expressed, direct RFX target gene promoters
enhance the expression of these promoters in vivo, we examined
the expression patterns of various reporter gene constructs in
which these C/T rich sequences were either present or absent
(Fig. 6A–D; Supplemental Fig. S2A–C). We found that the xbx-1

gene contained a single C/T rich sequence in close proximity
(o31 bp) to both the 50 and 30 ends of its X-box promoter motif.
Reporter gene constructs containing deletions of either one or
both of these C/T rich sequences resulted in a partial (amphid and
tail CSNs; anatomical regions 1 and 2) or complete (all other
CSNs; anatomical regions 3, 4 and 5) reduction in CSN expression
(Fig. 6A). Similarly, xbx-1 reporter gene constructs containing
mutations in either one or both of these C/T rich sequences
mirrored the expression patterns observed for reporter gene
constructs containing singly or doubly deleted C/T rich sequences,
respectively (compare Fig. 6A with B).

As was observed for the xbx-1 promoter, a series of deletion
and mutation constructs eliminating the C/T rich sequences
identified in the mks-3, bbs-8, che-2 and dyf-2 promoters resulted
in similar pronounced decreases in reporter gene expression
patterns for all of the respective direct RFX-target genes sampled
(Fig. 6C; Supplemental Fig. S2A–C). In contrast, mutations in two
C/T rich sequences found in relatively close proximity to the xbx-9

X-box promoter motif did not alter the expression of reporter
gene constructs. Thus, the xbx�9 C/T rich sequences likely
represent false positive hits (Fig. 6D). In addition, no C/T rich
sequences could be identified in close proximity to the nhr-44

X-box promoter motif. Interestingly, both the xbx-9 and nhr-44

genes have significantly more restricted CSN expression patterns
than the other direct RFX-target genes examined.

These data collectively demonstrate that direct RFX-target gene
promoters contain sequence elements in addition to X-box promoter
motifs that are required for the efficient and specific expression of
ciliary genes in the various C. elegans neurons of the CSN class. One
such sequence element was identified, which was subsequently
found to enhance the broad CSN expression of direct RFX-target
genes in vivo. We hereby term this C/T rich sequence the ‘‘C-box’’
enhancer element. Based on the identification of nine experimentally
verified C-box enhancer elements—and three false positive hits—a
preliminary C-box consensus sequence was determined (Fig. 7A). All
experimentally verified C-box sequence elements are comprised of
either a continuous stretch of 9 C/T nucleotides or an 11 nucleotides
C/T-rich stretch with—sometimes—a central guanosine base. All
C-box enhancer elements were found to reside within 60 bp from
the respective X-box promoter motif of each of the respective direct
RFX-target genes examined (Fig. 7A–C; Supplemental Fig. S3).

Using the above criteria as a guide, 25 candidates and
experimentally verified C-box enhancer elements were identified
in the promoters of all 41 direct RFX-target genes sampled in this
study (Supplemental Fig. S3). The number and location of C-box
enhancer elements residing at specific distances with regard to
their respective X-box promoter motif were then determined for
direct RFX-target genes that are either broadly (Fig. 7B) or more
restrictedly (Fig. 7C) expressed in CSNs. We found that C-box
enhancer elements are significantly more abundant in direct RFX-
target genes that are broadly expressed in many or all CSNs (84%)
than in direct RFX-target genes that have a more restricted CSN
expression (19%) (compare Fig. 7B with C; Supplemental Fig. S3).
Thus, C-box enhancer elements may primarily facilitate the broad
CSN expression patterns of direct RFX-target genes.

Expression pattern analyses of artificial xbx-1 gene promoters

To further reveal how the C-box enhancer element specifically
affects direct RFX-target gene expression, a reporter gene with an
artificial xbx-1 promoter was constructed. This artificial reporter gene
construct exclusively preserved the composition and spacing of the
respective X-box promoter motif and C-box enhancer elements of the
endogenous xbx-1 promoter (Fig. 7D, left). Expression of this artificial
reporter gene construct was then compared to transgenic worms
expressing either an unmodified 2 kb or an xbx-1 X-box minimal
reporter gene construct (Fig. 7D, right). In contrast to the minimal
construct that contained only the X-box promoter motif, a pro-
nounced CSN-specific expression pattern was observed in transgenic
animals carrying the artificial xbx-1 reporter gene construct. However,
this artificial reporter gene construct was not able to fully restore
expression specificity or abundance to levels as broad or as high as
those observed in the unmodified xbx-1 reporter gene construct.
Interestingly, CSN expression in the amphids, tail, and surrounding
the anterior bulb of the pharynx (anatomical regions 1, 2 and 3) was
restored to between 68% and 85% of the levels seen with the
unmodified promoter constructs (Fig. 7D; Supplemental Table S1).
While, CSN expression surrounding the posterior bulb of the pharynx
and in the midbody (anatomical regions 4 and 5) was not restored.
These data verify that the C-box enhancer element alone can enhance
expression of direct RFX-target genes in vivo. However, collectively
these data also indicate that there likely remain additional elements
that facilitate expression of direct RFX-target genes in C. elegans CSNs
(Figs. 6A–D and 7D; Supplemental Figs. S1A and B and S2A–C).
Discussion

In this study we demonstrate that in C. elegans neither the position
nor the exact sequence composition of the X-box promoter motif is
the primary factor determining the specificity of direct RFX-target
gene expression patterns in the various neurons of the CSN class.
Whereby, direct RFX-target genes are often ciliary genes. Instead,
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sequences in adjacent cis-regulatory regions work in concert with the
X-box promoter motif to regulate the expression of direct RFX-target
genes in CSNs. One specific sequence, termed the C-box enhancer
element, was identified in the most broadly and abundantly
expressed direct RFX-target genes in C. elegans. These data suggest
that direct RFX-target gene specificity is dependent on the X-box
promoter motif and its flanking sequences. Recently, the modENCODE
Consortium has revealed the genome-wide binding sites for more
than 20 TFs in C. elegans, not including DAF-19/RFX (Niu et al., 2011).
Another study determined which specific TFs bind a similar number
of cis-regulatory regions (Gerstein et al., 2010). Both data sets
collectively confirm that most TFs bind near the translational start
site of their respective direct target genes. The results from our study
are largely complementary to the modENCODE efforts in that we
identify the C-box, a novel enhancer element for a relatively large set
of genes, which all share a common mode of regulation, namely being
regulated by DAF-19/RFX. We identify with a much higher degree of
resolution the specific sites that are likely bound by an as-of-yet
unidentified transcriptional regulator. Future work aims to identify
this putative transcriptional regulator using methodology similar to
those used by the modENCODE Consortium.

The sequence composition of the C-box enhancer element
identified in this study is very similar to the sequence composi-
tion of the N1-box, which is a cis-regulatory element that was
previously implicated in the expression of many neuronal genes
in C. elegans (Ruvinsky et al., 2007). Comparisons between C-box
and N1-box enhancer element consensus motifs reveal that both
elements are composed primarily of C/T-rich sequences. However,
N1-box cis-regulatory elements were found to contain a more
stringent composition of nucleotides, including the presence of
guanosine nucleotides at positions 3 and 5 of the N1-box
consensus motif. In contrast to the C-box, which was found here
in genes highly and exclusively expressed in CSNs, N1-box genes
are typically expressed pan-neuronally, that is, in many different
types of neurons, where the CSNs represent only one class.
Subsequent experimental analyses will be required to determine
whether or not the C-box enhancer element and the N1-box
cis-regulatory element share a common mode of regulation. One
possibility that cannot be excluded is that the C-box may
represent a degenerate N1-box. This possibility appears to be in
agreement with the observation that those direct RFX-target
genes, which are expressed most highly and broadly within
the CSN class of neurons, additionally contain C-box enhancer
elements.

The X-box promoter motif, bound and regulated by RFX TFs, is
a highly conserved cis-regulatory element found in the transcrip-
tional network of many ciliary genes of animals (Chu et al., 2010;
Piasecki et al., 2010). Unlike humans, which contain at least 7 RFX
TFs (Aftab et al., 2008), only a single RFX TF, DAF-19, controls the
expression of direct RFX-target genes in various CSNs in C. elegans

(Swoboda et al., 2000). In contrast, C-box enhancer elements
appear to be evolutionarily conserved exclusively in nematodes,
and even within this clade only to varying degrees. Using
computational-based approaches similar to the ones described
in this study, we were unable to identify sequences that resemble
C-box enhancer elements in a variety of human ciliary gene
promoters, including ift52/osm-6, ift172/osm-1, bbs1/bbs-1, bbs5/
bbs-5 and dync2li1/xbx-1.

Interestingly, several additional cis-regulatory elements were
previously identified in human RFX5 target gene promoters,
which are exclusively found in MHC class II genes. In addition
to the X-box promoter motif, RFX5 target genes contain W/S, X1
(X-box), X2 and Y cis-regulatory elements (Boss and Jensen, 2003;
Masternak et al., 2000). Similar to the C-box enhancer elements in
C. elegans, the cis-regulatory elements found in human RFX5
target gene promoters always reside in close proximity
(o60 bp) to their respective X-box promoter motifs. Further,
the number of additional enhancer elements identified for RFX5
target genes in humans is consistent with the idea that additional
sequences likely contribute to the specific expression patterns of
direct RFX-target genes in C. elegans.

Individual transcription factors are often functionally con-
served over very large phylogenetic distances, as is the case for
the RFX TF family (Chu et al., 2010; Piasecki et al., 2010). In
contrast, cis-regulatory sequence evolution is a highly dynamic
process, typically occurring at much higher rates than observed
for gene coding regions (Ruvinsky and Ruvkun, 2003). In the case
of the RFX TF family the X-box promoter motif sequence is
conserved across animal species. However, additional cis-regula-
tory elements in the X-box flanking regions may be rapidly
diverging. Even when comparing the promoters of closely related
organisms, such as nematodes, the expression of neuronal genes
has been found to occur through both conserved (Ruvinsky et al.,
2007) and divergent (Nokes et al., 2009) mechanisms. Thus, it
seems likely that the expression of direct RFX-target genes
depends on a combination of promoter sequence elements that
are evolutionarily conserved to varying degrees, especially when
comparing between orthologous gene promoters of highly diver-
gent animals.
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